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Introduction: With an enormous number of hand images generated over time,
leveraging unlabeled images for pose estimation is an emerging yet challenging
topic. While some semi-supervised and self-supervisedmethods have emerged,
they are constrained by their reliance on high-quality keypoint detectionmodels
or complicated network architectures.

Methods: We propose a novel selfsupervised pretraining strategy for 3D hand
mesh regression. Our approach integrates a multi-granularity strategy with
pseudo-keypoint alignment in a teacher–student framework, employing self-
distillation and masked image modeling for comprehensive representation
learning. We pair this with a robust pose estimation baseline, combining
a standard vision transformer backbone with a pyramidal mesh alignment
feedback head.

Results: Extensive experiments demonstrate HandMIM’s competitive
performance across diverse datasets, notably achieving an 8.00 mm Procrustes
alignment vertex-point-error on the challenging HO3Dv2 test set, which
features severe hand occlusions, surpassing many specially optimized
architectures.

KEYWORDS

3D hand mesh estimation, multi-granularity representation, self-supervised learning,
masked image modeling, vision transformer

1 Introduction

Image-based 3D hand reconstruction technology has widespread applications in the
smart film industry, such as motion capture, special effects synthesis, virtual production,
post-production animation modification, and interactive film production. Meanwhile,
3D hand mesh estimation from monocular RGB images has drawn great attention in
computer vision research [1, 2] driven by its potential in various applications, such as action
recognition [3, 4], digital humanmodeling, simultaneous localization andmapping (SLAM)
[5–10], and AR/VR. However, training a high-quality hand estimationmodel is challenging
due to complex backgrounds and severe self-occlusion. Furthermore, it is laborious and
costly to collect high-quality training pairs, especially in the format of 3D mesh. A limited
amount of image-mesh training data are available, making it difficult to train effective and
generalizable models. Weakly supervised methods detecting 2D keypoints or measuring
noisy depth maps [11] or kinematic priors [12] from off-the-shelf models have been
proposed to improve the accuracy of supervised-trained models. However, these methods
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heavily rely on fine-grained keypoint detectors, such as
MediaPipe [13], which struggle with the wide variety of wild
images encountered in practice and may produce many noisy
labels.

Self-supervised learning is a promising technique for
addressing the above problem by exploiting the large quantity
of unlabeled image data generated over time. Masked image
modeling (MIM) pretraining has emerged as a new paradigm
in self-supervised learning based on the vision transformer [14]
architecture that divides images into individual patches. In MIM
pretraining, we randomly mask a specified ratio of image patches
and set the self-supervised learning target to reconstruct the
masked patches. Previous works [15, 16] have demonstrated
that MIM-based methods can learn better local and global
representation than conventional self-supervised methods based on
contrastive learning [17]. In contrast to traditional self-supervised
methods based on contrastive learning, which focus on high-level
feature representation suitable for image classification, MIM-based
methods can learn better local and global representations. This
is especially critical for low-level, fine-grained regression tasks
such as 3D hand estimation, where capturing the equivalence of
geometric transformations is essential. The potential ability of MIM
to reconstruct masked patches allows the model to understand
the spatial relationships within an image at a finer granularity,
making it more adept at handling detailed structures like the
human hand.

However, most existing self-supervised work focuses on
recognition tasks and aims to learn features appropriate for
high-level image classification tasks. In low-level regression
tasks, mainstream methods cannot capture the equivalence of
geometric transformation, a critical characteristic of human/hand
pose or mesh regression. Therefore, most state-of-the-art MIM
self-supervised pretraining approaches must be adapted for
regression tasks such as 3D hand estimation. Figure 1 exhibits
the difference between our MIM approach and the previous
ones. MIM’s extension to regression tasks like 3D hand mesh
estimation offers significant advantages. It leverages the strengths
of MIM—such as detailed feature capture and understanding
of spatial relationships—while introducing mechanisms
specifically tailored for the challenges of regression tasks. We
confirmed the abovementioned findings through experiments in
Section 4.3.

In this paper, we conduct the first attempt to apply the effective
masked image modeling (MIM) self-supervised technique to 3D
hand estimation tasks. We propose HandMIM, a unified and
multi-granularity self-supervised pretraining strategy optimized
for pose regression tasks. During the pretraining period, we use
a teacher-student self-distillation approach, where input hand
images are augmented into two views that vary in sizes, rotations,
colors, and other factors. The student network is then tasked
with reconstructing masked tokens under the guidance of the
teacher network. To ensure that the class tokens are semantic
with pose-aware knowledge, we introduce the pseudo-keypoint
alignment operation in the latent feature space. This operation
allows us to undo the geometric transformation in the format
of 2D pseudo-keypoints, enabling the network to learn pose
equivalence between cross-view tokens. To facilitate high-level
and low-level recognition, we adopt token-level recovery between

parallel-viewmasked tokens and pixel-level reconstruction between
masked input images and recovered images, respectively. It is
important to note that the token recovery is conducted in the
same latent space as the pose-aware alignment. We sketch our
method in Figure 2 and compare it with related self-supervised
works [18, 19] for hand pose/shape estimation. PeCLR [18] is
the current state-of-the-art hand pose estimation work using a
self-supervised training approach. Our model differs from PeCLR
[18] in the following aspects: First, we learn global features using
a self-distillation manner rather than the contrastive learning
paradigm. Second, we designed the pose-aware keypoint alignment
mechanism, making HandMIM exploit the pose knowledge, which
as originally coupled with task-irrelated information (such as
color, affine transformation, etc.) from the image. Last, token-
level self-distillation and pixel-level reconstruction are imposed to
learn the local or low-level features, which are vital for regression
tasks like 3D mesh estimation. Accordingly, HandMIM overcomes
the limitations of contrastive learning and other self-supervised
approaches by incorporating multi-granularity feature learning and
pose-aware mechanisms in a unified self-distillation-based MIM
framework. This combination results in superior performance
on 3D hand mesh estimation tasks. In the supervised fine-
tuning period, most existing pose estimation methods rely on
a combination of grid convolution, transformer structure, and
a dedicated and complicated prediction head for better results.
We designed a simple yet effective pose estimation pipeline with
a standard vision transformer as the backbone, attached by a
PyMAF [20] decoder head to promote mesh-image alignment
and use the MANO [21] parameters to represent the estimated
hand mesh. We loaded the self-supervised, pre-trained weights
to transformer blocks and fine-tuned the whole network for
hand pose estimation. Extensive experiments demonstrated that
our HandMIM can learn better features to improve 3D hand
pose estimation precision than alternative self-supervised and fully
supervised methods under the same amount of labeled training
data. We conducted our main experiments on two mainstream and
challenging 3D hand mesh estimation datasets, FreiHAND [22]
and HO3Dv2 [23]. We implemented HandMIM on three different
sizes of vision transformers, namely ViT-Small, ViT-Base, and ViT-
Large, respectively, which show strong scalability. After HandMIM
pretraining, we achieved a performance boost of 9.7%/11.9%/16.5%
in Procrustes Alignment Joint Position Error (PAJPE) on the
FreiHAND [22] test set and 7.1%/8.4%/9.0% on the HO3Dv2 [23]
test set. Notably, after pretraining HandMIM on ViT-Large, we
achieve competitive results on 3Dhandmesh estimation through the
simple standard vision transformer architecture rather than complex
graph architectures adopted by fully supervised methods such as
I2L-MeshNet [24].

Conclusively, the main contributions of our work are
in four folds:

1. We adopted a new self-distillation method for 3D hand mesh
estimation. This method markedly enhanced the efficiency
of learning from potentially unlimited unlabeled hand
image data.

2. We designed the pose-aware keypoint alignment mechanism
for the MIM paradigm, making HandMIM exploit the
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FIGURE 1
Comparison with other MIM self-supervised frameworks in vision tasks. Left: MIM techniques such as [16] encourage the model to recover the masked
patch of images. Middle: iBOT [15] utilized a vision transformer [14] to extract multi-level features for image details and semantics. Self-distillation
mechanics is introduced to learn the semantic [CLS] feature, which is invariant [15] under task-specific transformation. Right: our HandMIM pruned the
MIM-training ViT architecture to fit the properties of the regression task. The pose-aware alignment mechanics are designed to enforce the
transformation equivalence [18] of [CLS] and the patch features, given the masked pose image, which boosts the regression task. Note that our
framework adds the geometric equivalence property to the [CLS] token via pseudo-keypoints and simultaneously learns global, patch, and pixel-level
features, which are specially tailored for the fine-grained regression tasks.

FIGURE 2
Comparison with other self-supervised frameworks for hand shape/pose estimation. Left: TempCLR [19] proposes exploiting the temporal relations to
generate positive and negative samples for contrastive learning. Middle: PeCLR [18] is noted for implementing a transformation equivalence constraint
on extracted global features. It is important to note that both TempCLR [19] and PeCLR [18] are contrastive learning methods that focus solely on
global features, neglecting multi-level features that could significantly refine the predicted hand mesh vertices. Right: our contribution stands out with
the introduction of pose-aware alignmentmechanics and multi-granularity feature learning, which is the key difference between HandMIM and
competitive methods. We first align pseudo-keypoints (represented by the [CLS] token) in the latent space. Concurrently, the [patch] tokens capture
detailed features essential for mesh estimation and refinement. For clarity, the token-level self-distillation mechanics are omitted in this comparison.
Unlike contrastive learning approaches such as PeCLR [18], which focus on global high-level features, HandMIM’s pixel-level reconstruction enhances
the model’s ability to rebuild fine-grained geometric details in hand mesh vertex prediction. This integration helps the model recover from occlusions
and challenging hand poses. By predicting the original pixel values from masked input, HandMIM is more effective at handling transformations and
occluded regions, which is evident from the improved performance on datasets with hand–object interaction (e.g., HO3Dv2).

pose knowledge, which was originally coupled with task-
irrelated information (such as color and affine transformation)
from images.

3. The integration of token-level self-distillation and pixel-level
reconstruction in our framework allowed the effective learning
of both high- and low-level features. These features are

crucial for fine-grained regression tasks, including hand mesh
estimation.

4. To our knowledge, HandMIM represented the inaugural
model pre-trained with masked image modeling
mechanics, specifically in the field of hand mesh
estimation.
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FIGURE 3
Overall framework of HandMIM. During the self-supervised pretraining phase, we design multi-granularity tasks to acquire pose-aware knowledge,
high-level token recovery, and low-level pixel reconstruction. We propose a simple baseline based on the standard vision transformer architecture and
the PyMAF [20] decoder in the fine-tuning period. We load the pre-trained weights onto the model, which allows us to estimate 3D hand poses by
leveraging the network’s ability to learn pose-sensitive information in hand images.

2 Related work

2.1 Hand pose estimation

Estimating hand poses aims to predict hand information from a
monocular RGB/depth image and can be broadly classified into
parametric and non-parametric methods. Parameter methods
[25] use statistical priors from parametric hand models like
MANO [21] to constrain the regression space and make the
prediction more robust in cases of severe occlusions. Except
for fully supervised manners, pioneer works [12] predict the
MANO parameters with weak supervision, such as hand masks,
depth maps, or 2D annotations. Non-parametric methods [26,
27] aim to predict the entire mesh vertices directly using
either graph convolutional networks or transformer blocks.
Although these methods can generate results that align better
with the input image, they are more prone to failure in
cases of occlusions and truncations. More recent work has
focused on explicitly modeling hand–hand [28], complicated
hand–object interactions [29], high inference speed [30], and
increased robustness to occlusions [29] that pose new and
more complex challenges. Instead of designing dedicated and
resource-intensive heads, we proposed a lightweight head that
regresses MANO parameters from a pre-trained standard ViT
for both single-hand estimation and hand–object interaction
predictions.

2.2 Vision transformer (ViT)

ViT [14] first introduced vision transformers to the
visual field by patching images for transformer blocks. This
approach has led to significant progress in image recognition
and has also shown promising results in human and hand

estimation tasks [1, 2, 27]. For example, Mesh Graphormer
[1] designs a transformer-based head fused with graph
convolution layers. HaMeR [31] directly utilizes ViT with
a transformation head to predict MANO parameters and
camera extrinsic with several mixed-label labeled datasets.
Keypoint Transformer [2] first collects candidate 2D keypoints
and utilizes a transformer encoder-decoder for the mesh
predictions. AMVUR [26] further proposes a probabilistic
attention-based mesh vertices model to estimate the prior
probability distribution of joints and mesh vertices to improve their
feature representation.

Most prior works have designed complex structures on top
of the transformer or attention blocks. Accordingly, standard
transformers cannot easily achieve competitive performance. Our
approach attempts to leverage large quantities of unlabeled hand
images and surpass existing methods solely based on the standard
ViT backbone without any delicate domain-related architecture,
demonstrating the effectiveness of our self-supervised regression
learning algorithm.

2.3 Self-supervised learning

Self-supervised learning is an approach to learning effective
feature representation from abundant unlabeled images. Contrastive
learning techniques [17] aim to learn by constraining positive
pairs to become close in feature space while pushing negative
pairs apart and have been employed in the hand pose estimation
tasks for improved performance [18, 19, 32]. Masked image
modeling (MIM) [15, 16, 33] methods are new paradigms of
self-supervised learning that randomly mask a portion of the
input image and reconstruct the masked parts via reasoning
other unmasked parts. The knowledge of masked images can
be learned in alterable manners, including dVAE codebooks in
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BeiT [33], raw RGB pixels in MAE [16], etc. Previous MIM
studies have focused on learning representative features for image
classification tasks but have neglected the specificity of pose or
mesh regression tasks. To our knowledge, this is the first time
that MIM techniques have been extended to such 3D regression
tasks. MIM contributes to the proposed HandMIM in two aspects.
First, it allows the model to learn local and global features better
than traditional contrastive learning methods. It captures spatial
relationships within images at a finer granularity, making it more
adept at handling detailed structures like human hands. Second,
it constitutes an important part of our designed multi-granularity
loss functions, which involve both token-level recovery between
parallel-viewmasked tokens and pixel-level reconstruction between
masked inputs and recovered images. This dual-level loss facilitates
high-level and low-level recognition, ensuring comprehensive
representation learning.

3 Methods

In this section, we will discuss the detailed architecture
of HandMIM. The pipeline of HandMIM can be found in
Figure 3. We start with preliminaries, including basic knowledge
of vision transformers, masked image modeling, and self-
distillation techniques in Section 3.1. Then, we introduce
the detailed design of HandMIM, including pose-aware
keypoint alignment in Section 3.2, token-level self-distillation
in Section 3.3, and pixel-level reconstruction in Section 3.4.
Finally, we illustrate how to apply pre-trained features after
self-supervised learning for 3D hand mesh estimation tasks in
Section 3.5. The PyTorch-like pseudocode of HandMIM is listed
in Algorithms 1–3.

3.1 Preliminaries

3.1.1 Vision transformers
Given input images I ∈ ℝ3×H×W, a vision transformer [14]

applies a patch embedding layer to divide the images into
patch tokens z ∈ ℝn

2×c, where n is determined by a pre-defined
patch length, and c is the channel dimension after the first
convolution layer. A learnable class token is appended to the patch
tokens to generate the input feature z ∈ ℝ(n

2+1)×c of transformer
blocks. Each transformer block comprises a multi-head self-
attention (MHSA) and feed-forward network (FFN). The input
tokens are projected into query, key, and value triplets (Q,K,V)
through linear layers, and the forward process of MHSA can be
formulated as Equation 1:

MHSA (Q,K,V) = Softmax(
QKT

√d
)V. (1)

The output of the self-attention module is then passed through
an inverted bottleneck multi-layer perceptron (MLP), also known
as the feed-forward network. In practice, vision transformers are
assembled by stacking a series of transformer blocks. We can obtain
models of varying sizes by varying the channel width and layer depth
of vision transformers.

Input:

batch size N, constant softmax temperature

τPoses ,τPatchs ,τPoset ,τ
Patch
t , student and teacher network

fs, ft, logit center CPose,CPatch.

Pseudo code:

for sampled minibatch images {xk}Nk=1 do

 for all k ∈ {1,…,N} do

  draw two random augmentation functions t ∼ Γ,t′ ∼ Γ

   ̃x2k−1,R2k−1, [i,j,h,w]2k−1 = t(xk) ⊳ random data

augmentation for image, [i,j,h,w] is the image crop

parameters (left, top, height, and width), and R

is the 2 × 2 rotation matrix.

   ̃x2k,R2k, [i,j,h,w]2k = t
′(xk)

  x̂2k−1,M2k−1 = mask( ̃x2k−1) ⊳ randomly mask the image

  x̂2k,M2k = mask( ̃x2k)

  u2k−1 = fs(x̂2k−1),u2k = fs(x̂2k) ⊳ tokens encoded by

student network

  v2k−1 = ft( ̃x2k−1),v2k = ft( ̃x2k) ⊳ tokens encoded by

teacher network

  h2k−1 = decoder(u2k−1),h2k = decoder(u2k) ⊳ reconstruct

the image from tokens

  uCLS
2k−1,u

Patch
2k−1 = split(u2k−1)

  vCLS
2k−1,v

Patch
2k−1 = split(v2k−1)

  uCLS
2k
,uPatch

2k
= split(u2k)

  vCLS
2k
,vPatch

2k
= split(v2k)

  uCLS
2k−1,v

CLS
2k−1 = PAA(uCLS

2k−1,v
CLS
2k−1,M2k−1, [i,j,h,w]2k−1) ⊳

Pose-aware alignment

  uCLS
2k
,vCLS

2k
= PAA(uCLS

2k
,vCLS

2k
,M2k, [i,j,h,w]2k) ⊳

Pose-aware alignment

  LPose = S-D(uCLS
2k−1,v

CLS
2k
,CPose,τPoses ,τ

Pose
t ) +

S-D(uCLS
2k
,vCLS

2k−1,C
Pose,τPoses ,τ

Pose
t ) ⊳ [CLS] token loss

  LMIM = S-DuPatch
2k−1 ,v

Patch
2k−1 ,C

Patch,τPatchs ,τPatcht ⋅M2k−1.mean ()

+ S-DuPatch
2k
,vPatch

2k
,CPatch,τPatchs ,τPatcht ⋅M2k.mean () ⊳

[Patch] token loss

  LRecon = |h2k−1 − ̃x2k−1| ⋅M2k−1.mean ()+|h2k − ̃x2k| ⋅M2k.mean

() ⊳ image reconstruction loss

  L =LPose +LMIM +LRecon

 end for

 Update network fs to minimize L
 Update network ft using exponentially moving

average (EMA)

 Update logit center CPose,CPatch by moving average

end for

Return student network f.

Algorithm 1. HandMIM PyTorch-like Style Pseudocode.

 Input: s,t,c,τs,τt.

 Pseudo code:

 s = softmax (s/τs)

 t = softmax ((t−c)/τt)

 return −(t ⋅log (s)).sum (dim = −1)

Algorithm 2. Self-distillation (S-D).
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 Input: xCLS,R, [i,j,h,w].

 Pseudo code:

 xCLS = MLP (xCLS)

 xCLS = xCLS.reshape (−1, 2) ⋅ R

 xCLS = (xCLS∗ [h,w] + [i,j])/img_size

 xCLS = xCLS.reshape (−1)

 return xCLS

Algorithm 3. Pose-aware alignment (PAA).

3.1.2 Masked image modeling
Masked image modeling (MIM) is a self-supervised learning

technique that has been demonstrated to be a general method for
image recognition tasks in many recent works [33]. Given input
tokens z ∈ ℝn

2×c, randomly create a binary mask M ∈ {0,1}n×n.
When M = 1, the origin image tokens are passed through the
neural network backbone, and when M = 0, the input tokens are
replaced with a special mask token pmask. By doing so, we obtain
both the original tokens z and the masked tokens ̂z, which are
calculated as ̂z =M⊙ pmask + (1−M) ⊙ z. The goal of the masked
image modeling task is to train the backbone function f(⋅) and
minimize the following loss function Equation 2 to recognize and
recover the original tokens z from the masked tokens ̂z:

LMIM =M ⋅ ‖ f ( ̂z) − z‖2. (2)

MIMencourages themodel to learn robust local and global image
representations, which is especially important for tasks requiring fine-
grained understanding, such as 3D hand mesh estimation.

3.1.3 Self-distillation
Self-distillation is a common technique adopted in recent self-

supervised learning frameworks [34, 35]. Given an input image I,
we apply two random data augmentations to the image, denoted
as I1 and I2, respectively. During training, we treat the backbone
function f(⋅) as the student network.The teacher network shares the
same architecture as the student network, but its weights are updated
using the exponential moving average of the student weights rather
than through gradient updates. The goal of self-distillation is to
minimize the following consistency loss function Equation 3, which
enforces consistency between the output features from the student
and teacher networks using I1 and I2, respectively, where D is
the distance metric, such as Kullback–Leibler divergence or L1/L2
loss functions:

LSD =D ( fstudent (I1) , fteacher (I2)) . (3)

3.2 Pose-aware keypoint alignment

We observe that the 2D pose of hands in input images remains
equivalent after some spatial data augmentation, such as random
rotation and resizing operations, while the positional information
is altered. As justified in our experiments, existing mainstream

self-supervised learning methods fail to capture the knowledge of
“poses.” In this work, we propose the idea of pose-aware keypoint
alignment to extract the pose-relevant knowledge. This is critical
for 3D hand mesh estimation tasks, where understanding and
preserving the geometric relationships betweenkeypoints (or joints) is
essential foraccuratereconstruction.Moreover,wechoosethismethod
because it efficiently and effectively captures and utilizes pose-relevant
knowledge, integrates seamlessly with the self-distillation and multi-
granularity learningparadigms, andenhances theoverall performance
and robustness of 3D hand mesh estimation.

Consider a point P = (x0,y0) in input image I. After the
augmentation process, the point is transformed to Equation 4:

(x′0,y
′
0) = R((x0,y0) ⋅ γ− (a,b)) , (4)

whereR denotes 2D rotationmatrix, γ denotes scale factor, and (a,b)
denotes the upper left coordinate of the resized image. After the last
transformer layer, we obtain the output class token τ ∈ ℝ1×c in latent
space, where we can regard it as a set of pseudo points and reshape
τ into the format of point (τx,τy) ∈ ℝ2×c/2. We can then recover the
linear transformation Λ(⋅) to get the original latent feature τ′ before
any spatial augmentation as the folloiwng functions Equations 5, 6:

(τ′x,τ′y) = 1/γ ⋅ (R−1 (τx,τy) + (a,b)) , (5)

τ′ = Λ (τ) . (6)

Then, we apply the softmax function to τ′ and obtain class
token features U[cls],V[cls], Û[cls], V̂[cls] to compute the cross-entropy
self-distillation losses as depicted in the following subsection.
After the pose alignment in latent space, image features after
different augmentations exhibit a unified “hand pose,” facilitating
the extraction of pose-sensitive knowledge by vision backbones.
In the following subsection, we will elaborate on how to learn the
pose-aware task.

3.3 Token-level self-distillation

The knowledge of masked image modeling can be acquired
through a self-distillation approach proposed by DINO [36]. We
treat self-supervised learning as a discriminative task involving two
backboneswith identical architecture,whichplay the roles of a teacher
network ft and a student network fs. Specifically, we train the student
network to comprehend corrupted input tokens ̂z under the guidance
of the teacher network, which receives complete input tokens z.

To fully recognize the images, we use two random image
augmentations, denoted as μ and ν; thus, we get augmented tokens
u = μ(z),v = ν(z) for the teacher network ft. We then apply a
randomly generated mask M to the augmented tokens after the
patch embedding layer, resulting in corrupted tokens ̂u and ̂v for the
student network fs. The process in the student and teacher networks
can be formulated as the following Equation 7:

Û = softmax( fs ( ̂u)) , V̂ = softmax( fs ( ̂v)) ,U = softmax( ft (u)) ,

V = softmax( ft (v)) . (7)

Note that the softmax function is applied to the channel
dimension. We use uppercase letters, that is, U = (U[cls],U[patch]) ∈
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TABLE 1 Details of the vision transformer architecture, as well as the pretraining and inference time in HandMIM.

Model Layer depth Embed dim MLP size Number of
heads

Params (M) Pretraining
time (hours)

Inference FPS

ViT-Small 12 384 1,536 6 22 12 40

ViT-Base 12 768 3,072 12 86 23 15

ViT-Large 24 1,024 4,096 16 307 53 4

TABLE 2 Results on the FreiHAND [22] dataset. We perform our results before (fine-tuned from ImageNet pre-trained weights) and after HandMIM
pretraining and list the lifting ratio compared with the ViT-S baseline.

Method Params(M) PAVPE↓ PAJPE↓ F@5↑ F@15↑

Kulon et al.c [11] - 8.6 8.4 0.614 0.966

HaMeR/ViT-Base [31] 86 M - 10.72 - -

I2L-MestNet [24] 135 M 7.6 7.4 0.681 0.973

I2UV-HandNet [39] - 7.4 7.2 0.707 0.977

HIU-DMTLb [40] - 7.3 7.1 0.699 0.974

Tang et al. [41] 149 M 7.1 7.1 0.706 0.977

PeCLR-Res50b [18] 26 M - 7.1 - -

TempCLR-Res50b [19] 26 M 10.2 - 0.541 0.941

Mesh Graphormera [1] 204 M 6.8 6.6 0.732 0.982

MobRecona [30] 22M 7.2 6.9 0.694 0.979

FastViT [27] - 6.6 6.7 0.722 0.981

ViT-Small-ImageNet + PyMAF 22M 7.1 7.2 0.697 0.978

ViT-Large-ImageNet + PyMAF 307 M 6.6 6.6 0.727 0.983

HandMIM-Smallb 22M 6.57−8.1% 6.57−9.7% 0.725 0.984

HandMIM-Baseb 86 M 6.4−9.7% 6.4−11.9% 0.731 0.985

HandMIM-Largeb 307 M 6.2−12.9% 6.2−16.5% 0.744 0.986

adenotes non-ensemble evaluation results for a fair comparison.
bdenotes self-supervised training approaches.
cdenotes weakly supervised training approaches.
For a fair comparison, we re-trained HaMeR [31] with its official implementation on the FreiHand dataset alone using the same ViT-Base architecture. HandMIM outperforms various existing
methods by a certain margin and achieves scalable results with larger ViT models. Notably, HandMIM achieves an impressive joint error of 6.6 mm with 22 M parameters. In
comparison, MobRecon [42] cannot attain this level of joint error with the same number of parameters. The bold values means the optimal performance metric in each colum.

R(n
2+1)×d and V = (V[cls],V[patch]) ∈R(n

2+1)×d, where d is the last
latent dimension, to denote the output probability distribution [15]
of the backbones f. The class tokens, denoted by U[cls] ∈R1×d

and V[cls] ∈R1×d, contain high-level semantic knowledge, while
the patch tokens, denoted by U[patch] ∈Rn2×d and V[patch] ∈Rn2×d,
contain middle and low-level local knowledge of the input images.

We design specific tasks of self-supervised learning for the
class tokens, considering their semantic meanings. For the class
tokens, we aim to extract the pose of the original images, which is
equivalent after the inverse operation of spatial data augmentations,

implemented as pose-aware keypoint alignment in Section 3.2.
Because we expect images under different augmentations to have
the same pose expression, we adopt a cross-entropy loss between
the cross-view images and apply the self-distillation approach in
Section 3.1 to measure the discrepancy between teacher and student
distribution. Specifically, we obtain the Lpose loss, which can be
formulated as the following function Equation 8:

Lpose = −U[cls] log V̂[cls] −V[cls] log Û[cls]. (8)
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FIGURE 4
Pose and mesh AUC comparison with some competitive methods on the FreiHAND and HO3D datasets.∗indicates the method is supervised and trained
with extra 2D/3D labeled data. It can be observed from the plot that our method achieves the best performance on both datasets for both meshes and
poses AUC values with ViT-B as the backbone. (A) FreiHAND Mesh AUC, (B) FreiHAND Pose AUC, (C) HO3D v2 Mesh AUC, and (D) HO3D v2 Pose AUC.

TABLE 3 Results on the HO3D v2 [23] dataset. Compared with current methods specially designed for hand–object interactions, we achieve better
results under a standard backbone with no special operation. All the listed results use the same labeled dataset for supervised learning.

Method Params(M) PAVPE↓ PAJPE↓ MPJPE↓ F@5↑ F@15↑

Liu et ala. [43] 34 M 9.5 9.9 31.7 0.528 0.956

HandOccNet [29] 38 M 8.8 9.1 24.0 0.564 0.963

AMVUR [26] 195 M 8.2 8.3 - 0.608 0.965

Keypoint Trans [2] 48 M - 10.8 - - -

ViT-Small-ImageNet + PyMAF 22M 8.78 9.18 26.37 0.567 0.963

ViT-Large-ImageNet + PyMAF 307 M 8.43 8.73 23.57 0.588 0.970

HandMIM-Small 22M 8.22−6.8% 8.57−7.1% 24.00 0.597 0.970

HandMIM-Base 86 M 8.08−8.0% 8.41−8.4% 22.01 0.610 0.971

HandMIM-Large 307 M 8.00−8.9% 8.3−9.0% 21.94 0.617 0.972

adenotes the self-supervised training approach. Note that our HandMIM-Base already achieves competitive without any complicated designs for hand occlusion issues, such as AMVUR [26] or
HandOccNet [29]. Moreover, the table demonstrates scalable results with larger ViT models.
The bold values means the optimal performance metric in each colum.

During the backward period, only the student network requires
gradient backpropagation, as we treat the output of the teacher
network as ground truth. Subsequently, we update the teacher
network through an exponentially moving average (EMA) using the
student network.

Given the patch output of the transformer backbone, which
represents the spatial knowledge of input images, we can
define the patch loss Lpatch. This loss measures the discrepancy
between the parallel-view tokens, which share the same spatial
position after the augmentations. Specifically, we aim to train
our module to recover the corrupted patch tokens. We learn
the knowledge using a similar self-distillation approach as in
Equation 8 using Equation 9:

Lpatch = −
n2

∑
i=1

Ui[patch] log Ûi[patch] +Vi[patch] log V̂i[patch]. (9)

3.4 Pixel-level reconstruction

Hand pose estimation is a low-level task that involves directly
analyzing image pixels, in contrast to image classification. Although
token-level self-distillation may be effective for higher-level
knowledge, it may lack the necessary low-level understanding.
To address this, we propose a pixel-level reconstruction module.
Because transformer tokens are applied in a patch-based manner,
we integrate a pyramid fusion layer following certain intermediate
transformer layers and gradually up-sample using transposed
convolution (T-Conv). The convolution stride is set to 2. The
resulting pyramid fusion output feature maps (Tj) are concatenated
with each transformer block output (Lj) and fused using a linear
layer. Mathematically, this can be represented as the following
Equation 10:

Tj+1 = T−Conv(Linear(Concat[Tj,Lj])) . (10)
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FIGURE 5
Visualizations on the FreiHAND [22] test set. From left to right, we show the input images, the predictions from I2L-MeshNet [24], Tang et al. [41], our
HandMIM-Small, and the ground truth. Our method is more robust for hard viewpoints, occlusion, and complicated hand gestures.

In common practice, vision transformers use a patch size of 16;
therefore, four iterations of transposed convolution are adopted to
recover the original shape of input image I. We can adopt L1-Loss
between input images and reconstruction results using Equation 11:

Lrecon =M⊙ ‖(T4 − I)‖1, (11)

where M denotes the token mask, and ⊙ denotes the Hadamard
product. Note that only the student network requires a gradient;
therefore, we only adopt Lrecon at the student network with
masked input.

The final loss function Equation 12 is the sum of the losses
mentioned above:

L = Lpose +Lpatch +Lrecon. (12)

The above loss function indicates that HandMIM can capture
both local detail features and global geometric context via a

vision transformer backbone.The transformer architecture naturally
handles multi-scale information, but HandMIM goes further by
introducing a mechanism that specifically targets different levels
of granularity. More specifically, the [Patch] tokens represent
local regions of the image and are used to capture fine-grained
geometric features essential for mesh estimation and refinement.
Pseudo keypoints are aligned in the latent space using the [CLS]
token, which acts as a global representation of the entire image.
By aligning these keypoints, the model can better understand
the pose equivalence between different views of the hand after
applying spatial augmentations. Finally, the combination of pixel-
level reconstruction and multi-granularity feature learning allows
HandMIM to learn how to recover pixels from occlusions and
handle complex hand–object interactions more effectively, which
is particularly beneficial on datasets like HO3Dv2, which feature
severe hand occlusions.
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FIGURE 6
Visualization of the HO3D v2 [23] test set. We show the input images, the predictions from HandOccNet [29], Liu et al. [43], and our HandMIM-Small
and AMVUR [26]. Our method can capture more precise poses even under the corruption and occlusion of complex objects, achieving results
comparable to the strong baseline method AMVUR [26] while using many fewer parameters (195 M versus 22 M).

3.5 3D hand mesh estimation via ViT

To evaluate the effectiveness and benefits of HandMIM
self-supervised pretraining, we fine-tune the pre-trained vision
transformer backbone on a supervised 3D hand mesh estimation
task. Specifically, we incorporate a keypoint feedback loop after
the backbone, similar to the approach used in PyMAF [20], to
predict MANO [21] parameters, including joint rotation (θ), shape
coefficient (β), and global translation (δ). This keypoint feedback
loop comprises three cascaded rectifier layers that extract local
features based on the current keypoint-image alignment status and
feed them back for rectification. Notably, the rectifier layers in
PyMAF [20] utilize multi-level feature maps for its coarse-to-fine
mesh refinement, which aligns exactly with the multi-level self-
supervised losses (i.e., global, local patch distillation, and pixel
reconstruction for fine-detail features) designed by HandMIM.
Consequently, we adopt the PyMAF [20] structure as our mesh
regressor. To train our method, we use a combination of MANO
parameter loss (LMANO), vertex loss (Lvert), and keypoint loss (Lkpt),
which are described as the following Equation 13.

LFT = LMANO +Lvert +Lkpt. (13)

The MANO parameter loss (LMANO) is calculated as the L2
distance between the predicted MANO parameters and the ground
truth. Given MANO parameters θ, β, δ, the 3D mesh vertices
can be obtained using the MANO model M(θ,β) → ℝ778, which
can be used to calculate the vertex loss (Lvert) as a more direct
form of supervision. Furthermore, the 3D keypoints J3D ∈ ℝ21×3

can be generated by mapping the 3D mesh using a pre-trained
linear regressor. By projecting the 3D keypoints J3D onto the image
coordinate system, we can obtain 2D keypoints, which can be used
to supervise the training process with 2D keypoint ground truth ̂J2D.
Overall, the keypoint loss Lkpt is composed of the 3D keypoint loss
and the projected 2D keypoint loss as the following Equation 14:

Lkpt = ‖J3D − ̂J3D‖1 + ‖(K(J3D + δ) − ̂J2D‖1, (14)

where K indicates the ground-truth camera intrinsic matrix
following common practice. Together, the pre-trainedViT backbone
and the pyramidal mesh alignment feedback head contribute
significantly to the superior performance of HandMIM. The ViT
backbone’s capacity to learn detailed and hierarchical features and
the PyMAF head’s ability to refine the mesh through iterative
alignment and direct parameter supervision results in competitive
performance across various datasets, especially in challenging
scenarios involving severe occlusions.
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FIGURE 7
Qualitative comparison with several methods on the HO3D v2 test set. From left to right, it shows the input images, the overlaid results by HandOccNet
[29], Liu et al. [43], and our best HandMIM-Large model.

4 Results

In this section, we conducted extensive experiments to evaluate
the proposed self-supervised pretraining frameworkHandMIM.We

first introduce our settings on HandMIM pretraining in Section 4.1.
Then,we show the results of our pre-trainedmodel on 3Dhandmesh
estimation tasks in Section 4.2. Finally, we present in-depth analysis
and ablation studies in Section 4.3.
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TABLE 4 Results of linear probe regression. We compared our method
with the mainstream self-supervised learning method, and our HandMIM
outperforms existing methods by a large margin.

Method 2D-error (px)↓ 3D joint error (cm)↓

Random 21.69 80.57

iBOT [15] 9.74 23.67

PeCLR [18] 8.94 19.41

Ours/ViT-S 5.75 10.83

Ours/ViT-B 5.19 10.59

4.1 HandMIM pretraining

4.1.1 Pretraining settings
We employ vision transformers [14] as our backbone in different

sizes, including ViT-Small (ViT-S), ViT-Base (ViT-B), and ViT-
Large (ViT-L). Details of the architectures can be found in the
supplementary materials. We collect the multi-level features from
layers [3,6,9,12] for pixel reconstruction with a decoder consisting
of linear layers for feature fusing and transposed convolutions
for up-sampling. Input images are augmented through random
resizingwithin the range (0.08,1), rotatingwithin the range (0,150°),
followed by color jitter, grayscale, Gaussian blur, and solarization.
After the backbone, a shared MLP is used to project the tokens into
latent space. We then resize the class token into high-level pseudo-
keypoints with size [128,2], which indicates the latent dimension
is 256. During HandMIM pretraining, we use AdamW as the
optimizer with a batch size of 1,024. We pre-train ViT-S and ViT-
B for 400 epochs, and ViT-L for 250 epochs. The learning rate is set
to 2e-3, and themasked ratio r is randomly sampledwithin the range
[0.1,0.5].

4.1.2 Pretraining datasets
As there are currently no standardized datasets for hand pose

self-supervised learning, we collect hand images across a variety
of datasets for sufficient hand pose and background distributions,
including the FreiHAND [22] training set (FreiHAND is a 3D
hand pose dataset that records different hand actions performed by
32 people. MANO-based 3D hand pose annotations are provided
for each hand image. This training set provides a large number
of hand images with green screen or composite backgrounds,
offering a wide range of hand poses.), Youtube3DHands [11] (The
dataset contains various in-the-wild images, with automatically
acquired 3D annotations via key point detection and MANO
fitting. It has 47,125 effective frames.), and COCO-WholeBody
train and unlabeled images [37] (It is a large-scale dataset with
keypoint and bounding box annotations. Approximately 130 K
faces and left/right-hand boxes are labeled, resulting in more
than 800 K hand keypoints and 4 M face keypoints in total.) For
datasets with hand annotations, we directly enlarge the bounding
boxes of the hand annotations by a ratio of 2.0 and then crop
the hand image. For datasets that do not come with hand
annotations, such as some parts of COCO-WholeBody or other

unlabeled image collections, we utilized MediaPipe [13], an open-
source framework developed by Google. MediaPipe is specifically
chosen due to its robust and superfast performance in detecting
hands within images. By applying MediaPipe’s hand detection
capabilities, the researchers were able to identify and crop out
regions of interest (ROIs) containing hands, even in the absence
of explicit annotations. This step was crucial because it allowed
the inclusion of a vast amount of unlabeled data into the training
process, thereby increasing the diversity and quantity of training
samples.

4.2 3D hand mesh estimation

We evaluated the performance of HandMIM models against
several competitive methods in 3D hand mesh estimation. Our
experiments demonstrate that pretraining HandMIM models
significantly enhances the accuracy and quality of visualizations
in 3D hand mesh estimation tasks and achieves competitive
performance in multiple datasets and metrics.

4.2.1 Setups
For evaluation, we use two challenging publicly available hand

pose estimation datasets, FreiHAND [22] and HO3D v2 [23],
in our experiments. The FreiHAND dataset comprises 130,240
training images with a green screen or composite background
and 3,960 test images with a real background. HO3Dv2 is
a hand–object interaction dataset with complex occlusion that
contains 77,558 hand–object 3D pose-annotated RGB images and
their corresponding depth maps, 10 different human subjects
(three female and seven male individuals), and 10 different objects
from the YCB [38] dataset, and its evaluation process is conducted
online. Note that the HO3Dv2 dataset is particularly challenging for
3D hand mesh estimation due to its focus on real-world scenarios
that introduce a variety of difficulties not commonly found in more
controlled datasets. The characteristics of the dataset include severe
hand–object occlusions, complex interactions with objects, high-
quality annotations, and the online evaluation process.

During training, we set the batch size to 128 and then crop
and resize the hand image to 224× 224. Random scale, translation,
rotation, and color jitter are applied for data augmentation. We
fine-tune our model using the Adam optimizer for 100 epochs,
with a learning rate of 4e−5. Our ViT-S model achieves a real-
time inference speed of 40 frames per second on a single NVIDIA
V100 GPU. The detailed architecture, pretraining, and inference
time are listed in Table 1.

4.2.2 Evaluation metrics
We incorporate multiple evaluation metrics for comprehensive

analysis and comparison. We use joint-point-error (JPE) and vertex-
point-error (VPE) to denote the average L2 distance between
the ground truth and predicted keypoints and mesh vertices,
respectively. We prefix the metrics with PA and MP to denote
Procrustes alignment and scale-and-translation alignment. F-scores
are defined as the harmonic means between recall and precision
between two meshes given a distance threshold. We also report the
area under curve (AUC) following common practice, which denotes
the area under the percentage-of-correct-keypoints (PCK) curve for

Frontiers in Physics 12 frontiersin.org

https://doi.org/10.3389/fphy.2024.1515842
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Li et al. 10.3389/fphy.2024.1515842

TABLE 5 Comparisons with self-supervised methods. We train HandMIM with baselines under the same backbone and pretraining data. Results are
evaluated on the FreiHAND [22] test set using the same regression head. PeCLR [18] shows an accuracy drop based on stronger vision transformers. Our
HandMIM outperforms existing self-supervised methods by a large margin.

Method Dataset PAVPE↓ PAJPE↓ F@5↑ F@15↑

ViT-S FH 7.10 7.21 0.697 0.978

ViT-S + iBOT [15] FH 6.98 6.98 0.704 0.979

ViT-S + PeCLR [18] FH 8.51 8.76 0.629 0.961

ViT-S + HandMIM FH 6.57 6.57 0.725 0.984

ViT-S HO3Dv2 8.71 9.05 0.571 0.965

ViT-S + iBOT [15] HO3Dv2 8.56 8.84 0.581 0.966

ViT-S + PeCLR [18] HO3Dv2 8.81 9.14 0.565 0.963

ViT-S + HandMIM HO3Dv2 8.22 8.57 0.597 0.970

The bold values means the optimal performance metric in each colum.

TABLE 6 Cross-dataset analysis on HO3D and FreiHAND. Methods are
trained on FreiHAND and tested on HO3D and vice versa.

Method Train FH/Test
HO3D

Train HO3D/Test
FH

PAJPE↓ MPJPE↓ PAJPE↓ MPJPE↓

Hasson et ala. [44] 11.0 31.8 - -

Hampali et ala.
[23]

10.7 30.4 - -

PeCLR [18] 13.6 - 17.8 -

TempCLR [19] 13.6 - 17.0 -

HandMIM/ViT-S 9.9 30.4 14.1 29.74

aIndicates the methods are trained and tested on the same dataset. Performances of [43], [19,
23], and [18] are acquired from [18,23], respectively. Note that we use the same pre-train
dataset as [23] and [18] for a fair comparison.
The bold values means the optimal performance metric in each colum.

threshold values between 0 mm and 50 mm in 100 equally spaced
increments.We report our evaluation results inmm units by default.

4.2.3 Results on FreiHAND
We compare our approach with existing methods [1, 18,

24, 27, 30, 39–41] on the mainstream FreiHAND dataset. We
conduct self-supervised pretraining with HandMIM using ViT-
Small (ViT-S), ViT-Base (ViT-B), and ViT-Large (ViT-L). As
shown in Table 2, fine-tuning our approach using HandMIM
pre-trained weights consistently improves the performance
on both datasets compared to the commonly used ImageNet
pre-trained weights (ViT-Small/Large-ImageNet + PyMAF),
confirming the effectiveness of HandMIM pretraining. We
plot the mesh and pose AUC in Figure 4. Notably, even
with the lightweight ViT-Small with 22 M parameters, our

approach achieves a competitive Procrustes alignment vertex-
point error (PAVPE) of 6.6 mm, which further improves
to the best PAVPE of 6.2 mm when we employ ViT-L as
the backbone.

4.2.4 Results on HO3Dv2
For HO3Dv2, existing methods [29, 43]; [26] design various

complex strategies via hand–object interaction information to
improve the estimation accuracy. For example, HandOccNet [29]
carefully designs a network to tackle severe hand occlusion.
S2Contact [43] learns hand–object contact clues to refine inaccurate
pose estimations. AMVUR [26] also designs an occlusion-aware
mechanism in their algorithm. In contrast, our proposedHandMIM
approach trains a simple and lightweight hand-to-mesh regression
model that achieves superior results without relying on complex
strategies. As shown in Table 3, even when using a ViT-S model
with only 22 M parameters, HandMIM achieves a PAVPE score
of 8.22 mm, surpassing other existing methods by a significant
margin. We also plot the mesh and pose AUC in Figure 4. This
demonstrates the robustness of our model, particularly in handling
severe hand–object occlusion.

4.2.5 Visualizations
We visualized and compared the hand mesh predictions of our

proposed method with some competitive methods on the test sets
of FreiHAND [22] and HO3Dv2 [23] in Figures 5, 6 respectively.
Compared to existing methods, our method achieved better
estimation accuracy for challenging viewpoints, severe occlusion,
and difficult gestures. For images in the HO3Dv2 dataset under
severe hand–object occlusion, our method can capture local finger
clues and infer the overall wrist pose and plausible finger positions,
demonstrating its superior robustness to alternativemethods, which
often adopt complex mechanisms to handle those occlusions. More
visualization examples are shown in Figure 7.
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FIGURE 8
Visualizations of HandMIM pretraining. Images in the left column are from the FreiHAND [22] test set, while the images in the right column are
from HO3D v2 [23]. Using ViT-Base as our backbone, we visualize the predicted mesh before (ViT-B) and after (+HandMIM) self-supervised training. We
obtain more precise predictions after HandMIM pretraining.

FIGURE 9
Partial fine-tuning performance comparison between pre-trained weight from mainstream masked image modeling methods and our HandMIM with
ViT-Small as the backbone. We use the FreiHAND [22] test set as a metric and adopt iBOT [15] as baselines of MIM methods. We gradually freeze
different numbers of blocks to reveal the feature generalizability learned from pretraining.

4.3 Ablation study

In this subsection, we presented a series of convincing
analysis experiments and ablations to evaluate the effectiveness
of HandMIM. We demonstrated the superiority of our method
against existing self-supervised methods through comprehensive
comparisons. To assess the generalizability of our method, we
perform linear prob, cross-dataset, partial fine-tuning analysis, and
visualizations of HandMIM.

4.3.1 Linear probe for keypoint regression
Aswe enforce the pose-sensitive knowledge in our latent feature,

we can adopt the linear prob strategy to validate their effectiveness.
Linear probing is an intuitionistic method for a self-supervised-
trained model to show the quality of representation learning by
freezing the pre-trained backbone and using a simple MLP layer
to predict the output. We use the 2.5D joint representation to
regress 2D and 3D keypoints jointly. Concretely, we learned two
3-layer multilayer perceptrons (MLPs) to predict 2D keypoints
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TABLE 7 Ablation studies. We perform ablations on the loss design of HandMIM. Specifically, we remove all three critical losses Lpose, Lpatch, and Lrecon,
in order. We conduct experiments based on the ViT-Small backbone and FreiHAND [22] datasets under the same setting as the main experiments. We
can conclude that every self-supervised learning target by our design is effective.

Lpose Lpatch Lrecon PAVPE↓ PAJPE↓ F@5↑ F@15↑

✓ ✓ ✓ 6.57 6.57 0.725 0.984

✗ ✓ ✓ 6.89 6.87 0.707 0.981

✓ ✗ ✓ 6.90 6.85 0.708 0.981

✓ ✓ ✗ 6.76 6.74 0.715 0.982

The bold values means the optimal performance metric in each colum.

TABLE 8 Evaluation results on the scalability of HandMIM on
unlabeled images.

Dataset proportion 25% 50% 100%

PAVPE 7.1 6.78 6.57

The bold values means the optimal performance metric in each colum.

and 1D relative depth, respectively. The resulting 3D keypoints
are calculated according to the camera’s intrinsic parameters. We
trained our MLP layer on FreiHAND [22] and split the training
and validation set afterward [18]. Note that we only train for 10
epochs with the AdamW optimizer and set the initial lr as 0.01.
We report the predicted 2D keypoint error and 3D joint error,
as shown in Table 4, which demonstrates: 1) our HandMIM can
learn better features than previous self-supervised methods such as
PeCLR [18]. 2) The geometric equivalence ingrained in our features
plays an important role in predicting accurate 2D/3D keypoints
when compared against iBOT [15], which does not encode any
pose-aware mechanism in their self-supervised framework and thus
obtains a much higher prediction error rate using their features.

4.3.2 Comparisons with alternative
self-supervised learning methods

As shown in Table 5, we compared the performance of our
proposed pose-aware method for 3D hand mesh estimation
with two representative self-supervised learning methods, the
mainstream masked image modeling method iBOT [15] and the
contrastive-learning-based method PeCLR [18]. We conducted
these comparisons using the same ViT-Small backbone and the
same amount of training data. Our results indicate that HandMIM
outperforms iBOT, which is a representative MIM method used
for visual recognition tasks. Furthermore, we observed that the
contrastive-learning-based method is not suitable for stronger
vision transformer architectures, resulting in a significant accuracy
drop. These findings demonstrate the superiority of our proposed
method over existing self-supervised learning methods for hand
estimation tasks.

4.3.3 Cross-dataset validation
To evaluate the generalizability of our proposed method, we

conducted a cross-data validation on 3D hand mesh estimation

tasks. Specifically, we fine-tuned our model on the training set of
FreiHAND and evaluated its performance on the test set of HO3D
v2 and vice versa. Our results, presented in Table 6, demonstrate
significant improvements compared to existing self-supervised
methods such as PeCLR [18] or TempCLR [19], which indicates the
superiority of our approach. Notably, our method even outperforms
some recent fully supervised methods [44]; [23] when evaluated on
the HO3D v2 test set.

4.3.4 Visualization of HandMIM pretraining
We are curious about the effects of hand pose estimation after

self-supervised pretraining and visualize the results before and after
pre-train in Figure 8. The findings demonstrate that HandMIM
pretraining enhances the resilience of 3D hand mesh estimation
tasks, indicating the beneficial effects of pretraining. Specifically,
the results highlight the positive influence of pretraining on the
robustness of hand pose estimation.More visualization examples are
shown in the supplementary document.

4.3.5 Partial fine-tuning
To further explore the efficacy of the learned features, we employ

a partial fine-tuningmethod based on the protocol proposed in [16].
We sequentially freeze the first several layers while fine-tuning the
remaining transformer blocks.The results are presented in Figure 9,
which indicates that when we freeze around half of the layers (i.e.,
4 of 12), the HandMIM approach shows only a minor decrease
in accuracy compared to mainstream masked image modeling
methods. Moreover, when we freeze eight or more layers, the
performance gap between our method and most fully supervised
methods becomesmore pronounced.These findings suggest that our
approach can effectively learn multi-level hand representations via
our multi-level learning approach.

4.3.6 Ablations on self-supervised loss designs
The pose-aware Lpose, token-level Lpatch, and pixel-level Lrecon

losses in our HandMIM framework collaborate to capture distinct
levels of representations from input images in a self-supervised
manner. To verify the effectiveness of our design, we conduct
experiments by removing one of the losses from our framework,
as shown in Table 7. The results demonstrate that the removal of
any one of the losses results in a decrease in overall precision,
justifying the importance of our multi-level loss design. Therefore,
our approach can effectively leverage various levels of information to
enhance the robustness and accuracy of handmesh estimation tasks.
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FIGURE 10
Scalability of HandMIM pretraining. We pre-trained the backbone ViT-S with two strategies: (i) ViT-S + ImageNet: training ViT-S in a supervised
approach with labeled data on ImageNet. (ii) ViT-S + HandMIM: training ViT-S in the self-supervised approach described above with unlabeled data.
Both models are connected with PyMAF [20] and fine-tuned for mesh estimation. The PAJPE metric is evaluated for both.

FIGURE 11
Performance–parameter trade-off of mainstream 3D hand mesh estimation methods on the FreiHAND [22] test set. We perform vertex-point-error
after Procrustes alignment (lower is better). Our proposed HandMIM achieves better trade-offs in various model sizes under the standard ViT backbone.
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FIGURE 12
The figure demonstrates some common failure cases. (A) Complex hand–object interactions. (B) Extreme occlusion between fingers.

4.3.7 Scalability of HandMIM pretraining
To justify the scalability of HandMIM on unlabeled images,

we conduct pretrain experiments with a certain proportion of the
full dataset. Table 8 shows our evaluation results. We obtain better
performancewithmore unlabeled data (6.78mm on 50%pretraining
data and 6.57mm on the full dataset), indicating that HandMIM
holds the potential to further boost performance with abundant
unlabeled hand images. We then assessed the accuracy of our
model’s estimations by varying the proportion of labeled data used
for fine-tuning, specifically at ratios of 10%, 20%, 40%, and 80%.
As indicated by the red bins in Figure 10, HandMIM demonstrates
remarkable scalability: performance improves with an increase in
the amount of labeled data. The model’s estimation error decreases
exponentially, aligning with the scaling law as outlined in Tan and
Le [45]. Additionally, we also evaluated a model that was supervised
and pre-trained with labeled data. The results of this evaluation,
represented by blue bins in Figure 10, show that our self-supervised
training approach outperforms the traditional method, reducing
the error by approximately 40%∼50%. This finding underscores the
significant advantages of our approach in regression tasks related to
hand pose estimation and highlights its reduced reliance on labeled
training data.

Furthermore, we evaluated the performance of HandMIM
across different scales of parameters, specifically using vision
transformer small (ViT-S), base (ViT-B), and large (ViT-L)
configurations. The results, depicted in Figure 11, demonstrate
two key insights: (i) the performance of HandMIM is enhanced
with the increase in parameter size, and (ii) HandMIM consistently
outperforms other methods when matched for parameter scale.

5 Limitations

HandMIM has demonstrated competitive performance across
various datasets. Nevertheless, there are still situations where the
model might struggle, as shown in Figure 12.

(1) Complex hand–object interactions. When hands are engaged
in complex interactions with objects, the model must infer
the occluded parts of the hand based on limited visual cues.
Although HandMIM shows promise in these scenarios, there
is room for improvement, especially when the interaction
involves intricate movements or unusual poses that the model
has not encountered during training.

(2) Extreme occlusions. Despite advancements in handling
occlusions, extremely occluded hands—where large portions
of the hand are hidden or covered by other fingers—remain
challenging. In these cases, the model may lack sufficient
visible information to accurately reconstruct the hand mesh,
leading to increased prediction errors.

(3) Dataset variability. The effectiveness of HandMIM depends
on the diversity and quality of the pretraining datasets. If the
datasets used for pretraining do not adequately cover certain
types of hand poses or backgrounds, the model’s ability to
generalize to unseen data may be compromised.

Accordingly, whileHandMIMexcels inmany aspects of 3Dhand
mesh estimation, it faces challenges related to the quality of pseudo-
keypoint generation and potential failures in extreme occlusion
scenarios. Addressing these limitations will be essential for further
enhancing the robustness and applicability of our model.

6 Conclusion

In this study, we have introduced HandMIM, a novel self-
supervised pretraining strategy specifically designed for 3D hand
mesh regression from monocular RGB images. Our approach
leverages masked image modeling in conjunction with a multi-
granularity strategy and pseudo-keypoint alignment within a
teacher–student framework, utilizing self-distillation to learn
comprehensive representations. By integrating these components,
HandMIM achieves significant improvements over traditional
supervised methods, reducing errors by approximately 40%–50%.
This underscores the effectiveness of our method in requiring less
reliance on labeled training data.The experiments conducted across
various datasets highlight HandMIM’s robustness and adaptability,
particularly under challenging conditions such as severe occlusions.
Notably, it achieved an 8.00 mm PAVPE on the HO3Dv2 test
set, outperforming many specialized architectures. Furthermore,
scalability tests on unlabeled images demonstrated that increasing
the dataset proportion from 25% to 100% progressively decreased
the PAVPE from 7.1 mm to 6.57 mm, indicating improved
performance with more data. Additionally, evaluating HandMIM
using different parameter scales revealed that its performance is
enhanced with larger models, and it consistently outperforms other
methods when matched for parameter scale. These results suggest
that HandMIM not only benefits from deeper networks but also
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maintains superior performance relative to alternative approaches at
similar model sizes. For future work, we propose several directions:

• Exploring the integration of temporal information. Current
research focuses on single-image-based estimation. Expanding
HandMIM to incorporate sequential video frames could
enhance pose estimation accuracy and stability.

• Addressing dual-hand interactions. The current scope is
limited to single-hand poses. Future efforts should consider
extending the model to handle scenarios involving two
interacting hands.

• Generalizing to related tasks. Investigating how the principles
behind HandMIM can be applied to other human-centric
regression and estimation tasks could broaden its impact.

Overall, HandMIM represents a significant advancement in self-
supervised learning for 3D hand pose estimation, setting a new
benchmark and opening avenues for further exploration.
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