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Weak measurements enhancing
the quantum information facets
of a driven Unruh–DeWitt
detector

Jia-Ling Xie1,2, Cheng-Jie Zhu1*, Jia Tan2 and Xiang Hao2*
1School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China, 2School of
Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu,
China

We developed a Hermitian operator representation of the Unruh channel
for a driven accelerated detector in the presence of external noise. This
representation is then used to provide a generalized analytical approach
to a non-inertial evolution subjected to quantum weak measurements.
The quantum information facets were then improved by performing weak
measurements before and after the quantum channel. The external noise
was modeled using a phase damping channel. The prominent oscillations
of the quantum information are caused by vacuum fluctuations of the
quantum fields coupled to the detector. Steady values are obtained for the
quantum coherence and quantum Fisher information using the Unruh effect.
Thus, quantum weak measurements can effectively suppress the decoherence
induced by the relativistic acceleration. By comparing with cases without weak
measurements, we demonstrate that there exist some regions with optimal
measurement strengths that enhance the quantum coherence and quantum
Fisher information. The effects of conditional improvement on the quantum
information facets are still obvious in the presence of external noise.
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Unruh channel, quantum information, weak measurement and measurement reversal,
quantum Fisher information, quantum coherence

1 Introduction

The Unruh–DeWitt (UdW) model [1, 2] has been widely used in the study of quantum
field theory in curved spacetime. One of the great achievements of this model is based on
witnessing the Unruh effect [3, 4]. In recent years, predicting the Unruh effect has become
an active topic through observation of the relativistic acceleration motion in Minkowski
vacuum. Researchers have realized the roles of quantum simulations [5, 6] as practical
methods for studying quantum physics in accelerated systems. Meanwhile, such approaches
are also expected to be utilized in the domain of black hole physics [7, 8], cosmology [9],
and particle physics [10, 11]. With regard to the Unruh effect, it has been reported that
for observing the thermal effect of 1 K, the system acceleration must satisfy the condition
of 1021m/s2 [12]. These effects are often difficult to observe owing to the complexity
of the experimental conditions. By treating the atom as an open quantum system, the
modification of vacuum fluctuations can be detected by measuring the geometric phase
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[13, 14]. The acceleration of the atom can decline to 107m/s2;
this condition reduces the difficulty of realization and provides
a new scheme for observing the quantum effects. In this work,
we reveal some non-inertial effects indirectly by measuring
the quantum information through quantum characteristics like
quantum coherence and quantum Fisher information.

It is well known that quantum coherence plays a crucial role
in quantum mechanics [15–19], making it possible to complete
operations or tasks that are impossible to achieve with classical
mechanical systems. Meanwhile, quantum coherence is regarded
to have non-classical features and has been widely investigated by
researchers as it has attractedmuch attention as an available physical
resource. On the basis of feasibility experiments, we consider the l1-
norm coherence method to describe the mechanisms of quantum
coherence. In addition to quantum coherence, we introduce a
method for parameter estimation accuracy through the quantum
Fisher information [22, 23]. We demonstrate the quantum effects
indirectly from the perspective of quantum measurements. The
Unruh effect produces a decoherence-like effect that can cause
destruction of quantum information [24–26]. In an open quantum
system, decoherence [27–29] is an inevitable phenomenon owing
to interactions with the external environment. This leads to the
decay of quantum correlation, which is the basic resource for
quantum information processing. This result has motivated us to
seek applicable methods to improve the quantum coherence and
quantum Fisher information in relativistic acceleration motions as
well as the means to achieve it. In this work, we introduce a method
for suppressing the effects of decoherence using weakmeasurements
and measurement reversal [30–33]. Weak measurement is an
emerging quantum measurement technique that has shown great
potential and application value for quantum information and
precision measurements owing to its ability to obtain useful
information while reducing the interference in quantum systems.
Specifically, the advantages of weak measurements can be utilized
when detecting a small number of photons.This powerful approach
can effectively compensate for the shortcomings of the present
detectors and has been experimentally implemented using optical
methods and solid-state quantum control techniques over the last
few years [34, 35].Moreover, probabilistic measurement reversal has
already been demonstrated on a superconducting phase qubit or
photonic qubit. However, using measurement protocols to enhance
quantum coherence remains a challenge. Our plan here is to set
up a two-level atom coupled to a fluctuating vacuum scalar field in
the Minkowski spacetime. The modification of vacuum fluctuations
can be induced by accelerating the UdW model. We compare the
variations of quantum coherence and quantum Fisher information
by adding weak measurements and measurement reversal before
and after the atom coupled to the environment, respectively. We
expect that the system will inevitably be affected by other external
factors in the process of evolution, so we examine what happens
when the system is affected by multiple environments. The idea
of multiple environments [36–38], such as phase damping (PD)
noise, is introduced in the present work in the context of relativistic
accelerated motion [39]. We examine whether the effects of weak
measurements in multiple environments correspond with those of
relativistic accelerated motion. We further analyze the effects of
weak measurements on quantum coherence and quantum Fisher

information in the context of multiple environments to obtain high-
performance quantum resources.

The remainder of this paper is organized as follows. In Section 2,
we mainly explain the dynamic evolution of the accelerated UdW
model in an open quantum system and introduce the quantum
coherence and quantum Fisher information facets. In Section 3, we
introduce the approaches of weak measurement and measurement
reversal to enhance the quantum information under relativistic
accelerated motion. In Section 4, we explore the improvement of
quantum information facets via weakmeasurements under multiple
environments. Finally, we discuss our findings and conclusions in
the last section.

2 Hermitian operator representation
of the Unruh channel and quantum
information facets

We formulate an Unruh channel for a two-level accelerated
atom moving along a spatial trajectory using Hermitian operators.
The Unruh channel characterizes relativistic evolution and
is linearly coupled to a quantum scalar field through simple
monopole interactions. This model can be driven using classical
coherent fields. Herein, we consider the model inside a cylindrical
electromagnetic cavity of radius R with a large length. The
uniformly accelerating trajectory of motion can be expressed by the
following path [40]:

x (τ) = (1
a
sinh (aτ) , 1

a
cosh (aτ) ,0,0) (1)

In addition, we assume that the interaction between the
uniformly accelerated two-level atom and scalar field is weak. The
total Hamiltonian of the system can thus be expressed as

H =H(S) +H( f) +H(I) (2)

HS =
1
2
Ωσ1 According to Equation 2, is the Hamiltonian of the

two-level atom, where Ω is the transition between the excited
and ground states and σ1 is the Pauli operator. Here, σ1 = σ

+ + σ−,
where σ+ and σ− are the atomic rising and lowering operators,
respectively.H( f) = ∑kωkϕ

+
k (x)ϕ

−
k (x) is theHamiltonian of the scalar

field, where ωk is the vibration mode. H(I) = λ (σ+ + σ−)Φ (x (τ))
denotes the interaction between the atom and quantum scalar
field. The operator Φ (x (τ)) represents the external field, which
is determined using the massless Klein–Gordon equation. This
can be expanded as Φμ (x) = ∑

N
k=1[χ

k
μϕ
−
k (x) + χ

k
μϕ
+
k (x)], where the

field operators for positive-energy ϕ+k (x) and negative-energy ϕ
−
k (x)

are related to a set of N independent and massless scalar fields,
and χkμ are the complex coefficients. In the framework of the
moving model, the reduced density matrix ρ (τ) can be described
using a quantum master equation in the Kossakowski–Lindblad
form as

∂
∂τ

ρ (τ) = −i[H(S)eff ,ρ (τ)] +
1
2

3

∑
i,j=1

aijDij [ρ (τ)] , (3)

where the dissipator isDij (ρ) = 2σjρσi − σiσjρ− ρσiσj, and σ1, σ2, and
σ3 are the three components of the Pauli operators from Equation 3.
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The Kossakowski matrix aij takes the general form

aij = Aδij − iBεijnδn1 +Cδi1δj1

A = λ
2

2
(G (Ω) +G (−Ω))

B = λ
2

2
(G (Ω) −G (−Ω))

C = λ2G (0) −A, (4)

The decay matrix elements aij and effective Hamiltonian Heff
are determined through Fourier and Hilbert transformations,
respectively. The detailed process is provided in the
Supplementary Appendix. By neglecting the Lamb shift term,
the effective Hamiltonian Heff can be written as H(S)eff =
1
2
[Ω+ iλ2 (K (−Ω) −K (Ω))] (σ+ + σ−).
Here, we study the relativistic acceleratedmotion, and themodel

is moving along a straight path in the x direction with uniform
acceleration according to Equation 1. Therefore, we can derive the
following decay parameters by Equation 4:

A = λ
2Ω
4π

coth(πΩ
a
)

B = λ
2Ω
4π

C = λ
2a

4π2
−A, (5)

To illustrate the evolved state of the model perfectly, we use the
Bloch vector instead of the reduced density matrix ρ (τ). The density
matrix ρcan be expressed as ρ = 1

2
(I+∑3j=1rjσj). According to the

master equation, we can conveniently rewrite a Schrodinger-like
equation for the Bloch vector as follows:

d
dτ
⃗r (τ) = −2H ⋅ ⃗r (τ) + ⃗χ (6)

where H = (
2A 0 0
0 2A+C Ω/2
0 −Ω/2 2A+C

) is a decay matrix that

depends on the effective Hamiltonian Heff and the real part of

aij. χ⃗ = (
−4B
0
0
) is the inhomogeneous vector derived from the

imaginary part of the Kossakowski matrix. Thus, we propose
a quantum channel to describe the dynamic evolution of
the UdW model using the Bloch vector. Now, the mapping
matrix of the quantum channel is given by Γ (τ) = exp (−2Hτ) =

(
e−4Aτ 0 0
0 e−2(2A+C)τ cosΩτ −e−2(2A+C)τ sinΩτ
0 e−2(2A+C)τ sinΩτ e−2(2A+C)τ cosΩτ

), and the

mapping vector is Λ⃗ (τ) = 1
2
[I− Γ (τ)]H−1 ⋅ χ⃗ = (

B
A
(e−4Aτ − 1)

0
0
).

Some parameters depend on Equation 5. We assume that
the initial state of the atom is φ0 = cos

θ
2
1+ eiϕ sin θ

2
0 so

that the Bloch vector of the initial state can be expressed
as ⃗r (0) = (sin θ cos ϕ, sin θ sin ϕ,cos θ). Then, we calculate
the time-dependent evolved Bloch vector by Equation
6 and the results are as follows:

⃗r (τ) = Γ (τ) ⋅ ⃗r (0) + Λ⃗ (τ)

=(
e−4Aτ sin θ cos ϕ+ BA (e

−4Aτ − 1)

e−2(2A+C)τ (cosΩτ sin θ sin ϕ− sinΩτ cos θ)
e−2(2A+C)τ (sinΩτ sin θ sin ϕ+ cosΩτ cos θ)

)
(7)

It is very important that we use a proper evaluation method
to measure the quantum coherence of the model. We consider the
l1-norm for measuring the coherence, that is, the absolute values
of all the off-diagonal elements of the density matrix. Generally,
the l1-norm is expressed as Cl1 (ρ) = ∑j≠i |ρij|, where ρij denotes the
element of the state density matrix. We can also represent the
l1-norm using the components of the Bloch vector, such that the
quantum coherence of the model is given by

Cl1 (ρ) = √r
2
1 + r

2
2 (8)

where rk is the k-th component of the Bloch vector. Then, the
quantum coherence with uniformly acceleratedmotion by Equation
8 can be calculated as

Ca = √[e−4Aτ sin θ cos ϕ+ L1]
2 + [J1 (cosΩτ sin θ sin ϕ− sinΩτ cos θ)]2

(9)

where L1 =
B
A
(e−4Aτ − 1)and J1 = e−2(2A+C)τ. It can be easily

found that quantum coherence is dependent on the evolution of
the parameterized states, which are closely related to the initial
quantum properties of the atoms. In short, the changes to θ and
ϕ of the initial state will have a slight effect on the oscillation
trend of the quantum coherence. Figure 1 shows the evolution
of quantum coherence in the context of relativistic accelerated
motion. The Unruh effect induced by the accelerated motion leads
to attenuation of quantum coherence mainly owing to the vacuum
fluctuations of the quantum fields coupled to the UdW detector. To
illustrate the evolution of quantum coherence, we further analyze
different situations from various perspectives. The changes to θ
are considered first. When the initial state is pure, that is, θ =
0,ϕ = π, the resulting quantum coherence can be simplified as

Ca = √[
B
A
(e−4Aτ − 1)]2 + [e−2(2A+C) sinΩτ]2. From Figure 1A, it is

seen that quantum coherence oscillates constantly with time and
decays to a stable thermal equilibrium state based on the energy
dissipation and quantumvacuumfluctuations.When the initial state
is the maximum entangled state, that is, θ = π

2
,ϕ = π, the quantum

coherence can be written as Ca = |−e
−4Aτ + B

A
(e−4Aτ − 1)|. It is

observed that the quantum coherence tends to be relatively stable
at the beginning of the dynamic evolution (Figure 1B). However,
the quantum coherence gradually decays to a stable value under
accelerated motion.Then, the effects of changes to ϕ are considered.
When θ = π

2
,ϕ = π

2
, the quantum coherence can be simplified as

Ca = √[
B
A
(e−4Aτ − 1)]2 + [e−2(2A+C) cosΩτ]2. It is observed that the

oscillation of quantum coherence with time is more obvious when
a tends to zero owing to the appearance of the oscillation term.
At this point, we calculate dCa

dτ
= 0 by a numerical method. It

is seen from Figure 1C that there is a minimum breakpoint. In
the physical context, the energy provided is more than the energy
dissipated at a small moment when the system interacts with the
environment. Therefore, the quantum coherence value will still be
improved during the very short period. The dissipation capacity

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2024.1513241
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Xie et al. 10.3389/fphy.2024.1513241

FIGURE 1
Evolution of quantum coherence is plotted as a function of time τ and acceleration a. (A) The parameters are chosen as θ = 0, ϕ = π, Ω = 1, λ = 1. (B) The
parameters are chosen as θ = π

2
, ϕ = π, Ω = 1, λ = 1. (C) The parameters are chosen as θ = π

2
, ϕ = π

2
, Ω = 1, λ = 1.

becomes stronger with continuous evolution, such that the quantum
coherence tends to decay. As the evolution progresses, the quantum
coherence gradually decays to 0.

On the other hand, the Hamiltonian of the model can
be expressed as H0 =

Ω
2
(σ+ + σ−) when a tends toward 0.

The unitary evolution operator can be written as U (τ) =
∑i=1,2 exp(−iλiτ)φiφi. Under the assumption that the initial state
is Φ (0) = 1

√2
(e+ eiϕg), the evolved state for an arbitrary interval

τ can be written as Φ (τ) = U (τ)Φ (0) = exp(− i
ℏ
H0τ)Φ (0) =

1
√2
(cos Ω

2
τ− i sin Ω

2
τ)(e+ eiϕg). It is noted that the oscillatory

behavior is dependent on different parameterized states.
In quantum mechanics, the energy changes transiently at
any position owing to quantum fluctuations; such small
fluctuations cause the particles to remain in a fuzzy
state. This uncertainty is one of the fundamental tenets
of quantum mechanics. Similarly, the argument is valid
for the situation where a approaches infinity. It is thus
concluded that the quantum coherence gradually decays to 0
with evolution.

In addition to quantumcoherence, which helpswith observation
of the Unruh effect, quantum Fisher information can be used
to observe some non-inertial effects from the perspective of
quantum measurements. In quantum statistical inference, the
quantum Fisher information has great significance as a measure
of the intrinsic information of the parameterized probability
density. Furthermore, we introduce the quantumFisher information
for measuring the quantum information. The quantum Fisher
information is used to determine the lower limit of the parameter
estimation accuracy. For a general density matrix ρθ, the quantum
Fisher information about the parameter θ can be expressed
as F (θ) = Tr (LρL) = Tr(ρL2) = Tr(∂θρL). Here, L represents the
symmetric logarithmic derivative operator. Then, the quantum
Fisher information in terms of the Bloch vector is given by

Fq (ϕ) =
[ζ(ϕ)⋅∂ϕζ(ϕ)]

2

1−|ζ(ϕ)|2
+ [∂ϕζ (ϕ)]

2, where q denotes quantum and
ϕ is the parameter to be estimated. Then, r (τ) is as given
in Equation 7 and its terms are expressed by F1, F2, and F3.
We take the derivative of r (τ) to obtain ∂ϕr (τ), whose terms
are expressed by G1, G2, and G3 correspondingly. Then, the
expression for the quantum Fisher information can be rewritten as
Equation 10:

Fϕ =
(F1 ⋅G1 + F2 ⋅G2 + F3 ⋅G3)

2

1− (F21 + F
2
2 + F

2
3)
+ (G2

1 +G
2
2 +G

2
3)

F1 = e−4Aτ sin θ cos ϕ+ B
A
(e−4Aτ − 1)

F2 = e−2(2A+C)τ (cosΩτ sin θ sin ϕ− sinΩτ cos θ)

F3 = e−2(2A+C)τ (sinΩτ sin θ sin ϕ+ cosΩτ cos θ)

G1 = −e−4Aτ sin θ sin ϕ

G2 = e−2(2A+C)τ cosΩτ sin θ cos ϕ

G3 = e
−2(2A+C)τ sinΩτ sin θ cos ϕ (10)

We set θ = π
2

and consider ϕ as the parameter to be
estimated. Figure 2 shows the gradual decay of the quantum Fisher
information caused by acceleration.

3 Weak measurements enhance the
quantum information of the UdW
model

Quantum coherence is one of the types of available physical
resources, but it is inevitably destroyed by external noise that
can induce quantum decoherence. The assistive method via
weak measurements and measurement reversal is introduced
herein to protect the quantum states. In general, the weak
measurement is of the form M = diag {1,√1− pr }. This operation
would not cause complete collapse of the quantum system,
which can be recovered through some reversal operations [41].
Thus, the measurement reversal operator can be written as
N = diag{√1− p,1} . For simplicity, the weak measurement and
measurement reversal operations can be directly expressed as M =
diag {1,m } and N = diag {n,1 }, respectively, with m,n ∈ [0+∞).
In quantum mechanics, the parameter describes the intensity of
the measurement. Specifically, the parameter m is related to the
measurement operatorM, which determines the degree to which the
measurement affects the state of the quantum system. When m =
0, M is the projective measurement; in this case, the measurement
operator M causes the quantum system to collapse completely
at certain eigenstates. This means that the state of the system
can be completely determined after measurement and that the
probability distribution of the measurement result is determined by
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FIGURE 2
Quantum Fisher information is plotted as a function of time τ and
acceleration a in the context of uniformly accelerated motion. The
parameters are chosen as θ = π

2
, ϕ = π, Ω = 1, λ = 1.

the eigenvalues of the initial state of the system. When m ∈ (0,1)
or m ∈ (1,∞), M can be considered the measurement that partially
collapses at the ground or excited state, respectively. This is a partial
collapse measurement, which is a weak measurement. Here, the
measurement operator M is not a fully projective operator, and the
measurement has little effect on the system such that the state of the
quantum system only collapses partially to a certain eigenstate. This
means that the state of the system still maintains a certain degree of
superposition after measurement. A similar analogy is also valid for
the measurement reversal N.

The main processes of weak measurement and measurement
reversal can be described as follows. In general, we should
perform two measurements of M and N before and after the
atom enters the channel, respectively. Using the weak measurement
and measurement reversal, the initial state can then be restored.
Therefore, the final state [41] after two weak measurements can be
expressed as ρnew = NΛq (MρM+)N+, where Λq denotes themapping
of the quantum channel.

Now, we analyze quantum coherence and quantum Fisher
information with the weak measurement protocol under relative
accelerated motion. The initial state can still be written as
φ0 = cos

θ
2
1+ eiϕ sin θ

2
0. Upon adding the weak measurement

before entering the uniformly accelerated environment,
the normalized density matrix can be expressed as ρM =

1
cos2 θ

2
+m2 sin2 θ

2

(
cos2 θ

2
1
2
me−iϕ sin θ

1
2
meiϕ sin θ m2 sin2 θ

2

). Then, the density

matrix can be reduced to the Bloch vector and written as ⃗ζM =

(

m sin θ cos ϕ
Ts

m sin θ sin ϕ
Ts
Tv
Ts

), where the normalized values are given by Ts =

cos2 θ
2
+m2 sin2 θ

2
and Tv = cos2

θ
2
−m2 sin2 θ

2
. Similarly, we add

measurement reversal after the atom is coupled to the environment.
The normalization of the final state can be expressed as Equation 11:

⃗ζMN = 1
T
(

n(m sin θ cos ϕe−4Aτ
Ts

+ L1)

n(
J1
Ts
(m sin θ sin ϕ cosΩτ−Tv sinΩτ))

1
2
((n2 − 1) − (n2 + 1)

J1
Ts
(m sin θ sin ϕ sinΩτ+Tv cosΩτ))

) (11)

where L1 =
B
A
(e−4Aτ − 1) and J1 = e−2(2A+C)τ. Here,

the normalized value can be expressed as T = 1
2

{(n2 + 1) + (n2 − 1) J1
Ts
(m sin θ sin ϕ sinΩτ+Tv cosΩτ)}. Now,

we can express the quantum coherence based on the l1-norm as
the estimate of the quantum signature of the UdW model
after adding the weak measurement. This calculation can be
written as Equation 12:

Caweak = |
n
T
|√[

m sin θ cos ϕe−4Aτ

Ts
+ L1]

2

+[
J1
Ts
(m sin θ sin ϕ cosΩτ−Tv sinΩτ)]

2

(12)

In this work, we compare quantum coherence with and without
weak measurement. We describe the effect of weak measurement on
quantum coherence through the following definition:

ΔC = Caweak −Ca (13)

By Equation 13, if ΔC > 0, it is considered that the weak
measurement has a certain inhibitory effect on decoherence,
indicating that the weak measurement indeed enhances the
quantumcoherence to a certain extent. If ΔC < 0, then the opposite is
considered. Figure 3 shows the plots of variation of the differences in
quantum coherence and quantum Fisher information with the weak
measurement parametersm and n. The figure shows that ΔC = 0 is a
clear dividing line, and the area where ΔC > 0 in Figure 3A indicates
the presence of weak measurement. In the area where the color
changes from green to amore vivid red, that is, when the parameters
m and n are both small or when the parameter m is large and n
is small, the difference in quantum coherence is more obvious. As
evolution progresses, the influence of the environment continues to
strengthen, and the role of theweakmeasurement graduallyweakens
until the evolution stabilizes.

A similar method is used to analyze the quantum Fisher
information under weak measurement, that is, we define it as
ΔF = Faweak − Fa. When ΔF > 0, it is considered that the weak
measurement improves the quantum Fisher information to a certain
extent. In Figure 3B, the color ranges from yellow to a bright red,
where the parameters m and n are small, and the effect of weak
measurement is better. This indicates that weak measurements can
enhance quantum coherence to a certain extent while also providing
some protection for the quantum Fisher information. In theory,
to obtain quantum resources with as high fidelity as possible, we
can choose the conditions where the measurement values m and n
are both small. This is because a weak measurement is essentially
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FIGURE 3
(A) Variation of quantum coherence is plotted with weak measurement and measurement reversal. The parameters are chosen as θ = π

3
, ϕ = 0, Ω = 1, λ =

1, τ = 2, a = 5. (B) Variation of quantum Fisher information is plotted with weak measurement and measurement reversal. The parameters are chosen as
θ = π

3
, ϕ = 0, Ω = 1, λ = 1, τ = 2, a = 5.

FIGURE 4
(A) Quantum Fisher information is plotted under multiple environments. The parameters are chosen as θ = π

3
, ϕ = 0, Ω = 1, λ = 1, a = 5, p = 0.1. (B)

Evolution tendency of quantum Fisher information with weak measurement and measurement reversal is plotted under multiple environments. The
parameters are chosen as θ = π

3
, ϕ = 0, Ω = 1, λ = 1, a = 5, p = 0.1, m = 9, n = 1. (C) Evolution tendency of quantum coherence with weak measurement

and measurement reversal is plotted under multiple environments. The parameters are chosen as θ = π
3
, ϕ = 0, Ω = 1, λ = 1, a = 5, p = 0.1, m = 2, n = 1.

a probabilistic projective measurement with quantum statistical
characteristics. The choice of the measurement parameters m and
n results in some quantum statistical characteristics, which are
helpful for enhancing quantum coherence. Our aim is to select
a set of relatively appropriate parameters that can enhance the
quantum statistical characteristics induced by weak measurements
and measurement reversal. Through numerical calculations, we
found that some parameters have no obvious effects on the changes
to quantum statistical properties, that is, they have no effect on
suppressing quantum decoherence.

4 Weak measurements enhance the
quantum information in multiple
environments

In the context of an open quantum system, there is increasing
interest in the dynamic evolution of the system that takes into

account the effects of external environments. In this work, we
analyze the quantum coherence and quantum Fisher information
under the influence of multiple environments. Accordingly,
the effects of the proposed measurement protocol on quantum
coherence and quantum Fisher information under multiple
environments are explored. Herein, we consider PD noise as the
external noise channel. In fact, the evolution of the quantum
state can be expressed by the Kraus operator, that is, ρ→
ρ (τ) = ε (τ) = ∑iKiρK

+
i , where Ki meets the condition ∑iK

+
i Ki =

I (i = 1,2 …,n) and I is the identity operator. We show that different
environments can be expressed by different Kraus operators.
Quantum states evolve from pure to mixed states under the
influence of the environment, which can be represented using
density operators. Accordingly, we obtain the Kraus operators of
the PD channel as Equation 14:

K1 = √p(
1 0
0 1
),K2 = √1− p(

1 0
0 −1
) (14)
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Here, p (0 ≤ p ≤ 1) is the range of the attenuation parameter in the
PD noise channel.

In this work, we promote a more universal approach. For an
arbitrary qubit state, the corresponding density matrix ρ can be
expressed using the vector form as ρ = I+ ⃗ζ⋅σ⃗

2
. Here, ⃗ζ is the Bloch

vector of the state, and σ0 and σi (i = 1,2,3) denote the identity
operator I and three Pauli operators, respectively. Using the quantum
channel, we describe the mapping from the initial state vector X⃗ =
(1,ζ (0)) to the evolved state vector Y⃗ = (1,ζ) as [42]

Y⃗ =Φ ⋅ X⃗ = (
1 0⃗T

λ⃗ Γ⃗
)(

1
⃗ζ(0)
) (15)

where the vector ⃗0T = (0,0,0). In Equation 15, the quantum
channel ε (�) can determine the mapping vector λ⃗ and mapping
matrix Γij, where λi (i = 1,2,3) = Tr[σi ⋅ ε(

I
2
)] and Γij (i, j = 1,2,3) =

Tr[σi ⋅ ε(
σj
2
)]. The Bloch vector of the evolved state can be obtained

as ⃗ζ = Γ ⋅ ⃗ζ(0) + λ⃗. From the above method, the mapping matrix and
mapping vector can be respectively expressed as Equation 16:

ΓPD =(
2p− 1 0 0
0 2p− 1 0
0 0 1

),ΛPD =(
0
0
0
) (16)

in the case of the PD channel. Using this method, we can directly
obtain themappingmatrix andmapping vector of the external noise
without considering the initial state of the qubit.

We superimpose the effect of the external noise channel on the
basis of the relative accelerated motion. We then obtain the new
Bloch vector ⃗ζnew, which is related to the original state as

⃗ζnew = ΓPD ⋅ ⃗r (τ) +ΛPD

= ΓPD ⋅ (Γ (τ) ⋅ ⃗r (0) + Λ⃗ (τ)) +ΛPD

= ΓPDΓ (τ) ⋅ ⃗r (0) + ΓPDΛ⃗ (τ) +ΛPD

= Γnew ⋅ ⃗r (0) +Λnew (17)

Here, ⃗r (0)and ⃗r (τ) are as in Equation 7. From Equation 17, it can
be seen that the effect of the external noise channel in the context of
relative accelerated motion is encoded in Γnew = ΓPDΓ (τ) and Λnew =
ΓPDΛ⃗ (τ) +ΛPD. By superimposing the effect of the PD channel, the
Bloch vector can be expressed as Equation 18:

⃗ζPD = ΓPD ⃗r (τ) +ΛPD =(
(2p− 1)(e−4Aτ sin θ cos ϕ+ Ł1)

(2p− 1) J1 (sin θ sin ϕ cosΩτ− cos θ sinΩτ)
J1 (sin θ sin ϕ sinΩτ+ cos θ cosΩτ)

)

(18)

and quantum coherence can be calculated as

CPD = |2p− 1|√[e−4Aτ sin θ cos ϕ+ Ł1]2 + [J1 (sin θ sin ϕ cosΩτ− cos θ sinΩτ)]2

(19)

where Ł1 =
B
A
(e−4Aτ − 1) and J1 = e−2(2A+C)τ. Comparing

Equation 19with Equation 9, we show that the quantumcoherence is
further attenuated owing to the action of the PDnoise channel. From
Figure 4A, we also observe that the quantum Fisher information
in multiple environments is lower than that when considering
only the relative accelerated motion. In other words, the effect of

multiple environments further reduces the acquisition of quantum
information. To obtain high-performance quantum resources
as much as possible under multiple environments, the weak
measurement method is also considered. The Bloch vector of the
evolved state affer adding the weak measurement is expressed as
Equation 20:

⃗ζMNP = 1
TPD
(

n (2p− 1)(me−4Aτ sin θ cos ϕ
Ts

+ Ł1)

n (2p− 1)(
J1
Ts
(m sin θ sin ϕ cosΩτ−Tv sinΩτ))

1
2
((n2 − 1) + (n2 + 1)

J1
Ts
(m sin θ sin ϕ sinΩτ+Tv cosΩτ))

)

(20)

The normalized value in the above formula can be expressed as
TPD =

1
2
{(n2 + 1) + (n2 − 1) J1

Ts
(m sin θ sin ϕ sinΩτ+Tv cosΩτ)}.

The quantum coherence can be expressed as

CPDweak = |
nP
TPD
|√[

mJ2 sin θ cos ϕ
Ts

+ Ł1]
2
+[

J1
Ts
(m sin θ sin ϕ cosΩτ−Tv sinΩτ)]

2

(21)

where J2 = e−4Aτ and P = 2p− 1. To show the effect of the weak
measurement, we describe the result for quantum coherence as

ΔCPD = CPDweak −CPD (22)

where CPDweak and CPD are as described in Equations 19, 21,
respectively. By Equation 22, if ΔCPD > 0, it implies that the weak
measurement enhances quantum coherence to a certain extent
under multiple environments with PD noise. If ΔCPD < 0, then the
opposite is considered. We choose appropriate weak measurement
parameters and plot the evolutionary trends of quantum coherence
and quantum Fisher information under multiple environments. It is
seen in Figure 4B that the quantum Fisher information is enhanced
under weak measurement. Similarly, we define the difference
analysis to study quantum coherence; we note that the part above the
red line in Figure 4C indicates enhancement of quantum coherence
via weak measurement. For both quantum coherence and quantum
Fisher information, this enhancement is noted to become weaker
with evolution of the system. In fact, we can clarify that weak
measurements enhance the quantum coherence as well as quantum
Fisher information under multiple environments.

5 Discussion

We studied the quantum information of an atom coupled to
the quantum scalar field in the context of relative accelerated
motion using the UdWmodel. Accordingly, we simulated a linearly
accelerated atom inside an electromagnetic cavity under certain
conditions. The dynamic behavior of the detector was studied using
the Hermitian operator representation. The l1-norm provides an
efficient means to observe the quantum coherence and quantum
Fisher information as well as to evaluate the parameter estimation
accuracy. We illustrate that the quantum information gradually
stabilizes and decays to 0 due to the Unruh effect and presence
of external noise, which are closely related to the initial quantum
properties of atoms. This kind of oscillation is attributed to the
vacuum fluctuations of the quantum scalar field coupled to the
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detector. An important feature of our work is that we provide
unified treatment of the quantum channels to study the changes in
quantum information using the Bloch vector. The results show that
the decoherence behavior is more obvious under the superposition
of quantum field noise. It is shown that quantum coherence
and quantum Fisher information can be enhanced under optimal
measurement strengths to a certain extent. We expect that these
findings will contribute toward understanding and implementing
relativistic quantum information.
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Appendix A

The coefficient aij depends on the Fourier transform of the field
vacuum correlations, which related with the trajectory, where

αμυ (λ) = ∫
∞

−∞
dteiλτ⟨0|Φμ (x (τ))Φυ (x′ (τ′)) |0⟩, (A1)

⟨0|Φμ (x)Φυ (x′) |0⟩ =
N

∑
k=1

χkμ(χ
k
υ)
∗G+ (x− x′) . (A2)

The two-point correlation function is introduced for the
scalar field

G+ (x− x′) = 〈0|Φ (x (τ))Φ(x(τ′)) |0⟩ = 1
4π2 [|x⃗− x⃗′|2 − (t− t′ − iε)]

.

(A3)

The Fourier and Hilbert transforms of the field correlation
function can be respectively expressed as

G (Ω) = ∫
∞

−∞
dΔτeiΩΔτG+ (Δτ) , (A4)

K (Ω) = P
πi
∫
∞

−∞
dω

G (ω)
ω−Ω
, (A5)

where Δτ = τ− τ′and P denotes the principle value. With the help of
the 3× 3 Hermitian matrices

ψ(0)ij = ninj,ψ
(±)
ij =

1
2
(δij − ninj ± iϵijmnm) . (A6)

It proves convenient to define the transformed coupling
coefficients χ(ζ)ki = ∑jχ

k
j ψ
(ξ)
ji , where ζ = 0,+,−. By means of them, the

Kossakowski matrix reads,

aij =
N

∑
k=1
[G (0)χ(0)ki χ(0)kj +G (Ω)χ

(+)k
i χ(+)kj +G (Ω)χ

(−)k
i χ(−)kj ] , (A7)

In order to simplify the process, we assume that the coupling
coefficients χkμ satisfy the condition

N

∑
k=1

χkμ(χ
k
υ)
∗ ∝ δμν. (A8)

Then, the Kossakowski matrix aij takes the general form

aij = Aδij − iBεijnδn1 +Cδi1δj1

A = λ2

2
(G (Ω) +G (−Ω))

B = λ2

2
(G (Ω) −G (−Ω))

C = λ2G (0) −A.

(A9)
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