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On destabilising quasi-normal
modes with a radially
concentrated perturbation

Valentin Boyanov*

CENTRA, Departamento de Física, Instituto Superior Técnico – IST, Universidade de Lisboa – UL,
Lisboa, Portugal

In this work we explore some aspects of the spectral instability of back hole
quasi-normal modes, using a specific model as an example. The model is
that of a small bump perturbation to the effective potential of linear axial
gravitational waves on a Schwarzschild background, and our focus is on three
different aspects of the instability: identifying and distinguishing between the
two different types of instabilities studied previously in the literature, quantifying
the size of the perturbations applied to the system and testing the validity of
the pseudospectral numerical method in providing a convergent result for this
measure, and finally, relating the size and other features of the perturbation to
the degree of destabilisation of the spectrum.
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1 Introduction

The quasi-normal modes (QNMs) of black holes (BHs) have been shown to suffer from
a spectral instability, which shifts these characteristic frequencies by disproportionately
large distances in the complex plane when the system is subjected to seemingly small
environmental perturbations. This has been shown through calculations of the QNM
spectrum after a variety of generic perturbations are added to the system [1–16], and
quantitatively explored through the full pseudospectrum of the linear perturbation problem
[1, 3, 8–13, 17, 18], generally in a physically motivated norm [19]. On the other hand,
a seemingly qualitatively different instability has been observed when the perturbation
involved is specifically the addition of a single small “bump” to the effective potential
of the propagating waves at different distances from the black hole horizon, intended to
mimic some radially concentrated distribution of matter [20–22], or, more generally, the
addition of a second length scale in the problem [22, 23]. The former of these approaches
stands out through its consistent attempt to precisely quantify the magnitude of the
perturbations applied to the system, and thus the amount by which the QNM migration
exceeds the threshold of stability. The latter approach, on the other hand, has found a
rich phenomenology which includes the appearance of new branches of QNMs which can
contain modes with a longer lifetime than the BH fundamental mode, akin to the “shape
resonances” discussed in, e.g., [24, 25].

However, in spite of the varied nature of these results, the endeavour to obtain a complete
physical picture of this instability has not yet come to fruition. On the one hand, not all
results have been put in the context of the quantitative scheme devised in [1] involving the
energy norm. On the other hand, this scheme itself may not be themost adequate for precise
quantitative conclusions. As discussed already in [1], two perturbations of the same energy
norm can have vastly different destabilisation effects depending on their high-wave-number
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content (i.e., on themagnitude of derivatives in r of the perturbation
function). Additionally, as shown in [13] for one particular
model, some of the numerically computed quantities involved
in pseudospectrum calculations may not be well behaved in the
continuum limit.

The present work is intended as a short review of the subject,
particularly highlighting some of the above mentioned issues, using
a specific example to further clarify them and progress towards their
resolution. The example system chosen is that of axial gravitational
perturbations on a Schwarzschild BH, with a gaussian bump added
to the effective potential of their governing wave equation, akin to
the one used in [20].

Section 2 provides a brief overview of the QNM instability and
the tools used to capture and quantify it. Section 3 uses the gaussian
bump setup for: 3.1 providing a simple example of the instability,
3.2 bringing the results of the analysis in [20] to the context of
the energy norm, quantifying the “smallness” of the bumps added
to the potential, as well as discussing the emergence of new mode
branches due to a qualitative change in the phase space of the
evolution operator [24, 25] (see in particular footnote nine of [26]
and footnote 13 of [19]), 3.3 exploring the dependence of the
degree of destabilisation on the “high-wave-number” content [1],
or sharpness, of the added bump, as well as presenting an analysis
regarding the numerical convergence of the results. Finally, Section 4
presents a summary of the conclusionswhich can be drawn from this
analysis and used as guidance for future work in this field.

2 Linear perturbations and norm

The background spacetime we will work with is the
Schwarzschild geometry,

ds2 = − f (r)dt2 + 1
f (r)

dr2 + r2dΩ2,

where the redshift function reads f(r) = 1− 2M/r, and dΩ2 is the
line element of the unit sphere. The maximal extension of this
spacetime has a bifurcate Killing horizon at r = 2M, though for
QNMs the important part is the outgoing horizon which in the
future is equivalent to the event horizon of a dynamically formed
(non-evaporating) black hole.

The dynamics of linear perturbations around this background is
given by a wave equation,

−∂2
tϕ+ ∂

2
r∗ϕ−V (r)ϕ = 0,

where r
∗
is the tortoise coordinate, dr

∗
= dr/ f(r), and the potential

V depends on the nature of the perturbation and on its angular
multipole number ℓ. In the example below we will analyse the case
of axial gravitational perturbations,

V =
f
r2
[ℓ (ℓ+ 1) − 6M

r
] .

Quasi-normal modes are a discrete set of analytic solutions to
(2) which behave as ingoing waves,

ϕ ∼ eiω(t+r
∗)

at the horizon, and as outgoing waves,

ϕ ∼ eiω(t−r
∗)

at infinity. These conditions can be imposed geometrically in the
wave equation by expressing it in a hyperboloidal coordinate system
[27, 28], with the transformation {t, r

∗
} → {τ,χ} given by

t
2M
= τ− h(χ) ,

r∗

2M
= g(χ) ,

where h(χ) ∼ g(χ) when approaching the horizon, and h(χ) ∼ −g(χ)
when approaching infinity. A standard choice is the so-called
minimal gauge [29], which for the Schwarzschild case is given by

h(χ) = log(1− χ) − 1
χ
− log χ,

g(χ) = log(1− χ) + 1
χ
+ log χ.

The compactified radial coordinate χ = 2M/r spans the range
χ ∈ (0,1) between (future null) infinity and the (future) horizon.
The QNM boundary conditions now amount to simply requiring
regularity of the solutions at the boundaries.

Following ref. [1], we perform this coordinate transformation
along with an order reduction in time through the introduction of
the auxiliary variable ψ = ∂τϕ, recasting the problem in the form

iL u = ∂τu,

where

u = (
ϕ
ψ
), L = 1

i
(

0 𝕀
L1 L2
),

with

L1 =
p
w
∂2
χ +

p′

w
∂χ −

q
w
,

L2 = 2
γ
w
∂χ +

γ′

w
,

and we have defined the functions

w =
|g′|

g′2 − h′2
, p = 1
|g′|
, γ = h′

|g′|
, q = |g′|V,

a prime denoting differentiation with respect to χ. The QNM
frequency spectrum can be defined [30, 31] as the eigenvalues
of the evolution operator L, or equivalently as the poles of the
resolvent operator

RL (λ) = (L− λ𝕀)−1.

Since L is non-self-adjoint (due to the dissipative boundaries of
the problem), solutions to the wave equation cannot be expressed
simply as convergent series of the eigenvalues, i.e., of QNMs.
Additionally, and crucially, the QNM frequencies can be unstable to
“small” perturbations of the system. Perturbations can come inmany
shapes and sizes, and the effect they can have on the spectrum is
just as varied. The instability originally studied in ref. [1] consists in
the displacement of modes in the complex plane by distances much
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larger than the size (energy norm) of the perturbations would allow
for a spectrally stable operator.

However, one interesting conclusion in ref. [1] is the apparent
stability of the fundamental mode, and the absence of any displaced
overtones which would have a slower decay rate (smaller imaginary
part) than this fundamental one after a perturbation. In contrast
to this result, ref. [20] found that perturbing the effective potential
with a seemingly very small bump placed sufficiently far from the
horizon can easily destabilise the fundamentalmode, leaving amode
with a much smaller imaginary part as the new fundamental one.
The apparent contradiction between these conclusions is mainly
due to a qualitative difference in the type of perturbations and
instability considered. We will now present a summary of some
aspects of these two analyses, and highlight the differences between
them. Then, in the following section, we will proceed to analyse an
example, originally treated in ref. [20], which turns out to lead to a
combination of both destabilising effects.

2.1 Mode displacement and
pseudospectrum

The case of QNM instability analysed in [1] and related works
is one in which (at least part of) the already existing BH QNM
spectrum is displaced by a disproportionately large amount due
to a small perturbation to the operator L. The smallness of this
perturbation is defined quantitatively through the energy norm [19],
which has a natural physical interpretation. The overall instability
to any perturbation of L is captured by the pseudospectrum in this
norm, which is defined as

σϵ (L) = {λ ∈ ℂ:‖RL (λ)‖E > 1/ϵ} ,

where ‖ ⋅ ‖E indicates the energy norm of the operator, defined from
the product

⟨u1,u2⟩E=⟨(
ϕ1

ψ1
),(

ϕ2

ψ2
)⟩

E

= 1
2
∫

1

0
(w(χ) ψ̄1ψ2 + p(χ)∂χϕ̄1∂χϕ2 + q(χ) ϕ̄1ϕ2)dχ,

Anequivalent definition is the onewhich directly relates the level
sets of the pseudospectrum to the space of possible new eigenvalue
positions after a perturbation,

σϵ (L) = {λ ∈ ℂ,∃δL,‖δL‖ < ϵ:λ ∈ σ (L+ δL)} . (1)

Note that this second definition involves any perturbation to L
which has a small energy norm, including oneswhich can potentially
be related to a physical modification of the environment of the
black hole, but also ones which completely change the nature of the
operator (e.g., changing the structure of the derivatives). That said,
it was shown in [1] that the instability is in fact triggered by physical
perturbations, encoded in the addition of a perturbation function
δV to the effective potential, without disturbing the structure of the
differential part of the operator. Additionally, it was shown that the
degree to which the spectrum is destabilised depends strongly on
the “high wave-number” content of the perturbation, that is, the
sharpness of the variation of δV in r.

While the particular choices for the perturbations δV used in
ref. [1] may not correspond to the addition of classically reasonable
matter content to the system [22], they are a proof of principle which
shows that whatever the perturbation may be, as long as it has a
large enough gradient in r, it will trigger the instability. Ref. [10]
in fact explicitly shows the relation between the magnitude of the
derivatives of δV and the rate of displacement of the QNMs in a
specific example, further solidifying this result.

The above-mentioned stability of the fundamental mode was
also one of the key results, which can directly be related to
the fact that gravitational wave observations of compact object
collisions which result in a black hole as an end state appear
to contain a part which matches well with a fundamental-mode-
dominated ringdown [32].

2.2 Emergence of new long-lived modes

The second type of “instability” is due to the emergence of new
mode branches. It is important to understand that the characteristics
of the spectrum depend strongly on the shape of the potentialV. For
the axial gravitational case, the potential has a single barrier with
a peak close to the photon sphere, from which it decreases to zero
exponentially (in r

∗
) towards the horizon and polynomially towards

infinity. The corresponding “barrier top” modes are not very long-
lived (in terms of the characteristic scale of the problem). However,
seemingly small perturbations can lead to a qualitative change in the
shape of the potential, such as the addition of awell which goes below
the asymptotic values, or of a second barrier (or bump). The former
can lead to the presence of bound states, while the latter to slowly
decaying “shape resonances” [25].

Some examples of such qualitativemodifications to the potential
in the context of QNMs are the double barrier model in [33], or
some of the models explored in [22], such as the addition of a
perturbatively small mass parameter. As the new families of modes
that these modifications introduce can have a slower decay than the
fundamental “barrier top” QNM, the new fundamental mode and
first overtones can be said to have been displaced disproportionately
to the size of the perturbation, even if the original modes (which
are no longer the fundamental and first overtones) happen to still be
present in the new spectrumwith only a slight displacement. In other
words, what can occur is that the label of “fundamental” and of the
overtone numbersmay jump tomodes in the new branch (according
to the usual assignment of these labels), rather than the old modes
being displaced. This can also happen by changing the parameters
of a problem such that QNMs in two different branches which are
already present can switch roles as the fundamental mode, such as
in the overtaking of the fundamental oscillatory mode by a de Sitter
mode discussed in [12].

It is important to note that this by itself is distinct from the usual
definition of (perturbative) spectral instability discussed above, in
which already existing modes are displaced by large distances in the
complex plane. It is also interesting that for a spectrally unstable
system such as the case of QNMs, adding, say, a bump to the
effective potential, can lead to a combination of both of the above
effects: the emergence of new long-lived modes, as well as the
large displacement of (some of) the already existing modes. This
is precisely the case in the example below, for which the perturbed
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FIGURE 1
Potential for the ℓ = 2 axial gravitational perturbation on
Schwarzschild, with an added Gaussian bump at rb = 30M. The
horizontal axis is the compactified radial coordinate χ, and for
illustrative purposes an amplitude a = 0.2 has been used, which is 40
times larger than the one used for computation.

potential goes from having a single barrier to a double barrier, the
latter being akin to the case dubbed a “well on an island” in ref. [25].

3 Potential with a bump

This section presents an analysis of the above-mentioned
perturbation δV in the form of a gaussian bump (see Figure 1),

δV = f (r) a exp(−
(r− rb)

2

2s2
),

where a, rb and s are positive constants, and themultiplication by f(r)
is to ensure that the total potential V+ δV still has the appropriate
tendency to zero when the horizon is approached. Ref. [20] analysed
in detail the position of the new long-lived fundamental mode in the
presence of such a perturbation. Here we will rather focus on some
qualitative features of themodified spectrum as a function of the free
parameters in δV, as well as on quantifying the magnitude of this
perturbation using the energy norm. We will use the computational
tools employed in ref. [1], namely, a Chebyshev-Lobatto grid in χ and
a pseudospectral approximation to the differential operator L and to
the integration operator involved in the energy product.

3.1 Fundamental mode (in)stability

Let us begin with a particularly illustrative example of a
perturbation of this type, which will be the centre-point of this
analysis. We set the units to the characteristic scale of the problem
by taking 2M = 1, and we set a (seemingly) small amplitude for
the bump a = 0.005, a position for the peak at rb = 25 and a width
s = 4. The spectrum of axial ℓ = 2 modes with this perturbation is
shown in Figure 2. We see that there is indeed a new branch of
modes, some of which decay more slowly than the unperturbed BH
fundamental mode. In this sense, the distance between the old and
new fundamental mode does indeed seem quite large compared to
the size of the perturbation, as discussed in ref. [20]. However, it

FIGURE 2
QNMs of an axial gravitational ℓ = 2 perturbation of Schwarzschild,
with and without a gaussian perturbation. The units are set to 2M = 1.
The gaussian bump has parameters a = 0.005, rb = 25, s = 4, and the
spectrum is calculated with N = 400 grid points. The unperturbed BH
fundamental mode is located at ±0.74734+0.17792i, the mode which
seemingly overlaps with it after the perturbation is at
±0.74729+0.17780i, and the new fundamental mode is at
±0.17287+0.048828i. The non-convergent “branch-cut” modes have
been removed from the plot (see [1]).

is also clear form Figure 2 that the spectrum after the perturbation
contains amodewhich coincides with the unperturbed fundamental
one (in fact it is only ∼10−3 away), implying that this mode was
actually stable under the perturbation.

This is therefore a case in which it is the qualitative change in
the shape of the potential has lead to the appearance of new long-
lived modes, while part of the old spectrum has remained stable, in
this case only the BH fundamental mode. From the first overtone
onwards, the BH spectrum is in fact destabilised, much like it is in
some of the cases studied in ref. [1].

The behaviour of the new fundamental mode depends strongly
on the parameters of the gaussian bump a, rb and s, and while a
detailed analysis of this dependence is not within the scope of this
work (see [20, 22] for a quantitative analysis of part of the parameter
space), we will make some general remarks regarding the behaviour
we have observed from a few spectra.

• Increasing the amplitude a tends to decrease the imaginary part
of the fundamental mode, as the modes trapped between the
two peaks (the bump and the light-ring peak) need to tunnel
out of a larger barrier to decay. Conversely, if a is made smaller,
the imaginary part increases. At around a = 10−5 the longest-
lived of these new modes is no longer the fundamental one, as
its imaginary part is larger than that of the BH mode.

• Increasing the radial position of the bump rb decreases the
imaginary part of the new modes, as well as destabilising the
old BH spectrum more strongly. We will make some remarks
regarding the reason for this in the next section.

• Increasing the width of the bump s alsomakes themode longer-
lived, since this increases the tunnelling (Agmon) distance [25].
On the other hand, a larger s (at a fixed energy norm)makes the
old BH spectrum more stable, since then the perturbation has a
lesser “high-wavenumber” content, as discussed in [1].
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FIGURE 3
Left: energy norm of δL as function of rb, for s = 4 and a = 0.005, in units 2M = 1. The quadratic fit is −0.024+0.0079rb +0.00025r2b (the variance is ∼10−6,
though at smaller radii this relation can be expected to start breaking down, since the norm must be positive). Right: energy norm of δL calculated with
N points, dubbed ‖δL‖(N), subtracted from a reference value ‖δL‖(400), for the same case with rb = 25. The vertical axis is log scaled to showcase the
exponential convergence (the slight discrepancy from the linear fit is due to the finite N reference value).

It is also worth noting that while we identify these longer-
lived modes as a new branch due to the qualitative change in the
potential and the stability of the BH fundamental mode, from the
numerical results alone it is not clear where exactly this new branch
becomes entwined with the perturbed BH overtones. To identify
which modes go to infinity and which to BH overtones in the zero
perturbation limit, a more detailed study which traces the migration
of individual overtones would be required.

3.2 Flea or elephant?

The perturbation operator being added to L can be
written as

δL = (
0 0
δq
w
𝕀 0
),

where δq = |g′|δV. In order to give a physical measure of the size
of this perturbation, the energy norm of δL can be computed.
Contrary to what might be expected from the small a parameter,
the energy norm of the example case used for Figure 2 is actually
quite significant: in units of the horizon scale, it is approximately
0.33, on the very high end of what can reasonably be considered
a “perturbation”. The reason for this apparent discrepancy between
the intended smallness in the choice of a and the large energetic
contribution of this perturbation lies in the simple fact that the
energy measure comes from an integral related to the full three
dimensional space of constant time slices [19], rather than just the
one dimension of thewave problem (although in the end it simplifies
to the latter). It therefore encodes the fact that a perturbation at a
large radius would require a thick shell of this same radius, the size
and matter content of which would scale with r2. This is indeed the
scaling we can observe in the left plot of Figure 3, where the energy
norm is calculated as a function of rb (with all other parameters
remaining the same), and fitted to a parabola.

Therefore, the increased destabilisation of the BH QNMs
(effectively, the lowering of the mode branches seen in Figure 2) for
a larger rb which was commented above can be related to precisely

this increase of the energy norm. The dependence of this energy on
the parameters a and s is just as predictable: an increase in both
these parameters leads to a proportional (linear) increase in the
energy norm.

3.3 Size vs. instability

This example has shown the importance of quantifying the
size of perturbations added to the problem, since, for instance, the
increase of the energy contained in perturbations at larger radii
is something that could easily have been overlooked otherwise.
However, using the energy norm in particular, while having many
advantages [19], may not be the most adequate choice in some
respects. One particular issue, raised in [13], is the fact that
the energy norm of the resolvent operator, used to calculate the
pseudospectrum, is not well behaved in a large part of the complex
plane, which includes the vicinity of most (if not all) QNMs.
Numerically, this norm tends to a divergence in the limit of infinite
grid point numberN in most of the upper half of the complex plane.
Since the issue in that case stems from the presence of additional
eigenmodes of a lower regularity class [30], and not simply from
a numerical problem, it is likely to be a generic property of other
setups as well.

One may then ask whether this issue extends to calculating
the energy norm of other operators as well, particularly that of
δL, since the pseudospectrum can equivalently be defined from
its norm (albeit for a very large set of perturbations). Fortunately,
it appears that the norm of this operator actually does have a
good convergent behaviour. The second plot in Figure 3 shows a
convergence test in a representative example. The result is clear: the
convergence is in fact exponential. Such convergence was previously
observed for other quantities computed with this discretisation
scheme, such as the spectrum itself (see fig. 8 of [1]), but had thus
far not been tested for energy norms of operators, except for the case
of the non-convergent resolvent norm in [13].

The convergence of ‖δL‖ in fact confirms that the issue with the
resolvent norm studied in [13] goes beyond the particular numerical
implementation. It also gives an appealing potential alternative
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approach to calculating the pseudospectrum by exploring a
sufficiently large space of perturbation operators and applying
Equation 1; [9, 34]. However, there would be two issues with such
an approach. First, it would be computationally very expensive to
attempt to span a “full” space of perturbation operators δL. This
would not be a critical impediment, at least for a small numerical
resolution N. However, the second and most crucial issue is the fact
that the result would differ depending on the resolution, as a higher
N could capture perturbations with a higher wave-number content,
which would destabilise the spectrum ever more strongly. It is not
clear that the limit of operators δL with the same energy norm but
with ever higher gradients in r (whichwould need a correspondingly
higher N to be resolved) would lead to a convergent definition
of the pseudospectrum, or if this issue would turn out to be
equivalent to the non-convergence observed in the
resolvent approach.

Testing whether this claim is true, while absolutely crucial,
goes beyond the scope of the present work. If it were indeed
proven true, then a consistent definition of a QNMpseudospectrum
would require a modification of the scheme summarised above.
One example of such a modification would be the use of
norms with higher order spatial derivatives, as introduced in
[30], and applied to the pseudospectral calculation in [13]
(see also [35]). However, a reasonable physical interpretation of such
norms and their associated stability analyses would need to be
devised.

4 Discussion

The spectral instability of BHQNMs is by now a well established
result in the field of black hole spectroscopy. As we have seen
here, QNMs are susceptible to (al least) two different types of
instability: either the direct migration of the already existing QNMs
by a large distance in the complex plane (“perturbative” instability),
or the appearance of new branches of modes to which the new
label of fundamental or overtone number are assigned, and which
are far away from their unperturbed counterparts (“branch”
instability).

One important aspect in analysing both perturbative and
branch instabilities is quantifying the size of the perturbations
introduced into system. A physically reasonable measure of this
size is given by the energy norm [19], which comes from an inner
product space associated to the energy of the linear field. As we
have seen in the above examples, a seemingly small perturbation
to the effective potential can in fact have a large energy norm,
and have a correspondingly large destabilising effect on
the spectrum.

Keeping track of this norm is therefore crucial. Indeed, in the
example of a gaussian bump studied in the present work, there
is a clear correlation between the energy norm of δL and the
distance between the old and new fundamental modes. However,
there are two issues with establishing a direct one-to-one relation
between this norm and the expected degree of destabilisation of the
spectrum. First, the fact remains that (some of) the original BH
modes can in fact remain stable in spite of the appearance of the
new branches of longer-lived modes. Second, the degree to which
these original modes are actually destabilised does not depend only

on the energy norm, but also on the high-wave-number content of
the perturbation involved, as observed in [1]. For the gaussian bump
perturbation used here, decreasing the width of the bump decreases
its associated energy norm, but the resulting sharper variation in
r can in fact lead to an increase in the instability of the original
spectrum. Exploring this issue in detail is particularly difficult
because of the numerics involved, since a sharper bump requires
a higher resolution to be captured, making the degree to which a
bump of any given energy norm can destabilise the spectrum hard
to establish.

This difficulty can in fact be seen as a potential issue with
providing a convergent result for the pseudospectrum in the energy
norm, since if there were such a result, a bound on the possible
migration of modes could be easily placed through Equation 1.
However, obtaining such a convergent pseudospectrum has been
an elusive task, as discussed in [13]. Finding a solution to this
issue would likely require changing parts of the above-described
prescription to this calculation, as is currently being explored by the
present author and collaborators [35].

Regarding the observability of these instabilities in
gravitational wave signals, the results of Refs. [2, 36] suggest
that while environmental perturbations are detectable in time-
domain evolution, their effect on ringdown signals is not as
disproportionately large as it is on the QNM spectrum itself.
However, a systematic study of the effect of different types of
perturbations, particularly involving the branch instability analysed
here, is lacking.

Overall, the study of the QNM spectral instability has led to a
myriad of different results in many different spacetime setups, but
there are just as many open questions left to be addressed in the
coming years.
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