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Influence maximization (IM) is crucial for recommendation systems and social
networks. Previous research primarily focused on static networks, neglecting
the homophily and dynamics inherent in real-world networks. This has led
to inaccurate simulations of information spread and influence propagation
between nodes, with traditional IM algorithms’ selected seed node sets failing
to adapt to network evolution. To address this issue, this paper proposes a
homophilic and dynamic influencemaximization strategy based on independent
cascade model (HDIM). Specifically, HDIM consists of two components: the
seed node selection strategy that accounts for both homophily and dynamics
(SSHD), and the independent cascade model based on influence homophily and
dynamics (ICIHD). SSHD strictly constrains the proportions of different node
types in the seed node set and can flexibly update the seed node set when
the network structure changes. ICIHD redefines the propagation probabilities
between nodes, adjusting them in response to changes in the network structure.
Experimental results demonstrate HDIM’s excellent performance. Specifically,
the influence range of HDIM exceeds that of state-of-the-art methods.
Furthermore, the proportions of various activated nodes are closer to those in
the original network.

KEYWORDS

influence maximization, homophily, dynamics, independent cascade model, social
networks

1 Introduction

With the continuous evolution of the Internet, social media has become a
primary medium for individuals to express opinions and communicate with others,
leading to a plethora of research on social networks [1–3]. User interactions,
sharing, and comments on social network platforms directly affect other users. When
seeking new job opportunities, individuals tend to look for relevant information
on specialized recruitment websites. Meanwhile, many companies leverage social
media to disseminate their recruitment advertisements and brand information. As
a result, influence maximization (IM) has become a significant research area in
social networks [4], garnering widespread attention, particularly in fields such as
public opinion analysis, recommendation systems, and epidemic propagation. The core
objective of IM is to identify and target a group of users within a social network
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who can most effectively propagate information. For example, in
the context of corporate recruitment, companies disseminating job
advertisements through social networks need to precisely target the
most promising user groups to ensure effective dissemination of
information. To identify these most promising users, IM research
is required.

Current IM algorithms [5, 6] have made significant progress
in Enhancing information dissemination. These algorithms utilize
the connection relationships between nodes in the network and
the evaluation of node influence to determine the most promising
spreading nodes. However, these algorithms primarily focus on
the structure of a single network and node influence, overlooking
homophily in real networks [7]. Homophily in social networks
encompasses both structural homophily and influence homophily.
Structural homophily refers to the similarity in connection patterns
or topological structures among nodes in a social network. In
other words, structural homophily describes the degree of pattern
similarity in the relationship network among nodes. In a social
network with structural homophily, the connections between nodes
may exhibit some degree of clustering phenomenon, where nodes
tend to connect with other nodes with similar attributes or interests.
Influence homophily refers to the similarity in influence propagation
between nodes in a social network. This homophily indicates that
in social networks, certain nodes may be more easily influenced by
similar nodes, leading to similar patterns of information or behavior
propagation in the network. Therefore, ignoring homophily may
result in the ineffectiveness or poor performance of IM algorithms.

Moreover, current research [8] often focuses on static
social networks, where the nodes and their connections remain
unchanged. However, real-life social networks are dynamic and
change over time. With time, old nodes and connections may
disappear, while new nodes and connections may join, exhibiting
certain regularities [9]. For example, Barabási et al. [10] proposed
a scale-free network generation model, describing the regularities
in node connections in social networks. Therefore, traditional seed
node selection strategies based on static social networks may not be
applicable to dynamic social networks. In dynamic social networks,
the importance and influence of nodes change over time. To address
this issue, a series of corresponding seed node sets need to be
selected based on the continuous changes in the social network.

To address the issue that traditional IM algorithms overlook
homophily and dynamics, we propose a homophilic and dynamic
influence maximization strategy based on independent cascade
model (HDIM). Specifically, concerning the homophily of social
networks, HDIM first classifies users based on user attributes
since users with similar attributes are more likely to connect
and influence each other. By selecting different types of users
as seed nodes, it can ensure that the influence covers different
types of user groups. Furthermore, HDIM further considers the
propagation process of influence between users in real social
networks. The probability of mutual influence between users not
only depends on their connection relationships but also on their
attribute similarity. Regarding the dynamics of social networks, we
propose a method that combines network changes to update seed
users. In other words, HDIM focuses on users in the network that
undergo changes to ensure that its selections can adapt to network
evolution. Compared to reapplying seed node selection strategies,
this approach significantly saves computational time and can more

effectively address changes in network structure. Additionally, since
changes in network structure affect the propagation probabilities
between users, HDIM can dynamically adjust the influence
propagation model to better adapt to network changes. The specific
contributions of this paper are as follows.

• We propose a seed node selection strategy considering
homophily and dynamics (SSHD). Firstly, SSHD imposes strict
constraints on seed nodes. The proportions of different types
of seed nodes in the seed node set are determined by their
proportions among nodes in the initial network. Secondly, we
introduce a degree discount heuristic strategy in a directed
graph (DDD) to compute node degree discount scores. When
the network structure changes, SSHD combines previously
selected seed nodes with the changing nodes to flexibly update
the seed node set.
• We propose an independent cascade model based on influence
homophily and dynamics (ICIHD). ICIHD redefines the
propagation probabilities between nodes, making these
probabilities dependent not only on the network topology but
also on influence homophily parameters. Influence homophily
parameters refer to the likelihood that nodes with similar
attributes influence each other. Additionally, as the network
structure changes, the propagation probabilities between
nodes also change accordingly.
• Extensive experimental results demonstrate the outstanding
performance of HDIM. Specifically, in four different static
social networks, althoughHDIM activates slightly fewer nodes
than greedy algorithms, the proportions of various activated
nodes are closer to those in the initial network. In dynamic
social networks, HDIM exhibits better adaptability than other
baseline methods. With changes in social networks, HDIM’s
influence range is approximately 60 nodes larger than state-of-
the-art methods. Moreover, concerning methods considering
network dynamics, HDIM performs equally well in terms of
influence range but achieves superior proportions of various
activated nodes. The source code is available at: https://github.
com/Wijipedia/HDIM.

The remaining organization of this paper is as follows:
Section 2 summarizes previous work. Section 3 introduces some
preparatory knowledge related to HDIM. Section 4 provides a
detailed description of HDIM. Section 5 presents experimental
results and detailed analysis. Finally, Section 6 concludes the work
of this paper and proposes future prospects.

2 Related work

2.1 Influence maximization

Domingos et al. [11] conceptualized the market as a social
network and recognized the importance of understanding how
customers influence each other within this network. They were
the first to discover and study the additional value of customers.
Kempe et al. [12] further elucidated the well-known problem of
IM. They also proposed two notable algorithms known as the
greedy algorithm and the heuristic algorithm. Leskovec et al. [13]
introduced the cost-effective lazy forward (CELF) optimization
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method based on the submodular properties of IM objectives. They
addressed the inefficiency issue of the greedy algorithm. Heidari
et al. [14] proposed a state machine greedy algorithm, addressing
the scalability problem of traditional greedy algorithms. It enabled
the application of greedy algorithms in large-scale social networks.
Chen et al. [15] proposed a risk-free variant of the adaptive greedy
algorithm, which never performs worse than non-adaptive greedy
algorithms.

Heuristic algorithms aim to find a suitable set of seed nodes in
a graph based on some strategy. Compared to greedy algorithms,
heuristic algorithms significantly improve time efficiency. However,
the performance of heuristic algorithms cannot be guaranteed. Chen
et al. [16] introduced a Degree Discount Heuristic algorithm, which
has higher accuracy compared to degree-based heuristic algorithms.
Zhang et al. [17] proposed a PageRank-inspired heuristic approach.
This heuristic solution explicitly reduces the influence of individuals
connected to the selected seed nodes. By integrating this discount
mechanism, the algorithm achieves performance comparable to
greedy algorithms. Jia et al. [18] proposed a three-phase heuristic
algorithm for social network IM.The algorithmconsiders the impact
of influence overlap on its effectiveness, striking a balance between
algorithm effectiveness and time efficiency.

Furthermore,

2.2 Homophily

Kossinets et al. [19] pointed out a difference between social
networks and other networks, which is homophily. Aral et al. [20]
demonstrated that ignoring homophily could lead to a significant
overestimation of the effectiveness of seeding strategies. Xie et al.
[21] proposed a competitive IM method considering inactive
nodes and community homophily. They broke down barriers to
information propagation between different communities. Chen
et al. [22] proposed a community-based IM algorithm based
on the structural attributes of the community. They formulated
corresponding strategies for homophily when selecting seed nodes.
However, they only considered the influence range in the final result.
M.S. et al. [23] proposed a greedy algorithm that simultaneously
considers maximizing the number of nodes and influence balance
while retaining the attractive theoretical guarantees of traditional IM
algorithms.

2.3 Dynamic social networks

Sheng et al. [24] tackled the dynamic IM problem by
transforming each node in the network into low-dimensional
vector representations using network representation learning.
They then addressed the dynamic IM problem in the low-
dimensional latent space. Song et al. [25] proposed an upper-
bound alternating greedy algorithm. They solved the seed
selection problem in dynamic social networks by tracking a
set of influential nodes and replacing them based on network
changes. Zhang et al. [26] introduced a novel framework for
IM based on prediction and replacement. This framework first
predicts future network snapshots using historical network snapshot
information. Then, based on the prediction results, it mines seed

nodes suitable for dynamic networks. Li et al. [27] proposed
an adaptive agent-based evolutionary method. They utilized an
adaptive solution optimizer to drive the evolutionary process and
optimize the selection of seed sets in dynamic environments.
Chandran et al. [28] proposed the dynamic traceable set method
to track individual node influence changes over time as the network
topology evolves.

2.4 Influence diffusion models

Influence diffusion models [12] primarily consist of two main
types: linear threshold models and independent cascade models.
Jendoubi et al. [29] proposed two evidence-based model for IM
on Twitter. This model uses belief function theory to estimate user
influence. Wang et al. [30] introduced a novel influence network
embedding method and a new IM algorithm based on network
representation learning.The probability of information propagation
between network nodes differs from other network representation
learning methods based on random walks. Li et al. [31] proposed a
multi-factor information diffusion model by considering multiple
factors in information propagation. Bozorgi et al. [32] provided
nodes with decision-making capabilities regarding incoming
influence propagation. Considering the existence of numerous
competitors in real life, they proposed a competitive linear threshold
model. Li et al. [33] modeled social networks in multi-dimensional
space and proposed a propagation simulation based on the Gaussian
propagation model. Additionally, Guo et al. [34] proposed an
influence maximization algorithm based on group trust and local
topology structure. This algorithm optimizes the propagation
process by defining concepts such as group connectivity, inter-group
diffusion, and group trust, while incorporating local structural
information. Yang et al. [35] considered the potential impact of
entity correlations in real-world social networks on information
diffusion, proposing a balanced influence maximization framework
based on deep reinforcement learning.While thesemethods account
for various factors in simulating information propagation in real
social networks, they overlook two important properties: homophily
and dynamics.

3 Preliminaries

In this section, we introduce key definitions and symbols.

3.1 Influence maximization in static social
networks

IM in static social networks involves selecting a certain number
of initial nodes, known as seed nodes, from a given set of nodes.
These seed nodes aim to activate as many nodes as possible through
an influence diffusion model.

Kempe et al. [12] formalized this problem as follows: Given a
networkG = (V,E), whereV represents the set of nodes in the graph
and E represents the set of edges. Given an influence propagation
model and a positive integer k, the IMproblem is to find knodes such
that the number of nodes influenced by these nodes is maximized
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under the current propagation model. The objective function of IM
is shown in Equation 1.

S∗ = argmax (σ (S)) S ⊆ V, |S| = k (1)

Here, S represents the set of seed nodes containing k nodes. The
number of users influenced by the nodes in set S represents the
influence capacity of S. σ(S) denotes the number of users influenced
by the nodes in set S. S

∗
represents the set S with the strongest

influence capacity.

3.2 Influence maximization in dynamic
social networks

Dynamic social networks refer to a series of static network graphs
where nodes and edges change over time. Each static network graph
represents the state of the social network at a specific time point. To
facilitate research, we discretize time and set a small time interval
during which the network topology changes. Therefore, based on the
traditional IM problem in static social networks described above, we
can define IM in dynamic social networks as follows:

Definition1: Influence Maximization in Dynamic Social
Networks: Given Gt(Vt,Et) as the social network at time t, where
the nodes and edges of the network Gt at time t are fixed, but
they evolve over time. Forming a dynamic social network when
t = 0,1,…,n, the objective in IM in dynamic social networks is to
find the optimal set of seed nodes in the graph corresponding to each
time t. We formalize the IM problem in dynamic social networks
as shown in Equation 2.

S∗t = argmax(σt (St)) St ⊆ Vt, |St| = k, t = 0,1,…,n. (2)

Here, St represents the set of seed nodes containing k nodes at time
t. σt(St) represents the number of nodes influenced by the nodes in
set St at time t. S

∗
t represents the set St with the strongest influence

capacity at time t.

4 Methodology

4.1 Framework

In this section, we first provide a brief overview of the overall
framework of HDIM, as illustrated in Figure 1. Then, we delve into
each component of HDIM in detail.

Figure 1A illustrates the topological structure of the directed
graph representing the social network. Firstly, we classify the nodes
based on their attributes. In this study, we categorize them into
two categories based on the users’ gender. Category ’a’ includes
white nodes, which constitute a larger proportion, while category ’b’
comprises black nodes, occupying a smaller proportion. Then, we
depict the dynamic nature of the social network. That is, at a certain
timestamp, the nodes and edges remain fixed. However, over time,
new nodes and edges may join the network, while old nodes and
associated edges may disappear.

Figure 1B describes how to select the corresponding seed nodes
in a dynamic social network.We establish the DDD to search for seed
nodes. In addition to providing the number of seed nodes k, we also

consider the homophily of the social network and provide constraints.
The seed nodes at timestamp t are jointly updated by the seed node set
from the previous timestamp and the changed nodes. The role of the
seed checker is to compare the degree discount scores of the changed
nodes with the seed nodes from the previous timestamp. Then, it
decides whether to replace the existing seed nodes.

Figure 1C illustrates the influence propagation model. Unlike
the traditional independent cascademodel, ICIHDmodel considers
the homophily and dynamics of the social network. Considering
the realistic scenario of influence propagation between nodes, the
influence propagation probability between nodes depends not only
on the network topology but also on the node’s attributes. Due to the
changes in the seed node set, this model can dynamically output the
nodes influenced by the seed node set.

4.2 Degree discount heuristic strategy in
directed graphs

The degree discount heuristic in an undirected graph [16] is an
improvement upon the basic degree heuristic strategy. Suppose node
j is a neighbor of node i, and node j has already been selected as a
seed node. When considering whether to choose node i as a seed
node based on a degree-based selection strategy, the edge (i, j) should
be discounted because node i cannot generate additional influence
on node j. If there is an edge between two nodes, it indicates that
influence can propagate bidirectionally through that edge. Once a
node is confirmed as a seed node, the degree discount score of its
neighboring nodes will be updated using Equation 3.

ddv = dv − 2tv − (dv − tv) tvp (3)

Where ddv represents the degree discount score of node v, dv
denotes the degree of node v, and tv indicates the number of
seed nodes among the neighboring nodes of node v. p is the
probability parameter for edges, representing the probability of
influence propagating to neighboring nodes through edges.

However, in a directed graph, influence can only propagate from
one node to the nodes it points to. The out-degree of a node refers
to the number of edges emanating from that node. Each outgoing
edge signifies the potential influence or information transmission
from the node to its neighboring nodes. Thus, a higher out-degree
indicates that the node has the potential to influence more nodes in
the graph. In this scenario, theremay exist three types of connections
between nodes, as shown in Figure 2.

1. As shown in Figure 2A, node j is a seed node pointing to node
i. Since node i cannot activate node j (there is no edge from i
to j in the graph), the degree discount score of node i does not
need to consider node j.

2. As shown in Figure 2B, node j is a seed node, and i points
to j. Although in this case node i may activate node j (there
is an edge from i to j in the graph), node j has already been
previously selected as a seed node. In the independent cascade
model, nodes only attempt to activate their inactive neighboring
nodes.Therefore, when computing the degree discount score of
node i in this scenario, we should not consider the edge (i, j).

3. As shown in Figure 2C, node j is a seed node, and the
connection between i and j is bidirectional. The probability
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FIGURE 1
The overall framework of HDIM. (A) The topological structure of the directed graph representing the social network. (B) The process of selecting the
corresponding seed nodes in the dynamic social network. (C) The independent cascade model based on influence homophily and dynamics.

that node j activates node i is p(j, i). In this case, selecting
node i as a seed node does not add any extra influence (the
contribution to the expected influence is 0). The probability
that node i is not activated by node j is 1− p(j, i). When node
i is chosen as a seed node, the number of nodes it can activate
is 1+ p(i,v). Therefore, the expected influence when node i
is selected as a seed node is (1− p(j, i))(1+ p(i,v)). When j is
not a seed node, the expected influence generated by i being
a seed node is 1+ p(i, j) + p(i,v). Let A = (1− p(j, i))(1+ p(i,v))
and B = 1+ p(i, j) + p(i,v). Assuming γ is the degree discount of
i to seed node j (i.e., the discount of edge (i, j)), then p(i, j)γ =
B−A, γ = B−A

p(i,j)
. We can compute the degree discount score of

node i using Equation 4.

ddi = dout (i) − γ (4)

Where dout(i) represents out-degree of node i.
In directed graphs, degree discounting only occurs between

nodes with bidirectional edges. Therefore, in Figure 2C, when there
are s nodes like j in the neighborhood of node i, we can compute
the degree discount score of i using Equations 5–8. For convenience
of representation, we assume that the edge propagation probability

between nodes is p.

A′ = (1− p)s (1+ (dout (i) − s− sout (i))p) (5)

B′ = 1+ (dout (i) − sout (i))p (6)

γ′ = B
′ −A′

sp
(7)

dd′i = dout (i) − sγ
′ − sout (i) (8)

Where sout(i) represents the number of neighboring nodes that
node i points to, which are already seed nodes. Based on the above
explanation,when calculating the number of active nodes, we should
subtract those nodes that have already become seed nodes from the
out-degree neighboring nodes.

In the DDD, we prioritize selecting nodes with higher degree
discount scores as seed nodes.The calculation of the degree discount
score for nodes is illustrated in Algorithm 1. Here, sout(u) represents
the number of seed nodes among the out-degree neighboring nodes
of node u, s represents the number of nodes in the out-degree and
in-degree neighboring nodes of node u that are both seed nodes.
Neiout(u) denotes the out-degree neighboring nodes of node u, and
Neiin(u) represents the in-degree neighboring nodes of node u. The
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FIGURE 2
(A) The seed node is an incoming neighbor of node i in the directed graph. (B) The seed node is an outgoing neighbor of node i in the directed graph.
(C) The seed node is both an outgoing and incoming neighbor of node i in the directed graph. There are three cases in the directed graph, among
which the seed node is a neighbor node of a certain node.

FIGURE 3
The directed social network after node categorization.

expected influence computed in steps 10 and 11 is different. The
expected influence calculated in step 10 represents the expected
influence when selecting node u with seed nodes present among
bidirectional neighboring nodes. The expected influence calculated
in step 11 represents the expected influence when selecting node u
without seed nodes present among bidirectional neighboring nodes.

4.3 Seed node selection strategy
considering homophily and dynamics

Wepropose a seednode selection strategy that takes into account
the homophily and dynamics of social networks. When considering

homophily, we impose constraints on selecting seed nodes. The
proportion of the two types of nodes in the seed node set should
be consistent with their proportion in the initial network. This is
because similar nodes are more likely to connect and influence
each other. By controlling the seed set, we aim to achieve influence
across both types of nodes. For example, in Figure 3, we categorize
nodes into two types: white nodes and black nodes. Let’s assume
we need to select three seed nodes. Initially, with no seed nodes
selected, we choose nodes based on their out-degree. Node 3 has
an out-degree of 4. So, we first select node 4 as a seed node.
Nodes 4, 6, and 9 have out-degrees of 2. We also need to randomly
select two of them as seed nodes. Without constraints on seed
node selection, node 9 might not be chosen. This could result in
almost no active black nodes. This not only harms the interests
of black nodes but may also lead to a reduction in the influence
range. However, with constraints on seed node selection, we can
avoid this issue. Since the ratio of white nodes to black nodes is
2:3, the proportion in the seed node set remains consistent. We
choose two white nodes and one black node as seed nodes. Node
9 becomes a forced selection. Thus, we achieve the goal of influence
reaching both types of nodes simultaneously while still ensuring the
influence range.

In Algorithm 2, we impose constraints on the categories of
seed nodes.Here,Vi(a) represents the set of nodeswith category ’a’ at
time i. nodea and nodeb represent sets of nodes with categories ’a’ and
’b’, respectively. The algorithm first traverses all nodes in the graph
and calculates the counts of nodes for each category.Then, based on
their proportions in the network, it determines the proportions of
the two categories of nodes in the seed node set. Additionally, we
dynamically update the seed node set according to the changes in
the social network.

The seed checker plays a crucial role in the seed node selection
strategy. Its function is to compare the degree discount scores
between the changing node and the previous timestamp’s seed
nodes. Then, it decides whether to replace the previous seed nodes
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TABLE 1 Details of the datasets.

Dataset No. of nodes No. of edges Structure homophily index

verizoncareers 9,226 59,576 0. 58

hersheycareers 3,726 23,939 0. 56

bofa_careers 13,688 68,328 0. 61

upsjobs 13,851 116,785 0. 92

FIGURE 4
(A) verizoncareers. (B) hersheycareers. (C) bofa_careers. (D) upsjobs. The influence range results of our algorithm when using different homophily
parameters.

with the changing node. We provide a detailed description of this
process in Algorithm 3. The input consists of the current network,
the set of seed nodes to be updated, the node u to be checked,
and its degree discount score. The output is the updated set of seed
nodes. Here, Si(a) represents the set of nodes with category ’a’ in the
seed node set at the i-th timestamp. Due to the limitation on node
categories, we first determine the category of the changing node u.
Then, we compare node u with seed nodes of the same category.
If the degree discount score of u is greater than that of any seed

node, we replace the seed nodewith the lowest degree discount score
with u.

Based on Algorithm 2 and Algorithm 3, we propose the SSHD.
We combine the seed nodes from the previous timestamp with the
changed nodes to obtain the seed node set for the current timestamp.
Through continuous iteration, we can obtain the seed node set
corresponding to each timestamp. Due to the smooth changes in
the network structure, within a small time interval, the network
topology does not undergo drastic changes.Therefore, we only need
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FIGURE 5
(A) verizoncareers. (B) hersheycareers. (C) bofa_careers. (D) upsjobs. The influence balance results of our algorithm when using different homophily
parameters.

to focus on the changed nodes without involving all nodes. We
recalculate the degree discount scores based on the changed nodes
according to Algorithm 1. Finally, by comparing the degree discount
scores of the seed nodes selected at the previous timestamp with
those of the changed nodes, we update the seed node set for the
current timestamp.

Algorithm 4 presents the overall framework of SSHD.The input
includes the dynamic social network graph and the number of
seed nodes. The output is the corresponding seed node set. When
i equals 0, we select seed nodes on the initial social network.
Under the constraint of seed node category, we choose the node
with the highest degree discount score as the seed node. The
operation of updating node degree discount scores is shown in
Algorithm 1. As the network evolves, we need to update the seed
set accordingly. In step 7, we allocate the seed nodes from the
previous timestamp to the current timestamp. However, this is
not just a simple allocation operation; it implies the constraint
of seed node category. If the seed node category constraints of
two timestamps are different, we will randomly select non-seed
nodes from the network to fill the blank space in Si. Step 8 is
to compare the changes that occur in the social network. We can
obtain a set of disappearing edges (nodes whose edges have not
changed), a set of new edges (nodes whose edges have not changed),
a set of disappearing nodes, and a set of new nodes. In step 9,

we compare the degree discount scores of existing seed nodes
and changed nodes. The changed nodes are all nodes related to
the sets obtained in step 8. We recalculate their degree discount
scores using Algorithm 1. The replacement operation is performed
by the seed checker.

4.4 Independent cascade model based on
influence homophily and dynamics

Kempe et al. [12] proposed the traditional independent cascade
model, where the probability parameter of an edge determines
whether a node will activate its neighboring nodes. However,
McPherson et al. [36] demonstrated that homophily is widespread
in social networks. For example, if two people simultaneously
recommend products to a user, the user is more likely to be
influenced by people with similar attributes. These attributes can
include gender, interests, status, etc. The traditional independent
cascade model only considers the position of nodes in the social
network without taking into account node features. In other
words, previous studies typically determine whether one node will
influence another based on network topology without considering
homophily in social networks. Based on this observation, we
propose the ICIHD. In the ICIHD, the centrality of nodes
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FIGURE 6
(A) verizoncareers. (B) hersheycareers. (C) bofa_careers. (D) upsjobs. The influence range results of our algorithm when using different weights.

determines the initial probability parameter of edges. Then, we
combine homophily with centrality measures as the probability
parameter of edges between nodes. The inherent implication
of homophily is to appropriately increase the probability of
influence between two users with the same attributes. The role
of the influence propagation model is to output the set of nodes
activated by seed nodes. As the seed node set is continuously
updated over time, the set of activated nodes also changes
accordingly.

4.4.1 Centrality measurement methods
Centrality can measure the influence of nodes in a network.

We define the initial edge probability parameters by evaluating
the centrality of nodes on both sides of the edge. Specifically,
the probability formula for one node activating another node
is as follows:

p (u,v) =
C (u)

C (u) +C (v)
(9)

Where p(u,v) is the probability of node u activating node v,
and C(u) is the centrality of node u. In a directed graph,

influence can only propagate from one node to the node it points
to. Therefore, defining the probability parameters in this way
can effectively simulate the probability of edges. In the special
case where both nodes u and v have centrality of 0, influence
cannot propagate through this edge.Although node centrality can
estimate the probability of influence propagation, in online social
networks, the propagation probability between nodes is usually
not very high [37]. To more accurately simulate the influence
propagation process in online social networks and make the edge
probability parameters derived from centrality closer to real values
in online social networks, we introduce a correction factor λ
in Equation 9 to adjust the propagation probability, as shown in
Equation 10.

p (u,v) =
λC (u)

C (u) +C (v)
(10)

To avoid the impact of a single centrality measure on
the experimental results, we employed four different node
centrality measurement methods and evaluated the performance
of different types of centrality measurement methods. They
are degree centrality [38], eccentric centrality [39], PageRank
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FIGURE 7
(A) verizoncareers. (B) hersheycareers. (C) bofa_careers. (D) upsjobs. The influence balance results of our algorithm when using different weights.

centrality [40], and closeness centrality [41]. These four
centrality measurement methods are based on different node
attributes and positions, covering several fundamental types
of methods. Therefore, they can represent general centrality
measurement methods.

4.4.2 Edge probability parameters evaluation
method

In this subsection, we propose a method for evaluating
edge probability parameters considering influence homophily,
formulated as follows:

EP (u,v) = αp (u,v) + (1− α)hp (u,v) (11)

hp (u,v) =
{
{
{

hp uandvbelongtothesamecategory

λ− hp otherwise
(12)

Where EP(u,v) represents the probability of node u influencing
node v. p(u,v) is the initial edge parameter mentioned earlier,
computed using the four different methods for calculating node
centrality described previously. hp is the influence homophily
parameter, which needs to be of the same order of magnitude
as p(u,v). Since edge parameters belong to the (0, 1) interval,
we use a trade-off coefficient α. We will validate the different

performance reflected by different α and different hp in the
experiments.

4.4.3 Influence propagation process
The process of influence propagation in the independent

cascade model is as follows: An activated node attempts to activate
its neighboring nodes with a certain probability. This activation
attempt occurs only once, and the attempts of different nodes are
independent of each other. The newly activated nodes continue to
attempt to activate their neighboring nodes. This process continues
until there are no new activated nodes in the network. Due
to the dynamic nature of social networks, the edge parameters
between nodes and the results of influence diffusion will also change
accordingly.

InAlgorithm 5, we describe the process of influence propagation
given a seed node set in dynamic social networks.The input consists
of the dynamic social network, the corresponding seed node set,
and the set of edge probability parameters. The output is the active
node set corresponding to each timestamp. Here, newActive is an
indicator. If the indicator is true, there are new active nodes in
the network. When the indicator is false, the influence propagation
process terminates. Ci represents the current set of active nodes.
Nei(u) represents the neighbor nodes of node u. Newi is the set of
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FIGURE 8
(A) verizoncareers. (B) hersheycareers. (C) bofa_careers. (D) upsjobs. The influence range results of our algorithm when using different centrality
measurement methods.

currently activated nodes. Steps 6–13 demonstrate the processwhere
current active nodes attempt to activate their adjacent nodes. The
random number r belongs to the range 0–1. The edge probability
parameters between nodes u and v determine the likelihood of node
u activating node v. If the edge probability parameter is higher, node
u is more likely to activate node v. Steps 14–19 involve checking for
any new active nodes.

5 Experiments

In this section, we conduct three experiments to evaluate
the performance of SSHD. The first experiment analyzes the
performance of SSHD under different parameter settings.
The second experiment compares SSHD with other baseline
methods in static social networks. In the third experiment, we
evaluate the continuity performance of SSHD in dynamic social
networks and compare it with other baseline methods. The
following subsections present the experimental details and discuss
the results.

5.1 Datasets

We selected the professional Twitter accounts of four major
companies: Bank of America, UPS, Verizon, and Hershey, which
frequently post job advertisements. Using the Twitter API, we
obtained the followers of each account to form a complete
social network, including followers of followers, based on the
follower connections. Due to limited information available in
the dataset, we categorized users into two categories based
on their gender. The gender of users was determined by the
Genderize API using their names. The Genderize API utilizes
a vast database containing names from different countries and
languages along with their associated genders. Karimi et al. [42]
demonstrated the high accuracy of this database. We defined
male users in these four datasets as category ’a’, comprising the
majority, while female users were categorized as category ’b’,
representing the minority. The homophily index of the network
is proportional to the ratio of edges connecting two nodes of the
same category. Table 1 provides detailed information about the
aforementioned four datasets.
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FIGURE 9
(A) verizoncareers. (B) hersheycareers. (C) bofa_careers. (D) upsjobs. The influence balance results of our algorithm when using different centrality
measurement methods.

M.S. et al. [23] proposed a homophily network generation
model. To simulate the dynamic evolution of the network,
we utilized this model to process the hersheycareers dataset.
The network evolves over time as follows: 1) At timestamp
1: 4,035 nodes and 24,877 edges. 2) At timestamp 2: 4,163
nodes and 25,184 edges. 3) At timestamp 3: 4,529 nodes
and 26,237 edges. 4) At timestamp 4: 5,168 nodes and
28,551 edges.

5.2 Baseline methods

• Degree Discount [16]: This algorithm improves upon
degree-based heuristic algorithms. Whenever a node
becomes a seed node, the algorithm updates its neighboring
nodes using Equation 8.
• CELF [13]: CELF further improves upon greedy algorithms
by exploiting submodularity properties. It is more efficient
than general greedy algorithms and also provides certain
performance guarantees.
• BalGreedy [23]: The core of BalGreedy is a greedy approach. It
calculates the marginal gain of nodes using Equation 13. This
equation tends to select fewer nodes after selecting themajority

of nodes to promote balance in the proportion of nodes in the
final set of active nodes.

F (S) = (1− λ) ⋅
f (S)
|V|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Influence

+λ ⋅
√γM (S) +√(1− γ)m (S)

√γpMn+√(1− γ) (1− pM)n⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Balance

(13)

• BalDegree [43]: BalDegree selects seed nodes based on their
degree, but it does not simply choose the nodeswith the highest
degree from the entire network. Instead, it selects the nodes
with the highest degree from each group.
• ABEM [27]: ABEM is an adaptive agent-based evolutionary
method for finding seed nodes. The algorithm utilizes an
adaptive optimizer to drive the evolutionary process and
dynamically adjust candidate solutions.

5.3 Experimental results and discussion

Asmentioned earlier, our goal is not only to maximize influence
by reaching a sufficient number of nodes but also to strive
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FIGURE 10
(A) verizoncareers. (B) hersheycareers. (C) bofa_careers. (D) upsjobs. The influence range results on four datasets using five different algorithms.

for a proportion of influenced nodes that closely resembles the
proportion in the initial network. In the experimental results,
we should not only consider the size of the influenced range
but also pay attention to the balance of influence. To measure
influence balance, we define a metric as the difference between
the product of the number of active nodes and the proportion of
category ’a’ nodes in the initial network, and the actual number
of category ’a’ nodes activated. In other words, the closer the
difference is to zero, the better the effect. A larger difference
indicates a higher level of imbalance. Perfect influence balance
would mean achieving a difference of zero. Considering the
stochastic nature of influence diffusion in experiments, we take
the average of 100 experimental results as the observation metric.
To prevent positive and negative values from canceling each
other out in the difference, the calculated difference is absolute-
valued.

5.3.1 Experiment 1: performance of SSHD under
different parameter settings

First, we compare the effects of the influence maximization
algorithm under different homophily parameters. In this

experiment, we set λ = 0.01, α = 0.5, and use the degree
centrality measurement method. The impact of these parameters
on the experimental results is also be discussed later. In
online social networks, the probability of influence propagation
between nodes of the same category should be higher than
that between nodes of different categories [23]. Therefore,
based on Equations 11, 12, we set the value of the homophily
parameter hp to (0.005, 0.006, 0.007, 0.008, 0.009, 0.01). The
diffusion results are shown in Figure 4, and the balance effect
is shown in Figure 5.

In Figure 4, the vertical axis represents the number of active
nodes, with the upward bars indicating a wider range of influence. In
Figure 5, the vertical axis represents the absolute difference between
the product of the number of active nodes and the proportion of
category ’a’ nodes in the initial network and the actual number
of activated category ’a’ nodes. A lower value indicates a better
balance effect. Their horizontal axes correspond to different sizes
of seed node sets. The results in Figures 4, 5 correspond one-to-
one. It can be seen that when the homophily parameter is set to
0.007, good results are obtained in both influence range and balance
effect, regardless of the dataset. For example, in the experiment
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FIGURE 11
(A) verizoncareers. (B) hersheycareers. (C) bofa_careers. (D) upsjobs. The influence balance results on four datasets using five different algorithms.

TABLE 2 Average running times of different algorithms in different experimental datasets (Unit of measurement: seconds).

Dataset Degree discount SSHD BalGreedy BalDegree CELF

verizoncareers 6.8 6.34 192.57 6.15 188.96

hersheycareers 1.2 1.03 31.22 1 30.97

bofa_careers 11.31 10.4 327.04 11.85 325.43

upsjobs 19.39 18.16 564.76 20.7 555.81

results of the bofa_careers dataset with a homophily parameter
of 0.007, the maximum influence range is 638.9 nodes, which is
only 3.9 nodes less than when the homophily parameter is 0.009.
However, in terms of balance effect, the former differs from perfect
balance by 2.4 nodes, while the latter differs by 9.9 nodes. Due to
the averaging of 100 experimental data points, decimal values may
appear in the experimental results. This may be because the role
of the homophily parameter in the experiment is to appropriately
increase the probability of influence between nodes with the same
attributes. This increase in probability needs to be moderate, as
nodes with the same attributes may be more likely to influence each

other, but this does not mean that influence between nodes with
different attributes will not propagate. In Figures 6, 7, we discuss
the different effects of different weights. Similar to the previous
experiment, we use the degree centrality measurement method and
set the homophily index to 0.007. Node centrality and node features
jointly determine the propagation probability of edges. This weight
represents the proportion of node centrality, and it is set to (0.4,
0.5, 0.6, 0.7). From the experimental results, it can be observed
that regardless of the data scale, a weight of 0.5 can achieve the
ideal effect, meaning that the influence range is sufficiently large
and the influence is relatively balanced. Additionally, the higher
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FIGURE 12
The influence range results on dynamic hersheycareers dataset.

FIGURE 13
The influence balance results on dynamic hersheycareers dataset.

Algorithm 1. Calculation of node degree discount score in directed graph.

Algorithm 2. Constraint for seed nodes.

Algorithm 3. Procedure of the seed checker.

Algorithm 4. Seed nodes selection strategy considering homophily
and dynamics.

Algorithm 5. The process of influence propagation.

the homophily index in the network, the worse the balance effect.
For example, the network structure homophily index of the upsjobs
dataset is much larger than that of the other three datasets, so
the gap between the results of the upsjobs dataset and the x-
axis is larger.

Next, we test the effectiveness of using different centrality
measurement methods in terms of influence range and influence
balance. We use degree centrality measurement method,
PageRank centrality measurement method, closeness centrality
measurement method, and eccentricity centrality measurement
method. In this experiment, the weight α is set to 0.5, and the
homophily parameter is set to 0.007. The experimental results
are shown in Figures 8, 9. The results show that degree centrality
measurement method outperforms the other three methods in
both influence range and influence balance. It is based on the
number of connections a node has with other nodes. Among the
four datasets, the eccentricity centrality measurement method
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performs the worst. This may be because eccentricity centrality
depends only on the distance to the network center, without
considering the relationships between nodes and the network
structure.

5.3.2 Experiment 2: Comparison of SSHD and
baseline methods on static social networks

Based on the results of Experiment 1, we set the weight α
in the influence propagation model to 0.5 and the homophily
parameter to 0.007. By using the degree centrality measurement
method, we compare the proposed algorithmwith other benchmark
methods on four networks with different data scales and network
structure homophily parameters. The experimental results are
shown in Figures 10, 11. The SSHD algorithm, BalGreedy
algorithm, and BalDegree algorithm all employ certain methods
to promote influence balance. Therefore, in the experimental
results in Figure 11, the seed nodes selected by the degree
discount algorithm and the CELF algorithm result in significant
imbalance. In Figure 10, the BalGreedy algorithm and the
CELF algorithm achieve better influence range, while BalDegree
performs the worst. This is because BalGreedy and CELF use
greedy algorithms, which are more accurate than the other three
heuristic algorithms. The degree discount algorithm and the SSHD
algorithm not only select seed nodes based on node degrees but
also discount the degree scores of their neighboring nodes after
determining the seed nodes. From the experimental results, it
can be seen that regardless of the dataset, the SSHD algorithm
is significantly better than other algorithms in terms of influence
balance. Furthermore, our proposed algorithm only makes a
slight sacrifice in influence range. Since the network structure
homophily index of the upsjobs dataset is much larger than that
of the other three datasets, using traditional algorithms on the
upsjobs dataset may result in severe imbalance. Therefore, our
SSHD algorithm is preferred when the homophily index of the
network structure is large, as it balances influence range and
influence balance.

Additionally, we compare the running times of these
five algorithms. Similarly, we use the average results of
100 experiments as the observation indicators. The results
are shown in Table 2. Since the SSHD, BalDegree, and degree
discount algorithms are heuristic algorithms, their running
times are much shorter than the other two algorithms. The
running time of the algorithms is also proportional to the size of
the dataset.

5.3.3 Experiment 3: comparison of SSHD and
baseline methods on dynamic social networks

In this experiment, we validate the performance of the proposed
algorithm on dynamic social networks. In the above experiments,
the results with different numbers of seed nodes are similar, so
we choose to conduct experiments with k = 200. Additionally,
we set hp = 0.007, α = 0.5, and use the degree centrality method.
Figures 12, 13 show the influence range and influence balance,
respectively. The horizontal axis represents the timestamp. As the
timestamp changes, the topology of the network also changes.
The specific details are described in section 5.1. It can be seen
that at timestamps 1 and 2, the influence range of SSHD and
ABEM is very close to that of the BalGreedy and CELF algorithms.

However, at timestamps three and 4, the influence range of SSHD
and ABEM is much larger than the other four algorithms. This
is because the network topology undergoes significant changes
later on. SSHD and ABEM are able to update the seed node set
in a timely manner based on changes in the network topology.
In terms of influence balance, despite the dynamic changes in
the network, our SSHD algorithm still outperforms the other five
algorithms.

6 Conclusion

In this study, we proposed a homophilic and dynamic influence
maximization strategy based on independent cascade model.
Specifically, HDIM consists of two parts: SSHD and ICIHD.
Through in-depth analysis of node attributes and connection
patterns in social networks, we designed the SSHD strategy to
more accurately select seed nodes and effectively evaluate the
degree discount scores of nodes through the DDD heuristic
strategy. At the same time, we proposed the ICIHD model,
which redefines the propagation probability between nodes to
fully consider the impact of homophily parameters and network
dynamics on the propagation process. Our experimental results
show that the proposed method achieves good performance on
multiple static and dynamic social network datasets. Compared
with traditional methods, our method can more effectively activate
nodes and better maintain the proportion of node types in the
initial network. In dynamic social networks, our method is more
adaptive and can more accurately respond to changes in network
structure.

In summary, this study provides a new perspective and method
for solving the influence maximization problem in social networks.
Our work is of great significance for understanding the regularity
and mechanism of information propagation in social networks, and
provides valuable reference for promotion and implementation in
practical applications. In future research, we will further explore
more complex network models and algorithms to cope with the
diversity and dynamics of social networks, while also conducting
a detailed complexity analysis to assess their scalability and
efficiency.
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