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We study the connection between damage spreading, a phenomenon long
discussed in the physics literature, and the coupling of Markov chains,
a technique used to bound the mixing time. We discuss in parallel the
Edwards–Anderson spin-glass model and the hard-disk system, focusing on
how coupling provides bounds on the extension of the paramagnetic and
liquid phases. We also work out the connection between path coupling and
damage spreading. Numerically, the scaling analysis of the mean coupling
time determines a critical point between fast and slow couplings. The exact
relationship between fast coupling and disordered phases has not been
established rigorously, but we suggest that it will ultimately enhance our
understanding of phase behavior in disordered systems.
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1 Introduction

Monte Carlo simulations based onMarkov chains [36, 37] play an important role in the
study of complex systems in physics and other sciences. In a given sample space, Markov
chains perform random walks that, in their large-time steady state, visit configurations
according to a prescribed stationary distribution (often the Boltzmann distribution). At
early times, in contrast, after its start from a given initial configuration, each Markov chain
samples different time-dependent distributions. The characterization of convergence (that
is, of the mixing timescale [39] for approaching the stationary distribution) is of greatest
importance as, by definition, convergence is required for sampling from the prescribed
distribution and for estimating mean values of observables (pressure, specific heat, and
internal energy) as running averages. Moreover, the mixing timescale by itself carries
important information on the sampling problem. In a physics context, the sudden slowdown
of mixing and relaxation times (without reference to any observable) often indicates a
phase transition. Well-known examples are the slowdown of the Glauber dynamics at
the paramagnetic–ferromagnetic transition in the Ising model [22, 41], as well as the
glass transition, which is defined through the slowdown of relaxation processes (although
it is not of thermodynamic origin). The spin-glass transition is believed to be signaled
by a stark increase in the relaxation times at low temperatures [23]. In addition, in
certain local Monte Carlo algorithms for particle systems, fast mixing (in a way that
we will discuss later) is only possible in the liquid phase [32], so a statement about
thermodynamic phases is obtained from an analysis of mixing times without invoking
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FIGURE 1
Coupling for the random walk on a path graph (arrows point into the three directions with equal probabilities, and those leaving the graph are replaced
by straight arrows). Left: Classic coupling: the two random walks advance independently until they merge at τcoup. Middle: A random-map
implementation of the classic coupling (independent arrows). Right: A random-share, monotone coupling, where at a given time, all configurations are
updated with the same random number. Trajectories cannot cross.

observables. However, establishing mixing and relaxation times can
be an arduous task, both in practice and in theory.

As convergence sets in, samples and empirical mean values
(running averages) become independent of initial configurations.
Much stronger than mere independence, samples can actually
become identical for two (or more) different initial configurations.
This phenomenon, called coupling, is a focus of the present article.
A coupling is a bivariate stochastic process that starts from two
far-away initial configurations at time t = 0, say, x0 and y0, under
the condition that the projected evolution of xt and of yt, taken
separately, realize aMarkov chain with its transitionmatrix P. When
the evolutions of the two trajectories meet at the coupling time
τcoup, with xτcoup = yτcoup , they are glued together for all later times
(see the lhs of Figure 1). Couplings of a given Markov chain can
take many different forms, but for all of them, the coupling time
provides an upper bound for the mixing time. This property has
been used for almost a century to prove theorems onMarkov chains
[20], as cited in Ref. [28]. Among many other developments, a more
recent version of coupling, known as “coupling from the past” [48],
has allowed for the perfect sampling of the stationary distribution
without any error, completely sidestepping the estimation ofmixing-
time scales.

The path-coupling approach [13] attempts to bound the global
coupling time through an analysis that is local in both time and
space. The two far-away initial configurations are imagined as
end points of a “path” of many configurations. Configurations
that are connected on the path are neighbors in the sample
space with respect to a given metric. For the one-dimensional
random walk, the metric may correspond to the Euclidean distance
(see the lhs of Figure 1). For Ising systems, the metric could be
the Hamming distance: neighboring configurations differ by only
one spin. Similarly, for low-density systems of N hard spheres,
neighboring configurations differ in only one sphere, which can
be arbitrarily far away in the two configurations, while the other
N− 1 spheres coincide. It is often possible to deduce upper limits
for the coupling time from the contraction rates for the individual
path links. Path coupling was foreshadowed in the physics literature
in a phenomenon termed “damage spreading” [53], which also
studied such neighboring configurations under coupled-Markov-
chain dynamics, a special type of coupling for Glauber dynamics.
In the Ising model, for the same dynamics, the damage was
found to disappear rapidly throughout the paramagnetic phase, a
phenomenon later understood through the concept of “monotone
coupling.” In the Ising spin-glass model, the damage was found to

disappear above a finite temperature in the paramagnetic phase,
even in two spatial dimensions, where the spin-glass transition
temperature is believed to vanish. Attempts to directly connect
the damage spreading with a thermodynamics process, such as a
percolation transition, were finally unsuccessful. In other words,
the connection between damage spreading, path coupling, and
thermodynamics is that “fast” path coupling implies fast coupling,
which implies fast mixing. Fast mixing, in turn, very often implies,
in a physics context, that the thermodynamic phase is trivial. This
can lead to non-trivial rigorous bounds on the extension of the
paramagnetic phase for spin models [22] or the liquid phase for
particle systems [32].

This article presents a unified description of coupling and
damage spreading, using spin-glass and hard-sphere models as
examples. In Section 2, we provide common definitions, discuss
theoretical foundations, and explore the connection between
coupling and mixing, as well as the relationship between the
aforementioned path coupling and damage spreading. We also
introduce the scaling approach to phase transitions that we later
apply to the coupling phenomenon. Section 3 is dedicated to spin
glasses. We discuss rigorous results and the generally accepted
theoretical framework for the spin-glass model introduced by
Edwards and Anderson. Additionally, we explore path coupling
and damage spreading for this model. We further apply the
scaling analysis to its mean coupling time, which suggests a phase
transition between fast and slow couplings. Section 4 addresses the
hard-sphere model, for which we can generally transpose all the
theoretical approaches of Section 3.The conclusions of our work are
presented in Section 5.

2 Theoretical foundations

In this section, we discuss some fundamentals of Markov chains
and first concentrate on the connection between the convergence
of a Markov chain expressed through its mixing time and any
of its couplings (Section 2.1). The special case of “monotone”
coupling, whichwe also address, has important consequences for the
ferromagnetic Ising model, although it does not apply to spin-glass
models or to hard spheres inmore than one dimension [49].We then
discuss damage spreading in terms of path coupling (Section 2.2).
We will discuss the intimate relationship between a global view on
coupling and a purely local view, which only surveys configurations
that differ minimally. We finally discuss in Section 2.3 the scaling
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approach to coupling that later will be shown to apply both to spin
glasses and to hard spheres.

2.1 Mixing, coupling, and monotone
coupling

Weconsider aMarkov chainwith samples xt at time t = 0,1,… in
a sample space Ω. In our case, its transitionmatrix P implements the
heat-bath algorithm [17, 26, 27] (in other words, Glauber dynamics)
for the Edwards–Anderson model or a version of the Metropolis
algorithm [43] for hard spheres. We define the element P(x,x′) as
the conditional probability to move from configuration x at time t
to configuration x′ at time t+ 1.With an initial configuration x0, the
distribution π{t=0} is a delta function centered at x0. The distribution
evolves over time as π{t+1}(x′) = ∑xπ

{t}(x)P(x,x′) for each time step t.
The approach to equilibrium is quantified by themixing time, which
is the time it takes for π{t} (which depends on the choice of x0) to
approach the stationary distribution π{t→∞} = π:

τmix (ϵ) =min
t

{{{
{{{
{

max
x0∈Ω
‖π{t} − π‖TV⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

d(t)

< ϵ
}}}
}}}
}

. (1)

Here, ‖⋯‖TV denotes the total variation distance [39], that is, one
half of the absolute difference between π{t} and π over all the sample
space, and ϵ is an arbitrary positive parameter that must be taken
smaller than 1

2
. In Equation 1, the “max” refers to the worst initial

choice for the approach of π{t} (which depends on x0) to π, and this
allows one to define the distance d(t) between π{t} and π, without
explicit reference to the starting distribution π{t=0}. The mixing
time is a non-asymptotic time scale [2] that describes the initial
approach of π{t} toward the equilibrium distribution π on a finite
distance scale ϵ. It comes with an exponential bound, valid from τmix
up to t→∞, while the asymptotic approach toward equilibrium,
described by the (absolute) inverse gap of the transition matrix, can
be much faster [39].

For a given transition matrix P of a Markov chain on a sample
space Ω, a coupling is defined as a bivariate stochastic process with a
configuration (xt,yt) at time t on the sample space Ω×Ω, such that

ℙ[xt+1 = x′ | (xt,yt) = (x,y)] = P(x,x
′) ,

ℙ[yt+1 = y
′ | (xt,yt) = (x,y)] = P(y,y

′) .

The bivariate process that updates the two copies x and y need
not be Markovian [28] at a difference of its two projections.
Non-Markovian couplings are theoretically important but have not
been used yet in applications. Markovian couplings are described
by a transition matrix Pcoup[(⋅), (⋅)] on the sample space Ω×Ω
that satisfies

∑
y′
Pcoup[(x,y), (x′,y′)] = P(x,x′) ,

∑
x′
Pcoup[(x,y), (x′,y′)] = P(y,y′) ,

so that the transitionmatrix of the coupledMarkov chain, which acts
on two copies of the sample space Ω, when projected on either copy,
returns the original transition matrix.

Couplings can take a variety of forms. The “classic” coupling
performs two statistically independent Markov chains until, by
accident, they couple, from when on they are glued together:

Pcoup[(x,y), (x′,y′)] =
{{{{
{{{{
{

P(x,x′)P(y,y′) if x ≠ y,

P(x,x′) if x = y , x′ = y′,

0 if x = y, x′ ≠ y′,

(2)

(see the lhs of Figure 1). At the coupling time τcoup, the
trajectories first meet:

τcoup =min
t
{xt = yt} .

Transition matrices, as the ones in Equation 2, are implemented
in Monte Carlo algorithms with the use of random elements, that
is, one or several random numbers for selecting a particle or a
spin, for choosing a move, and for accepting or rejecting it, etc. For
example, the move from x at time tmay produce an outcome x′ that
depends on the realization of the random element, but when this
element is specified, as ϒt(x), it becomes a function called a random
map {t} ×Ω→Ω:x→ x′ = ϕ[x,ϒt(x)].The randommap ϕ[x,ϒt(x)]
implementing this move must satisfy

ℙ{ϕ[x,ϒt (x)] = x
′} = P(x,x′) ,

as it must reproduce the transition matrix P. A random map ϕ
(also called a “grand” coupling [39]) specifies a coupling, and
it automatically implements a “gluing” operation, as two Markov
chains that meet at a position x at time t encounter the same random
element. For the classic coupling of Equation 2, the randomness at
time t is a vectorϒt = {ϒt(x): x ∈Ω} of i.i.d random variables, that is
of random numbers drawn from the same distribution (see center of
Figure 1). For the “random-share” coupling, one uses, at time t, the
same random element for all configurations x ∈Ω: ϒt = {ϒt,…,ϒt}.
In other words, all configurations are updatedwith the same random
numbers. Many other couplings exist, and it is only important that
the projection onto a single copy produces a valid Markov chain.
While every randommap corresponds to a coupling, it appears that
not all couplings (for example, the path couplings in Ref. [32]) can
be expressed as random maps.

The connection between mixing times and coupling times is as
follows ([39], corollary 5.3):

d (t) ≤ max
x0,y0∈Ω
ℙx0,y0 {τcoup > t} , (3)

where d(t) is the distance entering the definition of the mixing time
in Equation 1. From our previous discussion, it is evident that for
random walks on large graphs, the classic coupling time can be
much larger than the mixing time simply because the two Markov
chains must hit the same configuration at the same time. In contrast,
the random-share coupling time is of the same order as the mixing
time for many random walks. In the problems at the focus of this
article, we will witness different regimes, as a function of external
parameters, that are separated by a phase transition. In this context, it
is of great interest that an optimal coupling [28] realizes the coupling
at time t and at position xt of two Markov chains that have started
at time t = 0 at configurations x0 and y0 with the minimum of the
probabilities to go from x0 or from y0 to xt. The optimal coupling
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is non-Markovian and virtually impossible to construct in practice,
but it demonstrates that the bound of Equation 3 can be saturated.

A special class of couplings for which the inequality of
Equation 3 can be tight (up to logarithms) requires the concept of
monotonicity. Inmonotone couplings, there exists a partial ordering
“⪯” of configurations so that xt ⪯ yt implies xt+1 ⪯ yt+1. In terms of
the randommap, x ⪯ y implies ϕ(x,ϒ) ⪯ ϕ(y,ϒ). No partial ordering
exists for the randomwalk on the path graph with a classic coupling,
and trajectories ofMarkov chains may cross (see the lhs of Figure 1).
In contrast, for the random-share coupling of the one-dimensional
random walk (which is a grand coupling), the ordering is complete.
For a monotone grand coupling, with l the length of the longest
“chain” in the partially ordered subset, the mean coupling time
τcoup satisfies

⟨τcoup⟩ < 2τmix (1/e) (1+ log l) . (4)

With Equation 3, there are thus upper and lower bounds for the
monotone coupling time in terms of the mixing time, and the
two agree up to a logarithm. For a monotone coupling with
extremal elements, one must only survey their evolution, which will
bracket all other configurations (see the rhs of Figure 1). Full surveys
are possible in other cases [15], but the upper bound in Equation 4
is then often lost.

2.2 Path coupling and damage spreading

We can consider families of Markov chains that correspond to
physical systems with size N, which may represent the number of
sites, spins, or particles. As N increases and approaches infinity,
under suitable conditions, such as constant temperature for spin
systems or constant density for particle systems, the behavior of
these systems can be studied. We may refer to “fast” coupling if the
mean coupling time ⟨τcoup⟩ scales not slower than a power of the
system size N (in later sections, we will use an N log N scaling).

As mentioned in the introduction, we may imagine the worst-
case initial configurations x0 and y0 as the end points of a path of
configurations, with adjacent elements on the path being neighbors,
with respect to some metric. Under some conditions, it is often
possible to show that any pair of neighboring configurations come
in expectation even closer after one step of the Markov chain, and
this establishes that the distance between x1 and y1 contracts, and
similarly for later times, leading to a proof of fast coupling [13].

The path-coupling analysis that is local in sample space and in
time yet valid uniformly for any pair of neighboring configurations
yields a rigorous global fast-coupling bound. We will discuss the
limiting temperature Tpath for spin glasses and limiting density ηpath
for hard-sphere systems for which the uniform contraction allows
one to prove fast coupling. However, the path-coupling approach is
quite conservative. Numerical evidence [4] indicates fast coupling
down to a temperature Tcoup that is lower than Tpath, and up to a
density ηcoup that is higher than ηpath. However, only Tpath and ηpath
are known analytically. In the models that we study, the coupling is
either exponential (and thus “slow”) or “fast.”

The path-coupling analysis provides a justification for “damage
spreading,” which has been extensively studied for spin systems
in the physics literature, with the random-share coupling. As in

path coupling, two neighboring initial configurations x0 and y0
were chosen and were followed for very large times. The explicit
relationship between the time to couple and the time to mix is
lost, but the mean coupling time starting from neighboring initial
configurations is again exponential below Tcoup and ∼N log N
or faster above. The connection between coupling and damage
spreading was made in [4].

2.3 From rigorous to non-rigorous
approaches to coupling, scaling approach
results

The coupling time in Equation 3 that allows bounding the
mixing time follows the worst-case pair of starting configurations,
x0 and y0. For monotone coupling, these configurations are given
by the two extremal elements, but in general, this requires a survey
of the entire sample space. For the Glauber dynamics of spin
glasses with the random-share coupling, the patch algorithm [15]
rigorously surveys the |Ω| ∼ 10600 configurations on a 64× 64 lattice,
and the same algorithm also applies to hard-sphere models, where
it allows one to establish the grand-coupling time [4, 16]. It was
found, however, that a few hundred random initial configurations
contained worst-case pairs with high probability. Such a partial-
survey approximation is easy to set up in practice.

We use the partial-survey approximation to evaluate the mean
coupling time ⟨τcoup⟩ for spin-glass and hard-sphere systems.
Here, a systematic numerical approach, inspired by the finite-size
scaling analysis of second-order phase transitions, is discussed for
distinguishing between fast and slow couplings. In this context,
fixing the system size N corresponds to limiting the worst-
case pair distance between initial configurations, and the scaling
behavior is analyzed as N grows by varying N. Suppose we obtain
⟨τcoup⟩(N,β) numerically as a function of the system size N and
the model parameter β, which represents the inverse temperature
in the case of spin-glass systems. For hard-sphere systems, this
parameter may also be the density η. In the fast-coupling regime,
the size dependence of ⟨τcoup⟩ exhibits N log N behavior at high
temperatures, while in the slow-coupling regime, it increases
exponentially at low temperatures.This phenomenon can be viewed
as a dynamical phase transition, with the two behaviors changing at
a certain critical temperature βcoup.

Assuming that, as β approaches βcoup,N
∗(β) provides a diverging

scale that controls the coupling behavior, the scaling form is
postulated to hold in the vicinity of βcoup, expressed as

⟨τcoup⟩(N,β) = Nϕ f (N/N∗(β)) with N∗(β) = |βcoup − β|
−ω, (5)

whereϕ andω are positive parameters associatedwith the dynamical
transition, and f is a universal scaling function. The two behaviors
of fast and slow couplings are represented in the asymptotic form of
this scaling function f(x), with x = N|βcoup − β|

ω:

f (x) =
{
{
{

x1−ϕlog x asx→∞ for βcoup > β,

exp (ax) asx→∞ for βcoup < β,

with a positive constant a. The value of the scaling function f(0)
at β = βcoup is constant, and the parameter ϕ can be identified
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as the exponent of the power-law divergence of τcoup at βcoup. In
the case of a ferromagnetic Ising model with monotone coupling,
where the coupling time and the mixing time coincide, these
parameters characterize the universality class of the corresponding
ferromagnetic phase transition and are related to the dynamical
exponent z and the correlation length exponent ν through the
dimensionality d. For example, in the case of the mean-field
ferromagnetic Ising model, it has been rigorously shown that ϕ =
3/2 [19], which is consistent with z = 2. However, in general, the
singularity at βcoup in this coupling time is not directly associated
with an order parameter of the physical system.

3 Coupling in spin glasses

This section examines the coupling in the Edwards–Anderson
model [23] of spin glasses, focusing on the dynamical properties of
its Glauber dynamics. We first review known exact results on the
thermodynamics of the model in finite dimensions (Section 3.1),
followed by an analysis of path coupling and numerical calculations
(Section 3.2). Finally, we discuss the physical significance of
these findings (Section 3.3).

The Edwards–Anderson model describes N Ising spins σ =
{σ0,…,σN−1} with σk = ±1 on a d-dimensional hypercubic lattice
with periodic boundary conditions and even side length L. The
stationary weight π(σ) of each configuration is given through its
energy E(σ) as follows:

π (σ) = exp [−βE (σ)] E (σ) = −∑
⟨ij⟩

Jijσiσj,

where ⟨ij⟩ denotes the sum over nearest-neighbor pairs of spins.
For each spin-glass sample, the interactions Jij = Jji ∈ {−1,+1} are
quenched (that is, fixed).The ensemble average is obtained by taking
the Jij as i.i.d., with Jij = +1 or Jij = −1 with equal probability. In
our statements about mixing and coupling, this ensemble average
is understood.

We consider two versions of the heat-bath algorithm, namely,
random updates and parallel updates. For the random updates, at
each time step, starting from a configuration σ(t) = {σ0,…,σN−1},
one random spin σk among the N = Ld spins is sampled. At time
t+ 1, the configurations σ+ = {σ0,…,σk−1,+1,σk+1,…,σN−1} and
σ− = {σ0,…,σk−1,−1,σk+1,…,σN−1} are chosen with probability
π(σ+)/ [π(σ+) + π(σ−)] and π(σ−)/ [π(σ+) + π(σ−)], respectively.
These probabilities can be written as π+(hk) and 1− π+(hk), through
the local field hk = ∑j∈nbr(k)Jkjσj, with the sum over the neighboring
sites j of site k. For parallel updates, on a bipartite lattice, as the
hypercubic lattice with even L, the energy couples spins on different
sub-lattices. In one Monte Carlo cycle, all the spins are first updated
on one sublattice, followed by those on the other sublattice. For
simplicity, we count time in terms of “Monte Carlo cycles,” that is,N
updates, for the random update case also.

The classic coupling of Equation 2, applied to the heat-bath
algorithm with the random updates, randomly chooses two spins σk
and τk in order to independently update the configurations σ t and
τt, until they meet. In terms of random maps, this requires 2× 2N

random numbers at each time t, one to choose the spin, and one to
update it, which is not practical. It is evident that at all temperatures,

including infinite temperature, the coupling time is exponential in
N, as the trajectories must accidentally meet.

For the random-share coupling, the heat-bath algorithm for the
random update uses a source of randomness ϒt given by:

ϒt = {k,ϒ} = {nran(0,N− 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
lattice site k

,ran(0,1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
heat−bath

}. (6)

In short, the randomness ϒt samples the lattice site k to be updated,
as well as the random number used for the heat-bath update.
The random-maps function ϕ is then defined for a given spin
configuration σ and the randomness ϒt as follows:

ϕ(σ ,ϒt) :σk (t+ 1) =
{
{
{

1 if ϒ < π+ (hk (σ)) = [1+ e−2βhk(σ)]
−1,

−1 else ,
(7)

where the local field is hk = ∑j∈nbr(k)Jkjσj. We note that σk(t+ 1) does
not depend on σk(t).

For the parallel update on a bipartite lattice, the randomness ϒt
is given by

ϒt = {ϒ0,ϒ1,…,ϒN−1} = {ran(0,1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
site 0

,ran(0,1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
site 1

,…,ran(0,1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
siteN −1

}.

The update is performed in two half steps on the two sub-lattices,
as described earlier. The coupling corresponding to Equation 7 is
monotone only for the ferromagnetic case (Jij = +1), where larger
local fields are produced by larger neighboring spins σj.

3.1 Spin glasses: from rigorous results to
numerical simulations

From a mathematical perspective, the fact that the interactions
{Jij} are quenched random variables complicates the analysis with
respect to uniform interactions.TheSherrington–Kirkpatrickmodel
[52], in other words, the Edwards–Anderson model on a complete
graph corresponding to its infinite-dimensional limit, has been at
the forefront of theoretical developments in spin-glass research.
Thismodel undergoes a thermodynamic phase transition separating
a high-temperature paramagnetic phase from a low-temperature
spin-glass phase at an exactly known temperature. The existence
of this phase transition and the low-temperature properties were
first established using the replica method [44] and later proven
rigorously [54]. The study on the domain-wall free energy [51],
which incorporates the fluctuation effects at themean-field level, has
indicated that the lower critical dimension is 2.5, which lies between
the dimensions of 2 and 3.

Mathematically rigorous results for the Edwards–Anderson
model in finite dimensions are very few. In systems with random
interactions, local regions may exhibit low probabilities but strong
correlations, leading to anomalous singularities in the free energy
and divergences in high-temperature expansions. In a specific
random system, the existence of this type of singularity has been
mathematically proven and is known as the Griffiths singularity
[29]. This singularity emerges at the phase transition temperature
when the random interactions are assumed to be uniform. In
the Edwards–Anderson model, the Curie temperature of the
ferromagnetic Ising model (with all Jij equal to +J) constitutes this
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Griffiths temperature. Despite these difficulties, it has been proven
that, at sufficiently high temperature, the Edwards–Anderson order
parameter vanishes identically, and the spin-glass susceptibility
remains finite in short-range spin-glass models [6, 25]. This means
that the high-temperature phase is paramagnetic, although rigorous
temperature bounds seem to be absent. These temperature regions
are far from the spin-glass transition temperature TSG suggested
by the numerical simulations mentioned below. One expects that
a spin-glass phase cannot exist at temperatures higher than the
Griffiths temperature, so the Griffiths temperature likely serves as
an upper bound for TSG. However, this seems not to be a rigorous
statement.

Early numerical studies [12, 42] on domain-wall energies at
zero temperature, though limited to small system sizes, were
the first to propose the existence of a finite-temperature spin-
glass transition in three dimensions and the absence of such a
transition in two dimensions. These findings were subsequently
strengthened by exact algorithms in two dimensions and more
sophisticated heuristic algorithms [10], which allowed for larger
system sizes andmore accurate results. Following them, local Monte
Carlo methods, particularly those using the heat-bath algorithm,
played a crucial role in confirming these conclusions. These Monte
Carlo studies provided direct evidence for a finite-temperature
transition in three dimensions [7, 8, 46, 47] and the absence
of such a transition in two dimensions [7, 34]. While neither
has been proven rigorously, the fact that the ground state of the
two-dimensional Edwards–Anderson model can be computed in
a time polynomial in N[9, 55] is compatible with the hypothesis
that complex phase transitions are unlikely to occur in systems
where the ground state can be easily obtained. However, it should
be noted that certain systems, such as the random-field Ising
model [45], allow for efficient ground-state calculations yet still
exhibit complex phase transitions at finite temperatures. These
conclusions, both for three and higher dimensions as well as
for two dimensions, were based on estimates of spin-glass order
parameters. These order parameters examine the degree to which
the equilibrium running averages of a given observable, such as the
spin overlap between replicated systems, become independent of
two independent starting configurations inMonteCarlo simulations
([7], Equation 4). Another route to studying spin glasses has
consisted in analyzing the autocorrelation functions of observables
(e.g., the value of σk(t)). Early results already pointed to a difference
in the scaling behavior at late times ([46], Figure 7), [47], from
which a finite spin-glass transition temperature in the range
TSG ≃ 1.10− 1.14 was inferred. Although no consensus has been
reached on the nature of the spin-glass phase, more recent studies
have refined estimates of the spin-glass transition temperature
TSG in three dimensions, with different estimates such as TSG =
1.1019(29)[3] and TSG = 1.109(10)[30], which combine simulations
for rather small system sizes with empirical extrapolations to the
thermodynamic limit.

Damage spreading in spin-glass systems was found as a
dynamical anomaly in early numerical simulations [14, 18], which
showed that it occurs at temperatures higher than the spin-glass
transition temperature suggested by other studies. However, it
remained unclear whether the anomaly was related to the spin
glass transition itself or to the Griffiths singularity. The connection

between damage spreading and coupling, which is the focus of this
article, was recognized in Ref. [4].

3.2 From path coupling to scaling plots

In the finite-dimensional Edwards–Anderson model, we now
consider the random-share coupling for the heat-bath algorithm of
Equation 7. To establish coupling, we consider two arbitrary spin
configurations as initial states of the two Markov chains and apply
the path-coupling argument of Section 2.2. The two configurations
differ in at most N sites so that we can connect them by a path of at
most N neighboring configurations that differ by one spin only.

Let σA and σB be two such neighboring configurations (see
the lhs of Figure 2) that differ by the spin j. The common random
element {k,ϒ} of Equation 6 contains the spin k to be updated and
the random number ϒ required for the heat-bath step of Equation 7.
With probability p1→0 = 1/N, the spin j is updated.The field hj is the
same for σA and σB, and so is ϒ in Equation 7. It follows that the
distance decreases from 1 to 0 with p1→0.

With probability 2d/N, spin l, one of the 2d neighboring spins of
j, is updated.The local fields hl(σ

A) and hl(σ
B) differ by exactly 2.The

probability p1→2 ofmaking different decisions, which corresponds at
most to the red region on the rhs of Figure 2, is at most equal to

p1→2 =
2d
N
maxh  |π

+  (h) − π+  (h± 2)|

= 2d
N
 [π+  (0) − π+  (−2)] = 2d

N
 [1
2
− 1
1+ exp(4β)

] .

If p1→0 > p1→2, the expected distance between σA and σB decreases
after one step, for any choice of spin configuration and any choice
of the couplings {Jij}, which is the case at high temperature. This is
also a condition where the damage caused by a single spin difference
does not spread in the initial stage of the damage spreading under
random-share coupling. It provides the upper bound of the damage
spreading temperature. More details are discussed in Section 3.3.
The limiting temperature for the application of the path-coupling
argument is when p1→0 = p1→2, which translates into

βpath =
1
4
log( 2d

d− 1
− 1) = 1

2d
+ 1
6d3
+ 1
10d5
+⋯,

and equivalently,

Tpath =
1

βpath
= 2d− 2

3d
− 8
45d3
+⋯. (8)

For T > Tpath, we are assured of fast coupling in the
Edwards–Anderson model. The argument also holds for sublattice
parallel updates. As discussed, Tpath is obtained for any choice of
interactions and any spin configuration. Consequently, Tpath is
also the path-coupling bound for the ferromagnetic Ising model,
although we know from monotonicity that fast coupling will take
place down to the Curie temperature.

We now numerically evaluate the mean coupling time of the
finite-dimensional Edwards–Anderson model in both two and
three dimensions in view of the scaling analysis discussed in
Section 2.3. The mean coupling time of the two-dimensional model
was already evaluated under a random update rule, and it has
been demonstrated that a dynamical phase transition occurs in
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FIGURE 2
Left: Two spin configurations, σA and σB, which differ at a single site indicated by arrows. The sites connected to it are marked with circles, and the sites
connected to them are marked by squares, which represent arbitrary states, either up or down, that are common to both configurations. Right: The
probability π+(h) of the next spin state being “up”(+) in the heat-bath algorithm for a two-dimensional Ising model, as a function of the local field h,
following the form π+(h) of Equation 7. The next state becomes “up” if a random number ϒ falls within the gray region. The red region represents
conditions where two spins, which differ by a local field of 2, result in different next states.

FIGURE 3
Dendrogram of configurations in the partial-survey approximation for
the three-dimensional Edwards–Anderson model with parallel
updates at T = 3.90 ≳ Tcoup and with N0 = 512. Any starting set with
representative configurations in the two main branches (orange,
green) gives the same coupling time, explaining the success of the
partial survey.

which the size dependence of the coupling time qualitatively
changes [4], confirming earlier results [14]. The mean coupling
time results presented below are evaluated using the partial-survey
approximation with the number N0 of randomly chosen initial
conditions. The results obtained with different values of N0 are
plotted at each data point, but they are completely contained
within the size of the markers, thereby confirming that they are
independent of N0. A dendrogram representation explains the
independence of the mean coupling time ofN0 (see Figure 3).

All the figures shown below represent results averaged over
4,096 realizations of interactions, independent of N, with error

bars indicating sample fluctuations from these realizations. The first
results for the three-dimensional Edwards–Anderson model are
presented in the two panels of Figure 4, which show the estimated
mean coupling time for the partial-survey approximation under
the parallel and random updates. Although the two updates differ
in the high-temperature limit, both exhibit a N log N behavior
for system size N at sufficiently high but finite temperatures. As
the temperature decreases, the behavior of the N dependence of
the mean coupling time changes from slow to fast increase at a
certain temperature. There is a slight, yet significant, difference
in the transition temperature between the two updates, with a
lower transition temperature observed for the parallel updates. This
illustrates that coupling has no direct thermodynamic significance.

Figure 5 presents finite-size scaling plots of the mean coupling
time for the three-dimensional Edwards–Anderson model,
comparing both the parallel and random updates. The plot
demonstrates that the scaling works well when the appropriate
scaling parameters are chosen. This is consistent with the above
argument that the transition temperatures, Tcoup or βcoup, are
significantly different for the two update rules. In contrast, the
precision of the scaling exponents, ϕ and ω, is not as precise as
that of the transition temperature, and it can be considered that
these two rules yield almost the same values for these exponents. It
remains unclear whether these exponents have ameaning analogous
to the critical exponents of a second-order transition. Of particular
interest is the exponent ω, which represents the divergence of the
characteristic scale as it approaches the transition temperature. Our
results suggest that this exponent has the same value on both the
high- and low-temperature sides of the transition temperature. This
is comparable to the correlation length exponent.

An analogous scaling analysis for the two-dimensional
Edwards–Andersonmodel is shown in Figure 6.The left panel is the
analysis result of our own numerical simulations using the sublattice
parallel update, while the right panel presents the scaling analysis
based on numerical data using the random update from [4]. In both
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FIGURE 4
System-size N dependence of the mean coupling time at various inverse temperatures in the three-dimensional Edwards–Anderson model. Left:
Parallel update. Right: Random update.

FIGURE 5
Finite-size scaling plot of the mean coupling time in the three-dimensional Edwards–Anderson model. Left: Parallel updates (ω ≃ 1.7, ϕ ≃ 1.7, and
βcoup ≃ 0.2567). Right: Random updates (ω ≃ 1.84, ϕ ≃ 1.70, and βcoup ≃ 0.2543). Two dotted lines in each panel represent the expected high- and
low-temperature asymptotic forms of the scaling function.

cases, the scaling is consistent with a phase transition in the mean
coupling time. As observed in the three-dimensional model, Tcoup
depends on the underlying Markov chain, with a lower transition
temperature for the parallel update. The scaling exponents depend
on the dimensionality. However, the proper scaling variable may not
be the number of spins,N, used here, but rather the linear dimension
L. This suggests that the value of the exponents may depend on the
dimensionality through the relationship N = Ld.

3.3 Path coupling and damage spreading
for spin glasses

Table 1 summarizes the key temperatures discussed in previous
sections, including Tpath and Tcoup, as well as previously estimated
results for TSG and TGriffiths. This table demonstrates the differences
in transition temperatures for both two- and three-dimensional

Edwards–Anderson models, providing a detailed overview of the
coupling and spin-glass transitions.

On the one hand, path coupling demonstrates that above Tpath,
the uniform contraction between neighboring configurations leads
to fast coupling. Below Tpath, there are spins k (for example,
those with hk = 0) for which, at least initially, there is no such
contraction. Nevertheless, as our numerical simulations show, fast
N log N coupling also takes place in the window Tcoup < T < Tpath.
The absence of a regime change at Tpath can be illustrated, in the
language of damage spreading, by following the mean damage as a
function of time for two configurations that initially, at time t = 0, are
neighboring. AboveTpath, themean damage decreases exponentially
for all times (see inset of Figure 7), whereas for T < Tcoup, it
increases rapidly. In the windowTcoup ≲ T ≲ Tpath, themean damage
initially increases, as expected, but then turns around and again
vanishes exponentially. This turning point seems to occur when
the damage reaches a certain size, which grows as the temperature
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FIGURE 6
Finite-size scaling plot of the mean coupling time in the two-dimensional Edwards–Anderson model. Left: Parallel update (our simulations). The
obtained parameters are ω ≃ 1.4, ϕ ≃ 1.95, and βcoup ≃ 0.5915. Right: Random updates (original data of Ref. [4]). The obtained parameters are ω ≃ 1.4,
ϕ ≃ 1.95, and βcoup ≃ 0.5796. Two dotted lines in each panel represent the expected high- and low-temperature asymptotic forms of the
scaling function.

TABLE 1 Spin-glass transition and coupling temperatures for the Edwards–Anderson model in two and three dimensions. TSG is the numerical estimate
from Refs. [3, 30] in three dimensions and is expected [8, 34] to vanish in two dimensions. Tcoup is from Figures 5, 6, and TGriffiths is the Curie temperature
of the ferromagnetic Ising model. Finally, Tpath is from Equation 8.

Dimension d TSG Tcoup (parallel) Tcoup (random) TGriffiths Tpath

2 0 1.69… 1.72… 2.269… 3.640…

3 1.1019− 1.1090 3.89… 3.93… 4.51… 5.770…

approaches Tcoup. This behavior can be understood in analogy with
the characteristic diverging scale N∗(β) in the finite-size scaling
analysis of Equation 5, which suggests a picture similar to a critical
phase transition, where the threshold damage size corresponds to
the diverging scale near Tcoup.

4 Coupling in hard spheres

In this section, we examine coupling for the hard-sphere system
of statistical mechanics. For concreteness, we concentrate on the two-
dimensional hard-diskmodel, which was the object of the historically
first study using Markov chains [43]. The model has created an
unabating series ofworks inmathematics, physics, andchemistry [40].
After an introduction to the model and to the Metropolis algorithm
[35] that we will mostly consider, we review the very few known exact
results on themodel (Section 4.1) and thenmove on to the analysis of
path coupling (Section 4.2) and to numerical calculations leading up
to our scaling analysis. We finally discuss, following Ref. [32], what,
precisely, the behavior of the algorithm teaches us about the physics
of the hard-disk model (Section 4.3).

The model describes N disks of radius σ in a rectangular box
with periodic boundary conditions. For simplicity, we assume the
box to be a square of side length L. The center position of disk k is
given by xk = (xk,yk) and in a “legal” configuration, any two disks
cannot overlap (get closer than 2σ), periodic boundary conditions
being accounted for.The sample space Ω is now continuous, and the

FIGURE 7
Damage evolution over time for two states differing by a Hamming
distance of 1 as initial conditions in random updates of the
three-dimensional Edwards–Anderson model. The size is N = 643, and
the four temperatures shown are above and below both Tpath and
Tcoup. The inset shows the same plot on a semi-log scale.

statistical weight of a configuration X = {x1,…,xN} is given by

π (X) =
{
{
{

1 if X is legal

0 else
,
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where, for simplicity, we have omitted theCartesian 2N-dimensional
measure. The control parameter of this model is the density η =
Nπσ2/L2, the fraction of occupied space to the volume of the box.

We consider the “global” Metropolis algorithm: At each time
step, and starting from a configuration X(t) = {x1,…,xN}, one
random disk k among the N disks is sampled. A move of disk
k from xk to a random position inside the simulation box x′k =
[ran(0,L), ran(0,L)] is attempted. If the configuration X′, in
which x is replaced by x′ is legal, the move is accepted and
otherwise rejected:

X (t+ 1) =
{
{
{

{x1,…,xk−1,x
′
k,xk+1,…,xN} if legal

X (t) otherwise
.

Here, the new position is chosen within a square-shaped periodic
window of length L around the current position, whereas in the local
Metropolis algorithm, the window size usually has a length on the
scale of the inter-particle distance [36].

The random-share coupling for the global Metropolis algorithm
uses the following random element:

ϒt = {k,x′ = {x,y}} = {nran(1,N)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
particle index k

, {ran(0,L),ran(0,L)}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
proposed position x′=xk(t+1)

}. (9)

This coupling has been considerably refined [31, 32].

4.1 Rigorous results for the
thermodynamics of hard spheres

Rigorous results on hard-disk (and hard-sphere)models are very
few. It is known that the close-packing density η = π/(2√3) in two
dimensions is characterized by the hexagonal packing [24]. It thus
corresponds to an essentially unique configuration that has long-
range orientational and positional order. For densities below the
close-packing density, the absence of long-range positional order
was established rigorously [50] so that there is no crystal (with
long-range orientational and positional order) below close packing.
Indications for a phase transition were first found in the 1960s [1,
40]. The existence of two phase transitions and of three phases
(liquid, hexatic, and solid) as a function of density is now well
accepted [5, 40]. As in the Edwards–Anderson model (where the
temperature T replaces the inverse of the density η as a control
parameter), a rigorous proof of a transition away from close packing
is still lacking. At low finite densities, the convergence of the virial
expansion was proven early on [38], establishing the existence of the
liquid phase. It extends up to a density η = 0.70 and is followed by a
window of coexisting liquid and hexatic regions (see Table 2 below).

4.2 Path coupling and scaling plots for
hard disks

Wenow consider path coupling for hard disks, using the random
map based on Equation 9 and a Hamming metric that counts the
number of different disk positions in any two configurations. Let
XA and XB be two neighboring hard-disk configurations that differ
in the position of disk j only (see Figure 8). Simplifying a coupling
from Ref. [35], we use as the common random element {k,ϒ} the

TABLE 2 Densities in the hard-disk system (see Equation 1 of Ref. [40])
for common definitions of densities). The homogeneous liquid phase
empirically extends to a density of 0.70. The homogeneous hexatic
phase is from 0.716 to 0.72. The density range from 0.70 to 0.716
corresponds to phase separation.

Quantity Density Comment

ηLP 0.03619 Convergence of virial expansion, historic
first [38]

ηpath 1/12 = 0.083 Naive path-coupling density (Equation 12)

… 1/8 = 0.125 Improved path-coupling [35]

… 0.154 Path coupling, optimized metric [31]

… 1/6 = 0.166 Improved coupling of Ref. [32]

ηcoup 0.128 Empirical coupling density (Figure 9)

… 0.29 Empirical birth–death coupling density [4,
56]

ηliquid–hex 0.70− 0.716 Liquid–hexatic coexistence [1, 5]

ηhex−solid 0.72 Hexatic–solid phase transition [5]

ηpack π/(2√3) = 0.907 Close-packing crystal

FIGURE 8
Hard-disk configurations, differing only in disk j = 4. Under the
random-share coupling, the difference disappears if the disk j is
moved to a position outside the “halo” of other disks (see Equation 10).
It is increased to two if the move of disk k ≠ j would overlap with j in
only one of the configurations (see Equation 11). Disks of radius σ are
shown with their 2σ halos.

disk k to be updated and its new position, both identical for XA and
XB. With probability 1/N, the disk j is moved (that is, k = j). The
move is accepted in both configurations if it stays away (by 2σ) from
the “halo” of all remaining disks in both configurations. This yields
the probability of decreasing the Hamming distance from 1 to 0:

p1→0 ≥
1
N
(1− N− 1

N
4η). (10)

On the other hand, theHamming distance can be increased from
1 to 2 if a disk different from j is moved less than 2σ away (that is,
into the halo), of disk j in one configuration but not in the other.The
probability of increasing theHamming distance from one to two can
thus be bounded as:

p1→2 ≤
N− 1
N
( 8
N
η), (11)
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FIGURE 9
Left: System-size dependence of the mean coupling time at various densities in two-dimensional hard disks (data from Ref. [4]). Right: Finite-size
scaling plot of the coupling time with parameters ω ≃ 1.6, ϕ ≃ 1.75, and ηc ≃ 0.128. The two dotted lines represent the expected high- and low-density
asymptotic forms of the scaling function.

where the factor 8η/N on the rhs arises from the difference between
two “halos” of area 4πσ2 for each of the disks j in the two
configurations.

Again, for p1→0 > p1→2, the expected Hamming distance
between A and B decreases after one step, for any two neighboring
disk configurations, which can be assured for

η < ηpath =
1
12
. (13)

It follows [13] that the Hamming distance between
configurations A and B that differ in the position of only one disk
decreases in expectation at each step if the density is smaller than
1/12.

As with the Edwards–Anderson model, we now analyze the
mean coupling time of the two-dimensional hard-disk model under
the global Metropolis algorithm with the random-share coupling of
Equation 9. In this case, we reanalyze the data obtained in Ref. [4],
which we replot on the lhs of Figure 9. The analogous scaling ansatz
again provides an excellent fit of the data. The critical exponents do
not differ significantly from those found in the Edwards–Anderson
model, suggesting the possibility of some underlying universality.
However, uncovering the intricate physical picture behind this
similarity remains an open question for future research. It should
be noted that these critical exponents are not directly related to the
critical phenomena of physical systems in the conventional sense.
Rather, they characterize the “phase transition” in computational
algorithms associated with the coupling of Markov chains. From an
algorithmic perspective, these exponents are of significant interest
as they provide insight into the inherent challenges in achieving
fast coupling.

4.3 Advanced hard-disk couplings, physical
implications

The coupling approach to the hard-disk system has been
intensely studied in recent years, and the random-share coupling

of Equation 9 only provides the simplest possible choice. A number
of refined couplings have been proposed. The one proposed in Ref.
[35] moves disks differently for the configuration XA and XB and
reaches a path-coupling density of 1/8 (see Table 2 for an overview).
Building on this coupling, optimizing the metric reaches a limiting
density of 0.154, which was later improved for a different algorithm
to 1/6. In addition to these rigorous bounds, numerical evidence
for the birth–death algorithm [56] points to a coupling density of
∼0.3 [4]. These densities, and especially the rigorously proven ones,
are still quite far from the “empirical” transition density η ∼ 0.70
of the liquid phase, which was only in recent years understood to
be toward a hexatic, and which bounds on a region η ∈ [0.7,0.76]
without a homogeneous solution, and then giving rise to a mixture
of the hexatic and the liquid.

The crucial connection between fast coupling (thus, fast mixing)
and physical orderingwasmade for the hard-sphere case in Ref. [32],
where it was proven that O(N log N) random steps of the global
Metropolis algorithm are insufficient to construct configurations
with any kind of long-range order. Fast mixing of a single-particle
algorithm, even a non-local one, thus implies that the resulting
configuration (which is practically in equilibrium) has exponential
spatial correlation functions.This, to all intents and purposes, shows
the extension of the liquid phase. We believe that it does not,
however, prove the convergence of the virial expansion [38] because
of the possibility of a liquid–liquid phase transition, which cannot
be captured in a mixing-time argument.

5 Conclusion

In this article, we have discussed the computational aspects of
two of the most challenging models in statistical physics, namely,
the Edwards–Anderson model and the hard-disk model. In both
these models, there are almost no rigorous results about the phase
transitions in non-trivial physical dimensions, that is, above two
dimensions for the spin model and above one dimension (away
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from close packing) for the particle system. Further connections
are that the computational algorithms are mostly derivatives of
the local-move heat-bath or Metropolis algorithm in both cases.
Cluster algorithms have been developed for both systems [21, 34],
but they have not really been useful in the physically interesting
dimensions. Finally, the two models are united by the fact that
they are truly challenging in their physical interpretation: For
the Edwards–Anderson model, for a long time, even empirically,
there was only a very rough agreed-on value of the transition
temperature from the high-temperature paramagnetic phase, which
was considerably sharpened in recent times only (see Table 1). No
agreement has been reached on the nature of the low-temperature
phase. For the hard-disk model, the now agreed-on transition
scenario [5] was proposed only a decade ago, after more than
50 years of intense simulation. In that model, even the simplest
algorithm, the local Metropolis algorithm, faces extreme challenges,
as its irreducibility and ergodicity cannot be guaranteed in the
constant-volume ensemble [11, 33].

In this context, the coupling approach provides an interesting
yet incomplete view of the high-temperature/low-density phases.
In the Edwards–Anderson model, one can easily establish the
existence of a path-coupling temperature (see Equation 8), which
we think provides a rigorous upper bound for the extension of
the paramagnetic phase. For the hard-disk model, the program has
been followed through completely, and the coupling result is the
currently best lower bound for the extension of the liquid phase. It is
fascinating how a result on the speed of a Monte Carlo algorithm
can be derived from the behavior of two Markov chains (that is,
from coupling) and can then be turned into a statement on the phase
behavior. This fascination was sensed early on in the literature on
damage spreading that, as we discussed, naturally connects to the
path-coupling approach.

Damage spreading has created an extensive literature in
physics, but, as we pointed out, that literature has concentrated
on the specific random-share protocol, which gives the very low
bounding density of Equation 12 when translated to the hard-
disk context. In particle systems, there has been much progress
from improved couplings and optimized metrics (see Table 2),
which we hope can be ported to spin glasses and, more
generally, to disordered systems. It would be interesting to see
whether our scaling approach can be applied to these more
advanced couplings.
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