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Nonlinear dynamic
characteristics of wind power
concentric planetary-face gear
system with elastic lubrication
and friction considering thermal
effect under random wind load
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Introduction: Planetary-face gears combine the advantages of both planetary
and face gears, offering potential value for wind power applications. During the
gear meshing process, a large amount of heat is generated, and tooth wear also
occurs, which affects transmission performance.

Methods: Analyzing multiple factors such as lubrication performance and
thermal effects of meshing pairs plays a crucial role in improving the overall
lifespan of transmission systems. This study developed a nonlinear dynamic
model of a wind power planetary-face gear system, considering factors
like random wind load, tooth surface friction, temperature rise, tooth side
clearance, and elastic lubrication. Nonlinear methods such as bifurcation
diagram, maximum Lyapunov exponent diagram, and time-frequency diagram
were used to analyze the effects of wind turbine radius, average wind load,
temperature rise, and lubricant viscosity on the dynamic response of the gear
transmission system under random wind loads.

Results: The results show that selecting an appropriate wind turbine radius for
different wind loads is essential to enhance system stability. Higher lubricant
viscosity can suppress chaotic phenomena in gear systems. For a well lubricated
gear system, tooth surface temperature rise is a key factor affecting the dynamic
characteristics of the system.

Discussion: This article aims to provide valuable insights into improving the
operational stability of the wind turbine planetary gear system.

KEYWORDS

wind power planetary-face gear system, temperature rise, lubricant viscosity, random
wind load, maximum lyapunov exponent diagram

1 Introduction

As the worldwide demand for energy steadily rises alongside heightened environmental
consciousness, the significance of harnessing clean and renewable energy sources has
grown significantly more paramount. Wind energy, being a boundless green energy
source, has garnered substantial attention and developed rapidly in recent years.
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The wind turbine gear transmission system, an essential component
of wind turbines, is designed to transmit torque and adjust
speed. Most current wind power gear transmission systems consist
of a first-stage planetary gear and a first-stage cylindrical gear,
featuring a single input from the wind turbine and a single
output to the generator. This article proposes a single input dual
output transmission structure using planetary gears and face gears.
This configuration links multiple generators, allowing them to
produce electricity simultaneously and thereby improving wind
energy utilization efficiency. Planetary gears provide advantages
like a compact design, efficient transmission, smooth performance,
and robust shock resistance. Face gears possess the benefits of
high load-bearing capacity and minimal vibration noise. The
dynamic properties of gear transmission systems can influence the
stability and reliability of gear mechanisms. Hence, investigating the
nonlinear dynamic characteristics of planetary-face gear systems in
wind turbines is valuable.

Many researchers have delved into the dynamic characteristics
of gears. Kahraman [1–3] developed models for single-degree-
of-freedom gear transmission systems and three-degree-of-
freedom gear-bearing systems. They explored the impact of time-
varying mesh stiffness and bearing clearance on the vibration
characteristics of gear transmission systems; A dynamic model
of gear transmission system translation torsion was established
by Xiang [4, 5], bifurcation diagrams and maximum Lyapunov
exponent diagrams were simulated to investigate how changes
in excitation frequency and support stiffness affect the vibration
response of gear transmission systems; Li et al. [6] studied the
effects of excitation frequency and meshing damping ratio on
the bifurcation and chaos characteristics of two-stage planetary
gear transmission systems; Mo [7] et al. constructed a nonlinear
dynamic model for a herringbone gear transmission system. They
investigated how torque, mesh stiffness, and mesh damping affect
the nonlinear dynamic characteristics of gears. Their findings
suggested that increasing mesh damping and mesh stiffness tends
to enhance the stability of the gear system; Hou [8] et al. devised
a nonlinear model for the GTF planetary gear rotor system. They
examined the vibration response between the gear and rotor to
explore the model’s nonlinear behavior. Their findings suggested
that increasing damping could potentially cause the system to enter
a chaotic state; Many studies in the literature have investigated
the effects of meshing stiffness, tooth surface friction, and tooth
side clearance. They have developed nonlinear dynamic models
for fixed-axis spur planetary gear rotor bearing systems used in
gearbox transmissions for turbofan engines [9–11]; Most of the
above studies use system bifurcations and chaos to analyze it,
and bifurcations and chaos are also widely used in other fields.
Min [12] et al. conducted the first study on coexistence phenomena
in power systems with different fourth-order time delays. They
analyzed the characteristics of time-delay systems using bifurcation
diagrams, phase diagrams, etc., under the conditions of mechanical
power, generator damping factor, exciter gain, and time delay
variations; The dynamic behavior of Shinriki circuit modified with
hybrid diodes was studied, and multiple coexisting oscillations
and anti-monotonic evolution were discovered by changing circuit
parameters. The bifurcation tree and orbital stability of coexisting
periodic oscillations were analyzed in depth using semi analytical
methods, and the correctness of the analysis was verified through

FPGA. This study contributes to the improvement of nonlinear
circuits [13]; Liu [14] et al. analyzed the lateral and torsional
response characteristics of the gear transmission system by varying
the gear speed, backlash, and eccentricity values; Chen [15] et al.
developed a multi-degree-of-freedom nonlinear dynamic model
for a gear transmission system. The model considered tooth side
clearance, friction, and time-varying meshing stiffness; A dynamic
model of helicopter face gear planetary gear torsional translation
vibration was established byMo [16] et al, taking into account time-
varyingmesh stiffness, backlash, gear eccentricity error, and friction.
The primary resonance characteristics of the system were analyzed,
yet this structure has not been applied in the field of wind power, and
the coupled effects of multiple factors were not taken into account.

Furthermore, numerous scholars have investigated the
temperature increase caused by gear friction and formulated
dynamic models that incorporate nonlinear factors like thermal
deformation of the gears [17–20]; Li [21] et al. studied the
temperature distribution in involute gears and determined the
amount of thermal deformation and changes in tooth side clearance
resulting from thermal effects; Gears generate friction during
the meshing process, and it is generally assumed that time-
varying meshing stiffness and sliding friction result in a uniform
distribution of load between the teeth of the gears [22–24];
Kolivand [25] et al. discovered that the rotation of gears alters
the thickness of the lubricating oil film, leading to changes in the
friction force on the tooth surfaces; Wang [26] et al. developed an
electromechanical planetary gear system and analyzed the impact
of tooth surface temperature rise on the nonlinear dynamics of
the system. They considered factors such as time-varying mesh
stiffness, mesh damping, tooth side clearance, and motor speed
in their analysis; Tooth friction is increasingly being incorporated
into gear models. He [27] et al. established a gear transmission
system and extensively considered sliding friction and time-varying
stiffness, taking into account gear tooth modification conditions.
They conducted detailed research on the impact of friction on the
forces along the vertical meshing line direction. All the analyses
discussed above were conducted using theoretical gear models and
did not explicitly specify practical applications.

The wind turbine gearbox is a critical component of wind
turbines, and numerous scholars have conducted extensive
research on its various aspects; Zhao [28] et al. studied how
dynamic characteristics of wind turbine gear transmission systems
are influenced by factors like time-varying mesh stiffness and
transmission errors; Chen [29] et al. analyzed how wind speed and
tooth side clearance affect the vibration characteristics of wind
turbine gear transmission systems under varying environmental
wind speeds; In addition, Qin [30] et al. developed a dynamic
model of wind power gear transmission systems and analyzed their
dynamic characteristics under sinusoidal wind speeds; Zhu [31]
et al. developed a dynamicmodel for amulti-stage gear transmission
system in wind turbine gearboxes. They integrated time-varying
meshing stiffness, tooth side clearance, and errors, and analyzed
its dynamic characteristics; Liu [32] et al. analyzed a model of
high-speed gear transmission systems for wind turbines. They
investigated the effects of time-varying wind loads, electromagnetic
torque disturbances, eccentricity, backlash, and friction on the
dynamic response of these systems under random conditions. The
aforementioned research analyzed the effects of factors like wind
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speed variations on the dynamic characteristics of wind power
gear transmission systems. However, it did not comprehensively
address the influences of lubrication, tooth surface friction, and
temperature on the nonlinear dynamics of gear transmission
systems. Overall, current research primarily concentrates on single-
stage gear meshing pairs with multi-factor coupling and planetary
gear systems with limited factor coupling. There remains a relative
scarcity of research on the nonlinear dynamics of composite gear
transmission systems under the collective influence of multiple
factors, particularly in the context of wind power planetary-face
gear transmission systems as discussed in this article.

This article integrates the impact of temperature on lubricating
oil viscosity and tooth side clearance, along with the effect
of lubrication on tooth surface friction. A nonlinear dynamic
model of a wind power planetary-face gear system is developed,
considering factors such as random wind speed, tooth surface
friction, elastic lubrication, temperature, time-varying meshing
stiffness, transmission error, meshing damping, and tooth side
clearance. Under random wind loads, the dynamic response of gear
transmission systems was analyzed using nonlinear methods such
as time history plots, 3D phases diagrams, time-frequency plots,
phase trajectory plots, FFT spectrograms, Poincaré cross-sections,
bifurcation plots, and maximum Lyapunov exponent plots. Factors
including wind turbine radius, average wind speed, temperature
rise, and lubricant viscosity were considered. This analysis provides
theoretical guidance for the structural design of wind power
gear transmission systems and the selection of optimal operating
conditions.

2 Wind speed model

2.1 Basic wind

Fundamental winds are variations in the average wind speed in
a wind field that persist throughout the operation of a wind turbine
and significantly affect the transmission of rated power to the system.
Simulation of the base wind model does not require consideration
of the actual distribution of wind speeds. Typically, the fundamental
wind speed is considered to be the average wind speed acting on
the wind turbine and can be defined as a specific constant value
as shown in Equation 1:

V = a(a isaconstant) (1)

2.2 Random wind

Random wind refers to the fluctuations in wind speed, denoted
by the random wind speed Vs, which can be described using a
mathematical model [33] as shown in Equation 2:

Vs = VsmaxA(−1,1)cos(ωv +ϕv) (2)

In the formula: Vsmax represents the maximum value of random
wind, while A(−1,1) is a uniformly distributed random number
ranging from −1 to 1; ωv denotes the average amplitude of
wind speed fluctuations, typically ranging between 0.5π and 2π;

ϕv is a uniformly distributed random quantity ranging from 0
to 2π. Therefore, the comprehensive wind speed model can be
represented as the superposition of basic wind and random wind
as shown in Equation 3:

V = Vs +V = VsmaxA(−1,1)cos(ωv +ϕv) + a (3)

The input and output torque of the wind turbine gear
transmission system can be determined using aerodynamic
principles and the Bates formula [32] as shown in Equations 4, 5:

Tin =
1
2
ρairπry

2V3Cp/ωy (4)

Tout = Tin/Zsim (5)

In the formula: Zsim represents the total transmission ratio of the
system; ρair denotes the air density; ry stands for the radius of the
wind turbine blade; V signifies the comprehensive wind speed, and
Cp indicates the wind energy utilization coefficient.

3 Dynamic model of wind power
planetary-face gear transmission
system

Wind turbine gearing systems typically use planetary gears
or a combination of planetary gears and cylindrical spur gears,
featuring a two-stage speed increase. The wind power gearbox
system described in this article utilizes planetary gears in the first
stage and face gear transmission in the second stage. This structure
utilizes the benefits of planetary and face gears to achieve secondary
speed enhancement. The advantages of the planetary gear-face gear
system over the planetary gear system are shown in Table 1.

Figure 1A illustrates a simplified three-dimensional schematic
of a planetary-face gearing system, while Figure 1B shows a
transmission sketch of the system.The wind turbine is connected to
the planetary carrier c through a shaft, thereby driving the planetary
carrier to rotate. In the primary transmission system, planetary
gears and carriers are mounted together. The planetary carrier’s
rotation drives planetary gear pi, which transfers torque to sun gear s.
Torque is then transmitted via an intermediate shaft to face gearm1,
and further to spur gear zi through their meshing pairs, ultimately
powering the generator.

3.1 Tooth side clearance under
temperature influence

Tooth side clearance in gear manufacturing and assembly
causes the meshing trajectory to change during operation. Repeated
load effects impact meshing accuracy and gear lifespan. Thus,
tooth side clearance is crucial in analyzing the nonlinear dynamic
characteristics of gears.

Assuming that the expression for the relative displacement of
gears along the meshing line is as shown in Equation 6:

xav = r1θ1 + r2θ2 + e(t) (6)
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TABLE 1 Comparison table between planetary-face gear and planetary gear.

Comparison dimension Planetary gear Planetary-face gear

Transmission form It consists of a sun wheel, a planetary wheel and a
toothed ring, and the planetary wheel rotates around

the sun wheel to drive

In addition to the planetary wheels, face gears have
been added to transmit power in different directions,

suitable for angular or eccentric drives

Compactness The gears are laid out on the same plane and are
suitable for applications where radial space is limited

The space utilization is more flexible and the structure
is more compact, which is suitable for

multi-dimensional space transmission in complex
mechanical systems

Load distribution and efficiency Multiple planetary wheels share the load equally,
providing better load equalization, but with higher

friction losses

Low friction losses, more reliable system at high loads,
higher transmission efficiency

Ratio range Relatively fixed ratio design More flexible transmission ratios

Degrees of freedom Suitable for single-direction power transmission with
limited design freedom

Allow different axial power transmission, suitable for
multi-degree-of-freedom movement requirements

FIGURE 1
Wind power planetary-face gear system (A) 3D diagram (B) System transmission diagram.

In the formula: r1 is the base circle radius of the driving wheel;
r2 is the base circle radius of the driven wheel; θ1 is the rotation
angle of the driving wheel; θ2 is the rotation angle of the driven
wheel. As illustrated in Figure 2, assuming bn represents the initial
half tooth side clearance of the gear, the tooth side clearance function
is [34] shown in Equation 7:

f(δ) =
{{{{
{{{{
{

δ− bn δ > bn
0 | δ| ≤ bn
δ+ bn δ < −bn

(7)

During gear operation, factors like tooth friction can lead to
power loss within the gear system. In a stable working state, well-
lubricated gears can assume a uniform temperature field. ΔT is
the change in temperature rise, and the meshing angle, indexing
radius, and tooth thickness after temperature change are shown in
Equations 8–12:

cos α′ = a0 cos α/(d1 + d2 +Δd1 +Δd2) (8)

r′1 = r1 cos α/ cos α
′ (9)

r′2 = r2 cos α/ cos α
′ (10)

S′1 = S1
r′1
r1
− 2r′1(invα

′ − invα) (11)

S′2 = S2
r′2
r2
− 2r′2(invα

′ − invα) (12)

In the formula: d1 and d2 are the diameters of the indexing
circles for the driving wheel and the driven wheel, respectively;
temperature influences the indexing circle modifications of the two
gears, designated as Δd1 and Δd2, respectively; a0 is the initial
center distance; r1 and r2 denote the pitch radii of the driving wheel
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FIGURE 2
Schematic diagram of tooth side clearance.

and the driven wheel, respectively; α is the meshing angle; tooth
thickness of the driving wheel and driven wheel are denoted by S1
and S2, respectively. The amount of change in gear backlash caused
by temperature changes is shown in Equation 13:

Δba = ΔTλ1 S
′
1 +ΔTλ2 S

′
c

= ΔTλ1  [
S1
r1
− 2(invα′ − invα)] ⋅ r1 

cos α
cos α′

−ΔTλ2  [
S2
r2
− 2(invα′ − invα)] ⋅ r2 

cos α
cos α′

(13)

In the formula: thermal expansion coefficients of the two gears
are designated as μ1 and μ2, respectively. This article believes that
all gear materials are consistent. Therefore, λ = λ1 = λ2, the change
in the gear backlash caused by the change in the indexing circle
is shown in Equation 14:

Δbb = (
Δd1
2
+
Δd2
2
) sin α = ΔTλa0 sin α = ΔTλm(z1 + z2) sin α/2

(14)

In summary, the change inclearance causedby temperature ingears
is Δb = Δba +Δbb, and the temperature change causes the tooth side
clearance to become b′ = bn −Δb. The tooth side clearance function
under the influence of temperature is shown in Equation 15:

f(δ) =
{{{{
{{{{
{

δ− b′ δ > b′

0 | δ| ≤ b′

δ+ b′ δ < −b′
(15)

3.2 Lubricating oil viscosity under
temperature influence

In the absence of lubricating oil during gear operation, teeth
come in direct contact, leading to heightened friction and wear.
Introducing lubricating oil creates a film between contact surfaces,
preventing direct gear contact and significantly reducing wear.

Temperature fluctuations affect the lubrication efficacy of oil by
changing its viscosity, a key parameter of oil performance. According
to Sutherland equation, the expression between lubricant viscosity
and temperature change can be derived [35] shown in Equation 16:

η(ΔT) = η0e
[c1( 1
ΔT+273
− 1

293
)+c2( 1

ΔT+273
− 1

293
)2] (16)

In the formula: η(ΔT) is the viscosity of the lubricating oil
(under temperature changes); η0 is the viscosity of the lubricating
oil at 20°C.

3.3 Lubricating friction arm and friction
torque

A simplified diagram in Figure 3A illustrates the engagement
between two gears. Point cmarks their meshing interface, where the
velocity can be mathematically expressed as Equation 17:

Vo1 = ω1L(o1c)

Vo2 = ω2L(o2c)
(17)

The sliding speed of meshing point c is:

Vc = Vo1 sin ψ1 +Vo2 sin ψ2 (18)

Among them, ψ1 = ω1t+ θ1,ψ2 = ω2t+ θ2,ω1 signifies the angular
displacementof thedrivingwheel,whereasω2 corresponds to thatof the
driven wheel, respectively; θ1 and θ2 denote the minute displacements
experienced by the driving wheel and the driven wheel, respectively.
Observingthegeometricrelationshipsdepicted inthefigure,candeduce
the friction arms associated with the two gears:

L(Ac) = L(o1c) sin ψ1

L(Bc) = L(o2c) sin ψ2

(19)

Utilizing the comprehensive Equations 18, 19, the sliding velocity
at the meshing point c can be using mathematical Equation 20:

Vc = ω1L(Ac) +ω2L(Bc) (20)

The friction force arm can be written as shown in Equation 21:

L(Ac) = (r1 + r2) tan α−√(r1)2 + (r2)2 + r1ω1t

L(Bc) = √(r1)2 + (r2)2 − r1ω1t
(21)

The frictional force and torque experienced by the two gears can
be calculated as follows, taking into account the relevant factors and
Equations 22, 23:

F f = μγcFn (22)

T f1 = F fL(Ac),T f2 = F fL(Bc) (23)

In the formula: μ is the friction coefficient; Fn gear meshing
force; γc is the directional coefficient. Equation 24 is the
directional coefficient function.
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FIGURE 3
(A) Simplified meshing diagram (B) Instantaneous curvature radius of meshing.

FIGURE 4
Gear pair mesh stiffness curve (A)sun Gear planetary Gear mesh pair (B)sun Gear inner ring Gear mesh pair (C)spur Gear face Gear mesh pair.

γc =
{{{{
{{{{
{

1 Vc > o

0 Vc = o

−1 Vc < 0

(24)

The friction coefficient on gear surfaces varies during meshing
due to the presence of lubricating oil. Figure 3B depicts the
instantaneous curvature radius of a pair of meshing gears.
Consequently, the friction coefficient of the tooth surface can
be determined based on this geometric characteristic and the
properties of the lubricating oil present during the meshing process
[36]; as shown in Equation 25:

μ =
0.872baL ln(η\/η0)τη

Fi
+ 1.74

τη2baL
Fi

ln [ 1.2
τηhη
(

2kηη0
1+ 9.6ζ
)]

1/2

(25)

Among them:

ζ =
4kl

πhc/(1/R1 + 1/R2)
[

4Fn (1− ν
2)

Ekc (1/R1 + 1/R2)ρc2baL[R1ω1 (sin α+ 2l/ra) +R2ω2 (sin α+ 2l/rb)]
]
1/2

(26)

In the formula: τη represents the shear stress experienced by the
lubricating oil; L is the width of the action line on the tooth surface;
ba is the contact width of the tooth surface; R1 and R2 represent the
curvature radii of the driving wheel and the driven wheel, respectively;
kc and kη signify the thermal conductivity of the gear material and the
lubricating oil, respectively; hη is the thickness of the contact oil film; E
is the elastic modulus; ν is the Poisson’s ratio; The density and specific
heat capacity of the gearmaterial are designated by ρ and c, respectively.

3.4 Time-varying mesh stiffness and mesh
damping

During meshing, gears can be simplified as a cantilever beam
consisting of a combination of trapezoidal and rectangular shapes.
Thus, when shifting themeshing point from the gear crest to its root,
the meshing stiffness undergoes periodic variations:

k = FN/Δδ (27)
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In the formula: FN is the meshing force; Δδ represents elastic
deformation. Expanding Equation 27 into a Fourier series yields the
time-domain expression as follows Equation 28:

k(t) = km +
∞

∑
i=1
[k2i cos(nωit)+k2i+1 cos(nωit)] (28)

In the formula: km is the average meshing stiffness; k2i and k2i+1
are Fourier coefficients, respectively; ωi is the meshing frequency.
Due to the small difference in high-order meshing errors, only the
first order is considered as shown in Equation 29:

k(t) = km + kA cos(ωit+ϕ) (29)

In the formula: kA represents the amplitude of the variation in
meshing stiffness, while ϕ denotes the initial phase angle. Figure 4
shows the meshing stiffness curves of each meshing pair in the
gear system.

The meshing damping of gear pairs can be obtained through
empirical formulas as shown in Equation 30:

cm = 2ξ√
k

1/M1 + 1/M2
(30)

In the formula: Respectively, M1 and M2 signify the equivalent
masses of the main and driven wheels; ξ is the meshing damping
ratio; k is the meshing stiffness of two gears. During gear meshing,
oil film damping arises between the teeth due to the lubrication
provided by the oil present. The coupling of gear meshing damping
cm and oil film damping cη results in the formation of an equivalent
damping, denoted as c0. Its expression is Equation 31:

c0 =
cηcm
(cη + cm)

(31)

The Reynolds equation can be expressed as:

∂
∂ξ
(hη3

∂p
∂ξ
) = 12η

∂hη
∂t

(32)

Solve Equation 32 to derive the expression Equation 33 for the
oil film damping force:

F0 = c0
∂hη
∂t
=
−8a3ηl
hη

3

∂hη
∂t

(33)

In the formula: c0 = − 8a3ηl/hη3; a = √8FNR(1− ν2)/BEπ; l
represents the oil film thickness along the contact surface; ∂hη/∂t is
the change in lubricating oil;R denotes the comprehensive curvature
radius of the gear; B is the tooth width.

3.5 Meshing error

Therepresentation ofmeshing error can be achieved through the
utilization of Fourier series as shown in Equation 34:

e(t) = em +
∞

∑
i=1
[e2i cos(nωit) + e2i+1 cos(nωit)] (34)

In the formula: em signifies themean value ofmeshing error.Due
to the small difference in the order of high-order meshing errors,

FIGURE 5
Dynamic model of planetary-face gear coupling in multi generator
wind power.

only the first order needs to be considered, em = 0, Simplify the
meshing error as follows Equation 35:

e(t) = ea cos(ωit+φ0) (35)

In the formula: ea is the amplitude of the error.

3.6 Dynamic equations

Create a simplified pure torsional model for a wind power
planetary-face gear system utilizing the lumped mass approach,
depicted in Figure 5, with the following assumptions: All
gears are installed as standard; Assuming rigid body behavior
for all gears, the interacting pair is modeled as a spring-
damping system for simplicity; The friction and lubrication
properties are considered uniform across all system components;
Lateral vibration displacement of gears is disregarded in
the model; Without considering the stiffness of the shaft,
the sun gear s and the face gear m1 are considered as one
component, therefore the angular acceleration of the two gears is
considered equal.

The degrees of freedom of the planetary-facing gear system
were first determined, and for the system studied in this paper,
only the torsional direction displacement was investigated. Each
gear assembly is reduced to a centralized mass point with
the mass distribution concentrated by the center of mass. For
the rotational degrees of freedom, the gears are considered as
equivalent rotational inertia in order to simplify to a mass-spring-
damping system with single or multiple degrees of freedom,
and secondly, each gear meshing pair is considered as a spring
and damping unit. The springs represent the effect of the gears
on the meshing stiffness, while the damping represents the
energy dissipation characteristics of the system, and finally the
dynamical equations are developed according to Newton’s second
method. In this paper, only the torsional degrees of freedom are
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considered. The elastic deformation of each gear along the meshing
line direction is:

δspi = rsθs + rpiθpi −
rpi + rs
rc

rcθc − espi(t) (36)

δrpi = −rpiθpi −
rr − rpi
rc

rcθc − espi(t) (37)

δm1zi = rziθzi − rm1θm1 − em1zi(t) (38)

δm2zi = rziθzi − rm2θm2 − em2zi(t) (39)

Establish system dynamics equations using the Newton
Euler method:

{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{
{

Ic  ̈θc +
n
∑
i=1
[krpi  f (δrpi) + crpi δ̇rpi] rc +

n
∑
i=1
[kspi  f (δspi) + cspi δ̇spi] rc = Tin

Ipi  ̈θpi + [krpi  f (δrpi) + crpi δ̇rpi] rpi − [kspi  f (δspi) + cspi δ̇spi] 

rpi = −T frpi −T fspiIr  ̈θr +
n
∑
i=1
[krpi  f (δrpi) + crpi δ̇rpi] rr =

n
∑
i=1
−T frpi

Is  ̈θs −
n
∑
i=1
[kspi  f (δspi) + cspi δ̇spi] rs =

n
∑
i=1
−T fspi

Im1  ̈θm1 +
n
∑
i=1
[kzim1  f (δzim1) + czim1 δ̇zim1] rm1 = −

m
∑
i=1

T fzim1

Izi  ̈θzi − [kzim1  f (δzim1) + czim1 δ̇zim1] rzi + [kzim2  f (δzim2) + czim2 δ̇zim2] 

rzi = −
m
∑
i=1

T fzim1−
m
∑
i=1

T fzim2 −Tout

Im2  ̈θm2 −
n
∑
i=1
[kzim2  f (δzim2) + czim2 δ̇zim2] rm2 = −

m
∑
i=1

T fzim2 −Tout′

(40)

In the formula: Ic. Ipi, Ir, Im1, Im2 and Izi are the moment of
inertia of the planetary carrier, planetary gear, inner ring gear, face
gear m1, face gear m2, and spur gear, respectively; krpi, kspi, kzim1
and kzim2 are the meshing stiffness of the inner ring gear planetary
gear, sun gear planetary gear, spur gear and face gear m1, and spur
gear and face gear m2, respectively; crpi, cspi, czim1, czim2 refers to
the meshing damping of inner ring gear planetary gear, sun gear
planetary gear, spur gear and face gear m1, and spur gear and face
gear m2; T frpi, T fspi, T fzim1 and T fzim2 are the friction torques of the
meshing pairs of inner ring gear planetary gear, sun gear planetary
gear, spur gear and face gear m1, and spur gear and face gear m2,
respectively; Tin is the input torque of the system; Tout and Tout

′ are
both the output torque of the system; rc, rpi, rr, rs, rm1 and rm2 are
the base circle radii of planetary carrier, planetary gear, inner ring
gear, sun gear, face gearm1, and face gearm2, respectively; n andm
represent the number of planetary gears and spur gears, respectively.
By combining Equations 36–40, we can obtain:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

̈δspi =
n

∑
i=1
[kspi  f (δspi) + cspi δ̇spi]

rs
Is
−

n

∑
i=1

T fspi

Is
− [krpi  f (δrpi) + crpi δ̇rpi] 

rpi
Ipi
+ [kspi  f (δspi) + cspi δ̇spi] 

rpi
Ipi
−
T frpi

Ipi
−
T fspi

Ipi
−
Tin

Ic

+
n

∑
i=1
[krpi  f (δrpi) + crpi δ̇rpi] 

rc
Ic
−

n

∑
i=1
[kspi  f (δspi) + cspi δ̇spi] 

rc
Ic

− ̈espi  (t) ̈δrpi = [krpi  f (δrpi) + crpi δ̇rpi] 
rpi
Ipi
− [kspi  f (δspi) + cspi δ̇spi]


rpi
Ipi
+
T frpi

Ipi
+
T fspi

Ipi
−
Tin

Ic
+

n

∑
i=1
[krpi  f (δrpi) + crpi δ̇rpi] 

rc
Ic
−

n

∑
i=1
[kspi  f (δspi) + cspi δ̇spi] 

rc
Ic

− ̈espi  (t) ̈δm1zi = [kzim1  f (δzim1) + czim1 δ̇zim1] 
rzi
Izi
− [kzim2  f (δzim2) + czim2 δ̇zim2] 

rzi
Izi

−
m

∑
i=1

T fzim1

Izi
−

m

∑
i=1

T fzim2

Izi
−
Tout

Izi
+

n

∑
i=1
[kzim1  f (δzim1) + czim1 δ̇zim1] 

rm1

Im1

+
m

∑
i=1

T fzim1

Im1
− ̈em1zi  (t) ̈δm2zi = [kzim1  f (δzim1) + czim1 δ̇zim1] 

rzi
Izi

−[kzim2  f (δzim2) + czim2 δ̇zim2] 
rzi
Izi
−

m

∑
i=1

T fzim1

Izi
−

m

∑
i=1

T fzim2

Izi
−
Tout

Izi

−
n

∑
i=1
[kzim2  f (δzim2) + czim2 δ̇zim2] 

rm2

Im2
+

m

∑
i=1

T fzim2

Im2
+
Tout
′

Im2
− ̈em2zi  (t)

(41)

In order to facilitate numerical solutions and improve the
stability of the calculation process, it is necessary to dimensionless
the dynamic equations. Define dimensionless time as t = ωdt,
Where ωd is the nominal angular frequency of the system
when dimensionless, ωd1 = [kspi(ms +mpi)/(msmpi)]

1/2, ωd2 =
[kmzi(mm +mzi)/(mmmzi)]

1/2, and introduce displacement scale
bc, The non-dimensional displacement, non-dimensional velocity,
non-dimensional acceleration, and non-dimensional frequency
of the system can be expressed as: X = δ/bc, Ẋ = δ̇/bcωd, Ẍ =
̈δ/bcωd

2, Δ = ω/ωd. By nondimensionalizing Equation 41, we
can obtain Equations 42:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

Ẍspi = −
1

ω2
d1bcrs

n

∑
i=1

T fspi +
n

∑
i=1

[

[

kspi f (δspi)

ω2
d1bc
+
cspiδ̇spi
ωd1bc
]

]
rs −

Tin

ω2
d1bcrc
−

T frpi

ω2
d1bcrpi

−
T fspi

ω2
d1bcrpi
+[

[

kspi f (δspi)

ω2
d1bc
+
cspiδ̇spi
ωd1bc
]

]
rpi −[

[

krpi f (δrpi)

ω2
d1bc
+
crpiδ̇rpi
ωd1bc
]

]

rpi +
n

∑
i=1

[

[

krpi f (δrpi)

ω2
d1bc
+
crpiδ̇rpi
ωd1bc
]

]
rc +

n

∑
i=1

[

[

kspi f (δspi)

ω2
d1bc
+
cspiδ̇spi
ωd1bc
]

]
rc −
̈espi (t)

ω2
d1bc

Ẍrpi = −
Tin

ω2
d1bcrc
+

T frpi

ω2
d1bcrpi
+

T fspi

ω2
d1bcrpi
−[

[

kspi f (δspi)

ω2
d1bc
+
cspiδ̇spi
ωd1bc
]

]

rpi +[

[

krpi f (δrpi)

ω2
d1bc
+
crpiδ̇rpi
ωd1bc
]

]
rpi +

n

∑
i=1

[

[

krpi f (δrpi)

ω2
d1bc
+
crpiδ̇rpi
ωd1bc
]

]
rc +

n

∑
i=1

[

[

kspi f (δspi)

ω2
d1bc
+
cspiδ̇spi
ωd1bc
]

]
rc −
̈espi (t)

ω2
d1bc

Ẍm1zi = −
1

ω2
d2bcrzi

2

∑
i=1

T fzim1 −
1

ω2
d2bcrzi

2

∑
i=1

T fzim2 +
Tout

ω2
d2bcrzi

−[
kzim2 f (δzim2)

ω2
d2bc

+
czim2δ̇zim2

ωd2bc
] rzi +[

kzim1 f (δzim1)
ω2
d2bc

+
czim1δ̇zim1

ωd2bc
] rzi +

1
ω2
d2bcrm1

2

∑
i=1

T fzim1

+
n

∑
i=1
[
kzim1 f (δzim1)

ω2
d2bc

+
czim1δ̇zim1

ωd2bc
] rm1 −

̈em1zi (t)
ω2
d2bc

Ẍm2zi = −
1

ω2
d2bcrzi

2

∑
i=1

T fzim1

− 1
ω2
d2bcrzi

2

∑
i=1

T fzim2 +
Tout

ω2
d2bcrzi
−[

kzim2 f (δzim2)
ω2
d2bc

+
czim2δ̇zim2

ωd2bc
] rzi +[

kzim1 f (δzim1)
ω2
d2bc

+
czim1δ̇zim1

ωd2bc
] rzi

−
n

∑
i=1
[
kzim2 f (δzim2)

ω2
d2bc

+
czim2δ̇zim2

ωd2bc
] rm2 +

1
ω2
d2bcrm2

2

∑
i=1

T fzim2 +
Tout
′

ω2
d2bcrm2

−
̈em2zi (t)
ω2
d2bc

)

(42)

4 Nonlinear dynamic analysis of the
system

This article employs the Runge Kutta method to solve the
system’s vibration equation. Various analytical tools, including
global bifurcation diagrams, time history diagram, maximum
Lyapunov exponent plots, phase trajectory diagram, FFT spectrum
diagram, Poincaré section diagram, 3D phase diagram and
time–frequency diagram, are utilized to investigate the bifurcation
and chaotic characteristics under varying system parameters. The
fundamental gear parameters are detailed in Tables 2–4, [37, 38].

4.1 The influence of average wind speed
and wind turbine radius on the nonlinear
characteristics of the system

Wind speed directly affects the performance of the entire power
generation system during wind turbine operation. Establishing a
random wind speed model is essential for simulating the nonlinear
dynamic response of wind speed in the gear transmission system of
the turbine. Figure 6 illustrates the dynamic simulation of random
wind speed under average wind speeds of 5 m/s, 10 m/s, and 15 m/s.

In the random wind speed model, higher average wind speeds
cause greater fluctuations and amplitudes in the wind speed
curve. Using aerodynamic principles, the input torque curve of
the wind turbine gear system can be modeled and simulated,
as shown in Figure 7. To maintain the randomness of gear system
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TABLE 2 System related parameters.

Wind turbine power factor cp 0.31

Number of wind turbine blades N 3

Air density ρair/(kg/m3) 1.21

Tooth side clearance 2bn/(um) 30

Meshing damping ratio ξ 0.07

Gear thermal expansion coefficient λ 10–5

The viscosity coefficient of lubricating oil at a temperature of 20 °C
η0/(Pa.s)

0.03

Density of gear materials ρ/(kg/m3) 5000

Shear stress of lubricating oil τη/(MPa) 2

Poisson’s ratio υ 0.3

Time-varying mesh stiffness coefficient k0 = kA/km 0.3

Elastic modulus E/(GPa) 201

TABLE 3 Basic parameters of planetary gear.

Sun
gear (s)

Planetary
gear (pi)

Ring
gear (r)

Carrier
(c)

Numbers of
tooth

27 43 113 —

Modulus/mm 4 —

Moment of
inertia/kg∙m2

0.012 0.026 0.125 0.5

Pressure
angle/(°)

20 —

TABLE 4 Basic parameters of face gears.

Face gear
(m1)

Face gear
(m2)

Spur gear
(zi)

Numbers of
tooth

141 141 20

Modulus/mm 4

Moment of
inertia/kg∙m2

0.188 0.188 0.008

Pressure
angle/(°)

20

excitation from the wind turbine input, the torque data from the
first 10 seconds is used as the system’s input excitation. As average
windspeed increases, the torque input from the wind turbine system
also rises. Torque variations and torque wavemomentum impact the
gear system’s dynamic characteristics. Thus, analyzing the impact

of average wind speed on the nonlinear dynamic characteristics of
wind power gears is highly significant.

Analyzing the nonlinear dynamic characteristics of the system
involves setting the system temperature rise to 60°C, with a time-
varying mesh stiffness coefficient of 0.3, mesh damping ratio of
0.07, mesh error amplitude of 0.35, initial tooth side clearance of 30
microns, dimensionless excitation frequency of 1 [39]. The analysis
spans average wind speeds from 0 m/s to 20 m/s.

Figure 8 shows the bifurcation of the gear system as the mean
wind speed varies.The bifurcation diagram shows a clear bifurcation
in the range of mean wind speed from 0 m/s to 17.5 m/s. Figure 9
shows themaximum Lyapunov exponent of the system as a function
of the mean wind speed. In the above wind speed range, the
maximumLyapunov exponent stays below0, indicating the presence
of periodic motion in the system. When the mean wind speed is
between 0 m/s and 5 m/s, the system shows a single-period motion.
When themeanwind speed is between 5 m/s and 12 m/s, the system
is in double periodic motion. Between 12 m/s and 17.5 m/s, the
system is in a four-cycle state. When the mean wind speed increases
between 17.5 m/s and 25 m/s, the bifurcation diagramdoes not show
any obvious bifurcation and the maximum Lyapunov exponent of
the system is constant greater than 0, which suggests that there is
unstable chaotic motion in this range.

To further verify the global bifurcation diagram of the gear
system with varying average wind speed, we analyzed phase
trajectory diagrams, time-domain plots, Poincaré cross-sections,
FFT spectrum diagrams 3D phase diagram and time–frequency
diagram of the gear system at average wind speeds of 2 m/s, 10 m/s,
15 m/s, and 23 m/s.

Figure 10 depicts the time-domain plot, phase trajectory, FFT
spectrum, and Poincaré cross-section of the system at an average
wind speed of 2 m/s.The time domain plot exhibits clear periodicity,
while the phase trajectory forms a closed curve encircling a
circle. A peak is evident in the FFT spectrum, and a discrete
point appears in the Poincaré cross-section, indicating that the
gear system is in a single-cycle motion state at this time; The
illustration in Figure 11 presents various diagrams including the
time domain, phase trajectory, FFT spectrum, and Poincaré cross-
section, all depicting the system’s behavior at an average wind
velocity of 10 m/s.The time-domain graph displays a curve featuring
two distinct periods, paralleled by the phase trajectory with two
enclosed loops. The FFT spectrum exhibits two peaks, and the
Poincaré cross-section identifies two separate points, suggesting
the gear system has transitioned into a two-cycle motion state
at present; Figure 12 shows the time domain diagram, phase
trajectory diagram, FFT spectrum diagram, and Poincaré cross-
section diagram of the system at an average wind speed of 15 m/s,
indicating that the gear systemhas entered a four periodmotion state
at this time; At an average wind speed of 23 m/s, the gear system
demonstrates an unstable chaotic motion. Figure 13 illustrates
the system’s time-domain, phase trajectory, FFT spectrum, and
Poincaré cross-section at this velocity. Figures 14, 15 present time-
frequency and 3D phase diagrams, respectively, showcasing the
system’s behavior across varying wind speeds. It is evident that with
rising wind speeds, the system progressively shifts from stability
to instability.

The study reveals that the average wind speed significantly
influences system characteristics. As it rises, the system transitions
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FIGURE 6
Random wind speed curves under different average wind speeds. (A) V = 5 m/s. (B) V = 10 m/s. (C) V = 15 m/s.

FIGURE 7
Input torque curves under different average wind speeds. (A) V = 5 m/s. (B) V = 10 m/s. (C) V = 15 m/s.

FIGURE 8
Bifurcation diagram of the system with changes in average wind speed.

fromperiodic to chaoticmotion, consequently, this wind power gear
system is optimally suited for regions with an annual average wind
speed below 17.5 m/s.

FIGURE 9
Diagram of the maximum Lyapunov value with the variation of average
wind speed.

Variations in the radius of the wind turbine for a constant mean
wind speed can change the aerodynamic performance and thus
affect the input torque of the geared system.Therefore, wind turbine
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FIGURE 10
Motion state of the system at an average wind speed of 2 m/s. (A) Time domain chart. (B) Phase trajectory diagram. (C) FFT spectrogram. (D) Poincaré
cross-section.

dimensions are valuable variables for exploring the nonlinear
dynamics of the gear system.A time-varyingmeshing stiffness factor
of 0.3, a damping ratio of 0.07, a meshing error magnitude of 0.35,
an initial tooth side clearance of 30 μm, a dimensionless excitation
frequency of 1, and an operating environment with an average wind
speed of 10 m/s are set for a system temperature rise of 60°C. The
nonlinear dynamic behavior of the system is analyzed for a range of
wind turbine radii from 0 m to 30 m. The system is then subjected
to a time-varying meshing stiffness coefficient of 0.3.

Figure 16 depicts the global bifurcation diagram of the gear
system with the variation of wind turbine radius. Within the
range of 0–12 m, there is a noticeable chaotic phenomenon in
the graph. Figure 17 shows the maximum Lyapunov exponent as
a function of radius; The index is always greater than 0 within
the range of 0–12 m. When the radius is 14–16 m, the bifurcation
diagram shows a three-period motion, and the maximum Lyapunov
exponent is also negative. At a distance of 16–17.5 m, the bifurcation
diagram shows a two-period motion with a constant negative
exponent. Finally, stable single period motion occurs at 17.5–30 m,
with a maximum negative Lyapunov exponent.

To validate the global bifurcation diagram of the gear system
across varying wind turbine radii, phase trajectory, time domain,
Poincaré section, FFT spectrum diagrams, 3D phase diagram and
time–frequency diagram were analyzed specifically for radii of 5 m,
13 m, 15 m, 17 m, and 23 m.

Supplementary Figure S1 shows the time-domain, phase
trajectory, FFT spectrum, and Poincare section of a 5 m wind
turbine radius, indicating chaotic motion. Supplementary Figure S2
shows that when the radius of the wind turbine is 13 m,
the system is in a six-cycle motion state. As the radius
increases, Supplementary Figure S3 shows that the wind
turbine system is in a three-cycle motion state at a radius of
15 m, Supplementary Figure S4 depicts the transition of the
system to a two-cycle motion state at a radius of 17 m, and
Supplementary Figure S5 depicts a stable single cycle motion at
a radius of 23 m. Supplementary Figures S6, S7 show the time-
frequency and 3D phase diagrams at different radii, respectively.
It can be seen that increasing the radius of the wind turbine
will cause the gear system to stabilize at a constant wind
speed.

The findings indicate that the wind turbine radius significantly
influences system behavior. As the radius increases, the system
transitions from chaotic motion to periodic states (six-period,
three-period, two-period, and single-period).The global bifurcation
diagram illustrates increasing system stability with greater turbine
radius. Systems with radius less than 12 m exhibit chaotic behavior,
increasing gear collision severity and accelerating wear. Optimal
operating speeds should be chosen to avoid prolonged exposure to
chaotic conditions, recommending a wind turbine radius exceeding
12 m for system stability.
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FIGURE 11
Motion state of the system at an average wind speed of 10 m/s. (A) Time domain chart. (B) Phase trajectory diagram. (C) FFT spectrogram. (D) Poincaré
cross-section.

Supplementary Figure S8 shows the relationship between the
maximum Lyapunov exponent of the gear system and the radius
and average wind speed of the wind turbine. In the case of a small
radius of a wind turbine, regardless of changes in wind speed, the
gear system will maintain a chaotic state, indicating that the radius
of the wind turbine is the main factor affecting system chaos in the
same working environment. When the radius of the wind turbine is
large and the wind speed is low, the gear system tends to stabilize.

4.2 The influence of temperature rise and
lubricating oil viscosity on the nonlinear
characteristics of the system

Due to the complex operating conditions of most wind power
gear systems, factors such as sunlight exposure and power loss
during high-speed operation can lead to increased gear surface
temperatures. Additionally, environmental temperatures vary across
different regions, necessitating an analysis of temperature rise effects
on the system. The gear system parameters include a time-varying
meshing stiffness coefficient of 0.3, meshing damping ratio of 0.07,
meshing error amplitude of 0.35, initial tooth side clearance of 30

microns, dimensionless excitation frequency of 1. The average wind
speed in the region is set to 10 m/s.

Supplementary Figure S9 shows the bifurcation diagram of the
gear systemwith temperature rise. Supplementary Figure S10 shows
themaximumLyapunov exponent of the corresponding gear system.
From 0°C to 55°C, the bifurcation diagram indicates that the gear
system is in unstable chaotic motion, and the maximum Lyapunov
exponent is always positive. When the temperature rise range is
from 55°C to 61°C, the bifurcation diagram indicates that the gear
system is in double periodic motion, and the Lyapunov exponent
remains negative.The temperature rise range is from 61°C to 100°C,
and the bifurcation diagram indicates that the gear system is in
single cycle motion. At this stage, themaximumLyapunov exponent
remains negative.

In order to accurately illustrate the motion characteristics, the
phase trajectory diagram, time-domain diagram, Poincare section
diagram, FFT spectrum diagram, 3D phase diagram, and time-
frequency diagram of the gear systemwere analyzed at temperatures
of 30°C, 59°C, and 90°C.

Supplementary Figure S11 displays the system’s time-domain,
phase trajectory, FFT spectrum, and Poincaré cross-section
diagrams with a 30°C rise in gear temperature, indicating
unstable chaotic motion. Supplementary Figure S12 illustrates
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FIGURE 12
Motion state of the system at an average wind speed of 15 m/s. (A) Time domain chart. (B) Phase trajectory diagram. (C) FFT spectrogram. (D) Poincaré
cross-section.

these diagrams with a 59°C temperature rise, showing the
system in a two-cycle motion state. Supplementary Figure S13
depicts these diagrams with a 90°C temperature rise, indicating
the system is in single-cycle motion. Supplementary Figure S14
shows the time-frequency diagram of the system at different
temperature rises, indicating that as the system temperature
increases, it transitions from chaotic motion to single period
stable motion. Supplementary Figure S15 shows the 3D phase
diagram of the system at different temperature rises, which can
further illustrate its dynamic behavior.

The results indicate that as the temperature of the gear system
increases, it transitions from chaotic motion to periodic motion,
experiencing chaotic, bi periodic, and single periodic states. When
the temperature rises to 55°C, the system is in a long-term chaotic
state, and gear collisions increase.

Wind power gear system in the process of operation, usually
add lubricant, lubricant will be added to form an oil film on
the gear surface, which can not only avoid direct contact with
the gear, but also reduce the friction of the gear surface in the
process of work, slowing down the wear of the tooth surface.
The lubrication performance of the lubricant is mainly reflected
in the lubricant viscosity, so the effect of lubricant viscosity on
the nonlinear dynamic characteristics of the gear system can be
analyzed. The time-varying meshing stiffness coefficient of the gear

system is set to be 0.3, the meshing damping ratio to be 0.07,
the magnitude of the meshing error to be 0.35, the initial tooth
flank clearance to be 30 μm, the dimensionless excitation frequency
to be 1, the temperature rise of the gears to be 60°C, and the
average wind speed of the wind machine’s working area to be set
to be 10 m/s.

Supplementary Figure S16 displays the global bifurcation
diagram of the gear system as the viscosity of the lubricating oil
varies from 0.01 Pa·s to 0.1 Pa·s. Supplementary Figure S17 shows
the maximum Lyapunov exponent of the gear system with changing
viscosity of the lubricating oil. For viscosity values between 0.01 Pa·s
and 0.016 Pa·s, the bifurcation diagram indicates the gear system is
in unstable chaotic motion, with a consistently positive maximum
Lyapunov exponent. As viscosity increases to between 0.016 Pa·s
and 0.022 Pa·s, the system exhibits two-period motion, with a
negative maximum Lyapunov exponent. When viscosity ranges
from 0.022 Pa·s to 0.1 Pa·s, the system shows single-cycle motion,
maintaining a negative maximum Lyapunov exponent throughout
this range.

To accurately determine the motion characteristics, the gear
system’s phase trajectory diagram, time domain chart, Poincaré
section diagram, FFT spectrum diagram, 3D phase diagram and
time–frequency diagram was analyzed at lubricating oil viscosities
of 0.01 Pa·s, 0.02 Pa·s, and 0.05 Pa·s.
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FIGURE 13
Motion state of the system at an average wind speed of 23 m/s. (A) Time domain chart. (B) Phase trajectory diagram. (C) FFT spectrogram. (D) Poincaré
cross-section.

FIGURE 14
Time frequency plot with increasing average wind speed. (A) Random wind speed of 2 m/s. (B) Random wind speed of 15 m/s. (C) Random wind
speed of 23 m/s.

Supplementary Figure S18 depicts the time-domain diagram,
phase trajectory, FFT spectrum, and Poincaré cross-section of a gear
system lubricated with oil viscosity of 0.01 Pa·s, showing the system
in an unstable chaotic motion state. Supplementary Figure S19
illustrates the time-domain diagram, phase trajectory diagram,

FFT spectrum diagram, and Poincaré cross-section diagram of the
system at 0.02 Pa·s viscosity, indicating the system has entered
a two-cycle motion state. Supplementary Figure S20 shows the
time-domain diagram, phase trajectory diagram, FFT spectrum
diagram, and Poincaré cross-section diagram of the system
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FIGURE 15
Phase diagram with increasing average wind speed. (A) Random wind speed of 2 m/s. (B) Random wind speed of 15 m/s. (C) Random wind
speed of 23 m/s.

FIGURE 16
Bifurcation diagram of the system with the variation of wind
turbine radius.

at 0.05 Pa·s viscosity, where the system has entered a single-
cycle motion state. Supplementary Figure S21 shows the time-
frequency diagram of the system. It can be seen that as the
viscosity of the lubricating oil increases, the system gradually
becomes a single cycle motion and tends to stabilize. Under
chaotic motion, the time-frequency diagram is a discrete spectrum
with a certain width. Supplementary Figure S22 shows a three-
dimensional phase diagram of the system when the viscosity of the
lubricating oil changes. Under other unchanged conditions, using
high viscosity lubricating oil can improve the stability of the system.

The results indicate that increasing the viscosity of lubricating
oil will gradually transition the gear system from chaotic motion to
periodic motion. It is recommended to choose lubricating oil with a
viscosity higher than 0.016 Pa·s to reduce gear collision and prevent
gear failure.

According to Equation 16, there is a relationship between
the viscosity of lubricating oil and temperature rise. An increase

FIGURE 17
Maximum Lyapunov exponent diagram of the system with the
variation of wind turbine radius.

in gear temperature rise will cause a decrease in the viscosity
of lubricating oil. Therefore, it is necessary to consider the
effects of temperature rise and lubricating oil viscosity on system
characteristics simultaneously.

Supplementary Figure S23 shows the maximum Lyapunov
exponent of the gear system as the viscosity of the lubricating oil
and the temperature rise of the gear change simultaneously. It can
be seen that when the viscosity of the lubricating oil is low (η <
0.016 Pa·s), regardless of how the system temperature rises, the
maximum Lyapunov value is always positive, indicating that the
system has been in an unstable chaotic motion; When the viscosity
of the lubricating oil is small (0.016 Pa·s < η < 0.05 Pa·s) and the
temperature rise is low, the maximum Lyapunov value is less than 0.
When the temperature rise is high, the maximum Lyapunov value is
greater than 0. This indicates that in this range of lubricating oil, an
increase in temperature rise will cause a decrease in the viscosity of
the lubricating oil, making the system unstable; When the viscosity
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of the lubricating oil is high (η > 0.05 Pa·s) and the temperature rise
is high, although the viscosity of the lubricating oil will decrease,
the expansion of the gear material causes a decrease in the backlash
between the teeth, resulting in a negative maximum Lyapunov value
of the system and a stable state of the gear system.

The results suggest that at low viscosity, the primary cause of gear
chaos is the lubrication performance of the oil. At high viscosity,
the main factor is the change in tooth side clearance due to gear
temperature rise.

5 Conclusion

The gear transmission system is a crucial part of the wind
turbine transmission system. This article examines the impacts of
time-varyingmeshing stiffness, tooth side clearance, comprehensive
transmission error, meshing damping, tooth surface temperature,
gear friction, lubrication, wind speed, and other factors on the wind
turbine’s planetary-face gear system. A pure torsional nonlinear
dynamic model of the wind turbine planetary-face gear system
is established. The nonlinear dynamic characteristics of the gear
system under varying average wind speeds, wind turbine radius,
tooth surface temperature, and lubricant viscosity are analyzed,
leading to the following conclusions:

(1) Under the influence of random wind speed, as the average
wind speed and wind turbine radius change, the Poincaré
section exhibits closed curves composed of points and discrete
points, as well as different states such as chaotic attractors, the
presence of factors such as meshing damping, time-varying
meshing stiffness, comprehensive meshing error, tooth side
clearance, tooth surface temperature rise, gear friction and
lubrication can lead to a rich variety of nonlinear dynamic
characteristics within the gear system. When the wind turbine
radius is constant, if the average wind speed in the operating
environment exceeds 17.5 m/s, the vibration of the gears will
intensify, when the average wind speed is constant and the
wind turbine radius is greater than 12 m, it can mitigate
the severity of gear collisions, thereby avoiding prolonged
exposure to chaotic conditions that could lead to gear failure. In
summary, when the wind turbine radius is smaller, wind speed
may not be the primary factor causing system chaos. However,
in regions where wind speeds are consistently high throughout
the year, it is advisable to choosewind turbines with larger radii
to enhance the stability of the gear system.

(2) Analysis of the system dynamics was conducted under
constant lubricant viscosity, focusing on the impact of gear
temperature rise. It was observed that when the temperature
rise is less than 55°C, the system remains in a prolonged
chaotic state. By analyzing the global bifurcation diagramof the
system under constant temperature rise and varying lubricant
viscosity, it is evident that to mitigate gear collisions and
maintain stable cyclicmotion, lubricant with a viscosity greater
than 0.016 Pa·s should be chosen for gear lubrication. Overall,
in inadequately lubricated gear systems, the lubrication
performance of the lubricant is the primary factor leading
to chaotic behavior in the gear system, in gear systems with
excellent lubrication characteristics, the variation in tooth

side clearance caused by temperature rise is the key factor
leading to chaotic behavior in the gear system. The research
findings of this paper provide important theoretical basis for
the reliability study and optimization of wind turbine gear
transmission systems.
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