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We explore the spectra of transverse momenta of hadrons with strange quark
content (K0

S , ϕ, Λ+ Λ̄, Ξ̄+ Ξ̄
+, and Ω− + Ω̄+) produced in proton–proton collisions

at √sNN = 7 TeV. We applied Tsallis statistics in a blast wave model (TBW) to the
ALICECollaboration’s experimental data and extracted the freezeout parameters
(Tsallis temperature, transverse flow velocity, and the parameter q, which is the
non-extensive parameter). The changing trend of these parameters is studied
with changing multiplicity. The parameter q decreases while the parameter T
and βT increases toward higher multiplicities. βT is noted to drop to zero in the
system with the lowest multiplicities. In addition, the interrelationships between
the parameters Twith βT and Twith q are presentedwhere the former correlation
is positive and the latter one is negative.

KEYWORDS

Tsallis temperature, transverse flow velocity, quantum chromodynamics, QGP,
multiplicity

1 Introduction

Investigating the quantum chromodynamic (QCD) phase diagram is the primary aim
of heavy-ion collisions at ultra-relativistic energies. The quark–gluon plasma (QGP) [1–6],
which is believed to have existed shortly after the Big Bang, perhaps within microseconds, is
a state of deconfined partons in thermal equilibrium formed by such collisions at the Large
Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC). Small collision
systems, such as proton–proton (pp) as well as proton–nucleus (p-A) collisions, have
traditionally been considered as baselines to probe heavy-ion collisions and describe the
quark–gluonplasma’s (QGP) characteristics.However, recent experimental data have shown
strong flow-like behavior in high multiplicity collisions of pp and p-A at LHC energies,
displaying qualitative similarities to phenomena seen in collisions with heavy ions [7–14].
These observations include long-range two-particle angular correlations [10, 14, 15], non-
zero second-order Fourier coefficients (ν2) in multi-particle cumulant analyses [13, 16],
enhanced baryon-to-meson ratios at intermediate transverse momentum (pT) [17], and
strangeness enhancement [18]. As a result, understanding the origins of collective behavior
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in small systems has become a significant area of both experimental
and theoretical inquiry. The quarks and gluons are in a deconfined
state in QGP matter, and it is very challenging to observe such
deconfined matter directly. Rather, we use the invariant yield (pT
spectra) of the particles.

Three types of temperatures are often studied in the literature of
high energy collisions, which occur at different stages in the system
evolution. Temperature is, of course, very crucial in the study of
QGP. The three temperatures include 1) The initial temperature,
which occurs at the initial stages of a collision; 2) the chemical
freezeout temperature, which happens at the point of chemical
freezeout; and 3) the kinetic freezeout temperature, which occurs
at the kinetic freezeout stage. Particles stop colliding in an elastic
manner, no new particles are created, and the yields of each
type of particle become fixed during the chemical freezeout stage.
Currently, the baryon chemical potential and chemical freezeout
temperature are extracted using many available thermodynamics
models [3, 19–21]. The kinetic freezeout occurs later than the
chemical freezeout during system evolution. As the system evolves,
it undergoes continuous expansion. When the system expands
further and reaches the kinetic freezeout stage, the spacing between
the particles widens, and the elastic collisions between them
stop. Following this phase, particles begin to propagate in the
direction of the detector as their momenta also become fixed.
The collision system’s transverse excitation degree (in the form of
temperature) and dynamic expansion (in the form of transverse
flow velocity βT) are revealed by the particles’ pT spectra [3, 19,
22, 23]. The details about the initial stages of collisions can be
obtained by the string percolation theory [24, 25], while at the
chemical freezeout stage, these details can be obtained by using
the thermal model [26]. The information at the kinetic freezeout
stage can be obtained by hydrodynamic models, such as the blast
wave model with Boltzmann–Gibbs statistics [22] and with Tsallis
statistics [45], the Erlang distribution [27], and others [28]. In this
work, we will study the final state temperature and flow velocity
using the blast wave model with Tsallis statistics. The final state
temperature and the transverse flow velocity are very important
because these two quantities together reflect the transition from
the hot and dense phase of matter to hadronic matter as the
system cools and expands. The above two quantities are very
important in restraint of the equation of state (EOS) because they
provide indirect measurements of the pressure, energy density,
and temperature evolution of the system that is formed during
the collision. In addition, strange hadrons are analyzed because
they are suggested as useful probes to locate the phase boundary
and the beginning of deconfinement. It has been suggested that
an imprint of a quark–gluon plasma (QGP) in nucleus-nucleus
collisions, relative to collisions between protons at the same center of
mass energy, is the increased creation of hadrons with strange quark
content in these collisions [29]. Strange hadron yields have so far
been thoroughly measured in numerous experiments conducted at
various accelerator facilities [30–35], where significant strangeness
enhancement, particularly for multi-strange hyperons, has been
noted. In nuclear collisions, the strange hadron yields are generally
in close agreement with those predicted by statistical hadron gas
models [36–38].

The structure of the paper is as follows: Section 2 outlines the
methodology and formalism, while Section 3 presents the results

and discussion. Finally, Section 4 provides a summary of the key
findings and conclusions.

2 The method and formalism

The extraction of the thermodynamic parameters through
different statistical distributions and thermodynamical models has
been used in recent decades. These models have been distributed
in two categories. Some of them are used in case of soft excitation
process, where they can cover the low pT region, while some of them
are used when the hard process involves, and they can cover the pT
spectra up to maximum range. Models such as the blast wave model
with Boltzmann–Gibbs statistics [22, 23, 39], standard distribution
[40], and the Hagedorn thermal model [41] are employed to match
the data of pT spectra up to 2 GeV/c or 2.5 GeV/c, while the Tsallis
distribution [42, 43], the Tsallis-Pareto [44], the blast wave model
with Tsallis distribution [45], and the modified Hagedorn model
with embedded flow [46, 47, 49, 50] are used to fit the data of pT
spectra up to a high pT range.

The blast wave model with Tsallis distribution will be employed,
where it fits the current work’s pT spectra up to 12 GeV/c. The
expression of the TBWmodel is given by

f1 (pT) =
1
N

dN
dpT
= CpTmT∫

π

−π
dϕ∫

R

0
rdr

×{1+
q− 1
T
[mT cosh (ρ) − pT sinh (ρ)

×cos (ϕ)]}
−q
(q−1) . (1)

The terms C, N, and mT denote the normalized constant, count
of particles, and the transverse mass, respectively, where mT =
√p2T +m

2
0.The term r represents the radial coordinate, whose highest

limit is R and ϕ azimuthal angle. The freezeout parameters, namely,
the Tsallis temperature, transverse flow velocity, and the non-
extensive parameter, are represented byT, βT, and q, respectively. ρ =
tanh−1 [β(r)] is the boost angle, where β(r) is the self-similar flow
profile and is connected with βS by β(r) = βS(r/R)

n0 . βS is the flow
velocity on the surface. The index n0 is the flow profile and is a free
parameter [23, 48]. The term βT is transverse flow velocity and is
expressed by βT = (2/R

2)∫R0 rβ(r)dr = 2βS/(n0 + 2).

3 Results and discussion

This section examines the results of the pT spectra of strange
hadrons at 7 TeV in pp collisions and discusses the results of the
extracted parameters from high to lower multiplicity classes (MCs).

Figure 1 presents the pT spectra of strange hadrons, namely K0
S,

ϕ, Λ+ Λ̄, Ξ̄+ Ξ̄+, and Ω− + Ω̄+, in panels (a)-(e), respectively. The pT
spectra of these particles are analyzed in different MCs. We took
the experimental data from [17, 18], which are represented by the
symbols. The arrays of different symbols show different MCs from
MC-I to MC-X, and the curve over them is the result of the TBW
model from Equation 1. The lower panel consists of the data/fit
ratio of the corresponding fit and shows the deviation of the fit
from the data. The data/fit ratio between 0.5 and 2 is normal. One
can see that the fit to data by the TBW model in Figure 1 is good,
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FIGURE 1
Transverse momentum spectra of strange hadrons (K0

S , ϕ, Λ+ Λ̄, Ξ̄+ Ξ̄
+, and Ω− + Ω̄+) at 7 TeV produced in pp collisions in multiplicity class (MC) MC-I to

MC-X. The lower panels of the figures display the corresponding fit data/fit ratios. Panel (A-E) shows the pT spectra for K0
S , ϕ, Λ+ Λ̄, Ξ̄+ Ξ̄

+, and Ω− + Ω̄+,
respectively.

except at the tail for the MC-X for K0
S and ϕ. The departure of

the fit curve from the data in pT < 0.5 is large compared to pT >
0.5 because the former is the very soft region where resonance

decay is involved, which is not taken into account by the TBW
model. Lower MCs are linked to higher multiplicity, and higher
MCs are linked to lower multiplicity. Table 1 shows χ2/do f and the
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TABLE 1 Values of T, q, N0, χ
2, and degrees of freedom (dof) corresponding to the curves in Figure 1.

Particle Multiplicity class Scaled by T (GeV) βT (c) q n0 N0 χ2/dof

K0
S MC-I ——– 0.080± 0.004 0.490± 0.010 1.130± 0.003 1.0± 0.2 136± 8 124/34

— MC-II 1/2 0.075± 0.004 0.452± 0.011 1.140± 0.002 1.2± 0.2 103± 8.2 90/34

— MC-III 1/3.5 0.070± 0.005 0.400± 0.010 1.145± 0.004 1.5± 0.3 82± 4 21/34

— MC-IV 1/6 0.066± 0.003 0.390± 0.006 1.152± 0.004 1.8± 0.3 65± 4.5 69/34

— MC-V 1/10 0.061± 0.004 0.361± 0.009 1.155± 0.005 2.2± 0.4 60± 3.1 18/34

— MC-VI 1/18 0.056± 0.004 0.340± 0.012 1.160± 0.005 2.6± 0.3 50± 2 39/34

— MC-VII 1/40 0.052± 0.006 0.280± 0.007 1.165± 0.003 4.4± 0.6 41± 3 37/34

— MC-VIII 1/70 0.046± 0.005 0.200± 0.004 1.144± 0.005 7.0± 0.8 30± 3.2 81/34

— MC-IX 1/110 0.040± 0.006 0.140± 0.008 1.178± 0.006 7.4± 0.7 22± 1.8 134/34

— MC-X 1/170 0.035± 0.004 0.100± 0.00 1.165± 0.006 7.8± 0.5 14± 1.1 181/34

ϕ MC-I ——– 0.131± 0.005 0.467± 0.008 1.0900± 0.005 1.0± 0.2 20± 2.2 26.3/11

— MC-II 1/2 0.125± 0.003 0.435± 0.012 1.100± 0.004 1.1± 0.3 13± 1.3 10.6/11

— MC-III 1/3.5 0.119± 0.006 0.402± 0.007 1.110± 0.003 1.2± 0.2 11± 1.6 13.5/11

— MC-IV&V 1/8 0.113± 0.006 0.350± 0.010 1.120± 0.005 1.3± 0.2 8.5± 0.7 5/11

— MC-VI 1/20 0.103± 0.005 0.301± 0.008 1.130± 0.003 1.6± 0.25 6.3± 0.7 10.5/11

— MC-VII 1/37 0.096± 0.004 0.200± 0.005 1.145± 0.004 1.8± 0.3 5± 0.5 5/11

— MC-VIII 1/66 0.088± 0.006 0.100± 0.007 1.150± 0.005 1.9± 0.24 4.1± .4 10.5/10

— MC-IX 1/100 0.082± 0.004 0.018± 0.003 1.155± 0.003 2.0± 0.3 2.9± 0.3 38.8/10

— MC-X 1/150 0.076± 0.005 0.00± 0.00 1.182± 0.004 2.4± 0.3 1.5± 0.3 8.2/9

Λ+ Λ̄ MC-I ——– 0.133± 0.006 0.413± 0.011 1.092± 0.004 2.5± 0.5 80± 7.0 12/12

— MC-II 1/2 0.127± 0.005 0.366± 0.012 1.105± 0.005 2.6± 0.4 78± 11 6.4/12

— MC-III 1/3.5 0.124± 0.003 0.280± 0.006 1.110± 0.002 2.7± 0.4 50± 5.0 9.7/12

— MC-IV 1/6 0.122± 0.004 0.250± 0.010 1.110± 0.005 5.5± 0.7 40± 4.6 9.4/12

— MC-V 1/10 0.120± 0.003 0.210± 0.005 1.115± 0.002 7.0± 0.5 34± 3.3 19/12

— MC-VI 1/18 0.117± 0.004 0.150± 0.016 1.116± 0.005 8.0± 0.4 29± 2.2 14.7/12

— MC-VII 1/40 0.114± 0.003 0.130± 0.005 1.117± 0.004 8.1± 0.3 20± 3.1 21.6/12

— MC-VIII 1/70 0.110± 0.003 0.090± 0.005 1.118± 0.005 8.2± 0.2 17± 1.2 52/12

— MC-IX 1/110 0.105± 0.004 0.010± 0.00 1.114± 0.002 8.3± 0.2 11± 1.1 65/12

— MC-X 1/170 0.094± 0.003 0.000± 0.00 1.105± 0.006 8.4± 0.2 5± 0.4 26/12

Ξ̄− + Ξ̄+ MC-I ——– 0.144± 0.006 0.384± 0.008 1.085± 0.005 1.3± 0.3 10± 0.6 7.5/9

— MC-II 1/2 0.140± 0.006 0.352± 0.012 1.088± 0.004 1.4± 0.25 7.3± 0.5 5.8/9

— MC-III 1/3.5 0.135± 0.006 0.270± 0.013 1.097± 0.003 1.5± 0.2 6.2± 0.4 9.6/9

(Continued on the following page)
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TABLE 1 (Continued) Values of T, q, N0, χ
2, and degrees of freedom (dof) corresponding to the curves in Figure 1.

Particle Multiplicity class Scaled by T (GeV) βT (c) q n0 N0 χ2/dof

— MC-IV 1/6 0.131± 0.005 0.241± 0.011 1.102± 0.004 1.6± 0.3 5± 0.3 6.6/9

— MC-V 1/10 0.127± 0.004 0.205± 0.008 1.108± 0.003 1.7± 0.2 4± 0.3 5.2/9

— MC-VI 1/18 0.122± 0.005 0.138± 0.009 1.112± 0.004 1.8± 0.3 3.2± 0.2 6/9

— MC-VII 1/40 0.118± 0.004 0.120± 0.006 1.113± 0.005 1.9± 0.4 2.5± 0.4 7/9

— MC-VIII 1/70 0.112± 0.005 0.073± 0.004 1.114± 0.005 1.9± 0.3 1.82± 1.2 9.7/9

— MC-IX 1/110 0.108± 0.003 0.005± 0.0003 1.110± 0.004 2.0± 0.4 1.4± 0.3 9.4/9

— MC-X 1/170 0.101± 0.004 0.00± 0.00 1.110± 0.003 2.2± 0.2 0.5± 0.04 8/9

Ω− + Ω̄+ MC-I&II ——– 0.156± 0.004 0.340± 0.010 1.080± 0.003 1.0± 0.2 0.8± 0.04 2.4/2

— MC-III&IV 1/2 0.150± 0.005 0.221± 0.011 1.100± 0.003 1.3± 0.2 0.55± 0.03 2/2

— MC-V$VI 1/5 0.144± 0.006 0.103± 0.005 1.110± 0.005 1.4± 0.23 0.35± 0.02 1.8/2

— MC-VII&VIII 1/10 0.135± 0.005 0.043± 0.003 1.115± 0.002 1.5± 0.04 0.17± 0.03 1.5/2

— MC-IX&X 1/18 0.126± 0.006 0.000± 0.00 1.100± 0.002 1.6± 0.3 0.14± 0.012 1.4/2

values of the parameters that the TBW model extracts. It should
be noted that do f is calculated by subtracting the number of free
parameters from the number of data points in the pT spectra of the
corresponding hadron.

We have extracted T, βT, the entropy parameter (q), and the
normalization parameter (N0). These parameters are displayed
in Figure 2. Different panels in Figure 2 show the results of
different parameters. For instance, panel (a) shows T in relation to
multiplicity, while panels (b), (c), and (d) show the dependence of
βT, q, and N0 on multiplicity, respectively. The left-to-right trend
of these parameters demonstrates how their multiplicity-related
behavior changes. Higher multiplicity is associated with MC-I,
whereas lower multiplicity is associated with MC-X, and the color
variations represent various particles in the figure. Panel (a) in
Figure 2 demonstrates the changing behavior of T with respect to
multiplicity. A decreasing trend of T is observed with increasingMC
(higherMC is associated with lower multiplicity). In the higherMC,
that is, MC-X, a small portion of the colliding systems overlap where
there is the transfer of a small amount of energy among nucleons
within the colliding systems, which results in a lower excitation
degree of the system and hence lower T. As the system progresses to
lower MCs, the overlapping region of the colliding system becomes
larger and larger, where the amount of energy transfer among the
colliding systems becomes larger, which alternatively corresponds
to a larger degree of excitation degree of the system and hence
larger T. These results are similar to our previous results and other
literature [50–52] of A-A collisions in different centrality intervals,
where Tis decreasing from central to peripheral collisions. In the
present result, the lower MC has a resemblance with the central
collisions, while the higher MC has a resemblance with peripheral
collisions. In addition, the parameters from up to downward in
panel (a) of Figure 2show a mass differential scenario where each

particle freezes out at different times. This phenomenon has been
observed in [50–52], although single freezeout [45], and double
kinetic freezeout [53, 54] scenarios also exist. The dependence of
Tonm0is more pronounced from K0

Sto Λ+ Λ̄and is less pronounced
above it in Ξ− + Ξ̄+and then is again more pronounced in Ω− +
Ω̄+. Furthermore, from high multiplicity to low multiplicity, Tas a
function of m0for K

0
Sand Λ+ Λ̄is seen to be very less pronounced

and seen to be very close in lower MCs. Similarly, ϕin higher
multiplicity is very close to Λ+ Λ̄, and they show a divergence as
one proceeds to lower multiplicity. Panel (b) in Figure 2is similar to
panel (a); however, the result for βTis displayed in it. From higher
to lower MC, βTis seen to decrease monotonically. The overlapping
region of the colliding systems is comparatively larger than at higher
MCs, which results in the transfer of a large amount of energy
amongnucleonswithin the colliding system.Thepressure gradient is
large, and consequently, βTis larger.This pressure gradient decreases
toward higher MCs and hence βT. The behavior of βTfrom lower to
higher MCs resembles the behavior of βTfrom central to peripheral
collisions. Higher MCs resemble peripheral collisions, while lower
MCs resemble the central collisions [50] where βTdecreases toward
the periphery. Interestingly, we observed that in the last MC where
the multiplicity is too small, βTtends to zero, which may declare a
remarkable variation in the system’s behavior.The abrupt drop in βT
could indicate a transition from a regime where collective effects,
like hydrodynamic flow, are dominant to one where other factors
start to matter. This transition may be explained by a variety of
adjustments to the energy density of the system, the predominance
of distinct mechanisms for particle production, or modifications to
the collision behaviors. Similar toT, βT also showsmass dependence:
the more massive the particle, the lesser the flow velocity. However,
this behavior from K0

S to ϕ and from Λ+ Λ̄ to Ξ− + Ξ̄+ is less
pronounced.
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FIGURE 2
Result of T, βT, qand N0as a function of multiplicity in panels (A–D), respectively.

Figure 2C displays the dynamics of q in relation to the MC. One
can see that there is an increasing trend of qwith respect toMCs. q is
smaller at lower MC and is larger at higher MC. We know that q = 1
indicates a system closer to equilibrium. As the system departs from
q = 1, it tends to be far from equilibrium. The present work shows
that q is decreasing from higher MCs to lower MCs, which indicates
that the system in higher MCs (lower multiplicity) is far from
equilibrium, while the system in lower MCs (greater multiplicity) is
close to equilibrium. We noticed that for all particles, the parameter
q is increasing continuously from lower to higher MCs; however,
it decreases in the highest MCs, except ϕ, which does not have
such change. This behavior can be explained as significant particle
creation occurring in large-multiplicity events, resulting in more

collisions and interactions between particles. The system becomes
more thermalized and exhibits short-range correlations as a result,
approaching equilibrium in behavior. As a result, there is a decrease
in q, and the deviation from equilibrium is not large. The system
becomes less thermalized as the multiplicity drops, showing more
long-range correlations and weaker particle interactions. Because
this pulls the system away from equilibrium, q rises, and more
non-extensive, non-equilibrium behavior is reflected. The system is
strongly deviated from the Boltzmann–Gibbs distribution, which
represents classical equilibrium. When the multiplicity is at its
lowest, a simpler system with fewer particles produced can be the
cause of the decline in q. In these situations, strong non-equilibrium
behavior cannot be maintained due to a lack of interaction or
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FIGURE 3
Correlation among T and βT and T and q in panels (A, B), respectively.

complexity. All in all, the system is like a thin, almost perfect gas with
very few correlations and interactions. When the system returns to
equilibrium as a result of this behavior, q falls. The system moves
toward a more classical, weakly interacting regime where deviations
from equilibrium are less noticeable, as indicated by this decrease
in q at the lowest multiplicity. In addition, panel (d) displays the
result of the normalization parameter (N0). With lighter particles,
N0 is larger and comparatively smaller for the massive particles. In
addition, it is larger in lower MCs and smaller in higher MCs. N0
actually indicates the multiplicity.

Figure 3 displays the correlation among the parameters. Panel
(a) in Figure 3 presents the correlation between T and βT, while
panel (b) shows the correlation between T and q. Panel (a) reveals
a positive correlation between T and βT. We can see that T rises
as βT increases from higher MCs to lower MCs. This renders the
scenario of the early universe, where the systemwas very hot andwas
expanding quickly. This result is similar to our previous result [50],
where such a scenario was observed from central to peripheral
collisions. Panel (b) shows the negative correlation between T and
q. T decreases with increasing q from lower to higher MCs. There
is a bending structure seen in the highest MC in the correlation of
T and q. This bending structure renders that the collective effects,
such as flow or significant thermalization, are weaker at the lower
multiplicities than they are at highermultiplicities.The systemmight
behave more “ideally” in the absence of these collective behaviors,
which would lessen the requirement for a high q to account for non-
equilibrium effects. Consequently, as the system becomes closer to a
state that more closely resembles equilibrium, q drops.

4 Conclusion

We studied the freezeout properties of strange particles
produced in proton–proton collisions at√sNN = 7 TeV.The particles
under study include K0

S, ϕ, Λ+ Λ̄, Ξ̄+ Ξ̄+, and Ω− + Ω̄+. We

investigated the pT spectra of the above particles in different MCs,
where the higher MC is associated with less multiplicity and the
lowerMC is associatedwith largermultiplicity.The blast wavemodel
with Tsallis statistics is used over the experimental data, and the
freezeout parameters are extracted, including the T, βT, and q. The
behavior of these parameters with changing multiplicity is studied.

We observed that the parameter T and βT decreases with the rise
of theMCwhere the multiplicity is not large.There is a large overlap
of colliding systems where much energy is exchanged between them
and, consequently, larger T and βT. βT drops to zero in the highest
MCs, which shows the transition from collective to non-collective
effects in the highest MC. Both of these parameters are mass
dependent, where the former is larger for massive particles, and the
latter is larger for lighter particles. On the other hand, the parameter
q shows reverse behavior to that of T and βT, which shows that
the system with higher multiplicity is close to an equilibrium, while
it moves away from equilibrium as the multiplicity decreases. We
also plotted the correlation between T and βT, which is positive and
points toward the early birth of the universe where the system was
very hot and the pressure gradient was incredibly large. However,
the correlation between T and q is also plotted, which is negative,
rendering the system with higher multiplicity close to equilibrium.
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