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Editorial on the Research Topic
Cavity-enhanced optical spectroscopy

Recent advances in cavity-enhanced spectroscopy have led to significant improvements
in the precision, sensitivity, and range of applications for optical detection and
measurement. These developments have strong impacts across various fields, including
environmental monitoring, quantum electrodynamics (QED), and biomedical research.
The contributions featured in this Research Topic reflect the different approaches and novel
methodologies emerging in this area, highlighting both theoretical insights and practical
implementations.

Cavity ring-down spectroscopy (CRDS) is one of the most commonly used cavity-
enhanced techniques, offering improved frequency noise resilience and exhibiting one of
the highest sensitivities in this category. In their work, Liu et al. perform CRDS
measurements employing two distributed feedback (DFB) lasers operating around
1,600 nm. One laser is used as probe beam which is injected in a multipass cell and is
frequency stabilized against a CO₂ absorption line using frequency modulation
spectroscopy, ensuring drift-free laser frequency. In the study, 90% of the radiation is
injected into a 200-mm-long high-finesse (about 45,000) cavity, along with the second DFB
laser, emitting at a similar wavelength, used to measure absorption-free ring-down time.
This stabilization leads to a five-fold improvement in detection sensitivity, reaching 4.
4·10⁻11 cm⁻1 with a detection limit of 78 ppb, comparable to leading commercial systems.
This approach has proven its efficacy in environmental and industrial gas sensing,
validating its potential for broad practical applications.

CRDS, combined with an optical frequency comb, is used by Gotti et al., reaching
unprecedented precision in measuring the P (5), P (6), and O (3) transitions of the HD
molecule 2–0 band near 1.5 µm. Improving the accuracy of the P (5) transition, the only one
investigated previously in the literature, by more than two orders of magnitude, they
achieved uncertainties below 3 MHz, closely aligning with QED predictions. The analysis
employed the Hartmann-Tran profile with β correction for precise line-shape description.
This approach highlights the potential of combining advanced spectroscopic techniques to
improve our understanding of molecular hydrogen, setting new benchmarks for future
research in QED and molecular spectroscopy.
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Cavities are not only a fundamental tool for spectroscopy but
can be used for extremely precise comb characterization, as
Giannotti et al. propose. In their paper, they describe a new
approach to measure the carrier-envelope offset (CEO) frequency
of an optical frequency comb exploiting an external optical
resonator and avoiding non-linear frequency conversion, thus
reducing the complexity of the experimental setup. They propose
a variation of the well-known Pound-Drever-Hall (PDH) technique,
performing a single-side spectral selection of the comb spectrum and
retrieving an asymmetric PDH (a-PDH) signal. Through a rigorous
theoretical and mathematical description, they underline the
necessity to break the symmetrical compensation within the PDH
signal. Exploiting the linear region of the a-PDH signal, they
demonstrate the possibility to retrieve the CEO frequency. They
test this novel approach on an experimental setup with an Er-fibre
mode-locked laser and an optical cavity with known parameters.
After a-PDH curve calibration, they achieve CEO values with 0.87%
fractional precision relative to the repetition rate, outperforming
conventional f-2f interferometers and offering greater versatility and
reduced complexity.

Optical cavities find another important use in Klose et al. Here,
the density distribution and the absorption coefficient of
H2O2 present in the effluent of a cold atmospheric pressure
plasma jet (CAPJs) was resolved using a highly sensitive
detection method and a Fabry-Perot (FP) resonator. CAPJs have
been employed in fields like medicine, materials processing for heat
sensitive targets, and plasma agriculture due to the role that
H2O2 has in cell reactions and development. H2O2 detection was
demonstrated using a quantum cascade laser with an acousto-optic
modulator (AOM). The zeroth diffraction order was monitored by a
wavelength analyzer, while the first was coupled to the FP cavity. The
FP transmission was detected by a fast detector, and the AOM was
strobed to initiate the cavity ring-down process exposed to CAPJs.
This method allowed the researchers to determine the density
distribution of H2O2 in CAPJs produced by a KINPen-sci plasma
jet, where the highest concentration lies in an elongated lobe close to
the nozzle. This approach will help in understanding the chemical
reactions present in the plasma zone including formation and
consumption mechanisms of biomedically relevant species.

Still in the framework of absorption spectroscopy, the paper by
Frigenti et al. demonstrates the use of microbubble resonators
(MBRs) as highly compact, scattering-free absorption
spectrometers, leveraging the thermal sensitivity of their
whispering gallery mode resonances. By actively locking the
probe laser wavelength to the selected MBR resonance, the
sensitivity and stability of the system are significantly enhanced
with respect to previous works, achieving a signal-to-background
ratio above 10 even for a highly diluted water suspension of
PEGylated gold nanorods. A direct comparison with the

absorption profile measured by a standard spectrophotometer
showed a close match with the MBR sensor, validating its
accuracy. The authors also present a preliminary model to
determine the absolute absorption coefficient of the sample
within the MBR, showing that the correct order of magnitude is
retrieved. However, more sophisticated computational models are
needed to accurately determine the absorption coefficient. This
study highlights the potential of MBR spectrometers for precise
and efficient absorption measurements in various real-world
scenarios, specifically for extremely small samples or low
concentrations of absorbers.

In summary, through this Research Topic, we highlight the
significant advances in spectroscopic techniques and cavity-
enhanced methods that are pushing the limits of precision
measurement in the spectroscopy field. These advancements pave
the way for more accurate environmental monitoring, improved
medical diagnostics, and deeper insights into molecular dynamics.
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