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Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are two types of
transient phenomena characterized by flow deflected and hot cores bounded
by one or two compressional boundaries in the foreshock. Using conjunction
observations by the Time History of Events and Macroscale Interactions
during Substorms (THEMIS) mission, we present an MHD HFA with a core
filled with magnetosheath material around the bow shock and a typical
kinetic FB associated with foreshock ions upstream of the bow shock,
occurring simultaneously under the same solar wind/interplanetary magnetic
field (IMF) conditions. The displacements of the bow shock moving back
and forth along the sun-earth line are observed. Electron energy shows
enhancements from ∼50 keV in the FB to ∼100 keV in the HFA core, suggesting
additional acceleration process across the bow shock within the transient
structure. The magnetosheath response of an HFA core-like structure with
particle heating and electron acceleration is observed by the Magnetospheric
Multiscale (MMS) mission. Ultralow frequency waves in the magnetosphere
modulating cold ion energy are identified by THEMIS, driven by these transient
structures. Our study improves our understanding of foreshock transients
and suggests that single spacecraft observations are insufficient to reveal
the whole picture of foreshock transients, leading to an underestimation
of their impacts (e.g., particle acceleration energy and spatial scale of
disturbances).
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1 Introduction

Hot flow anomalies (HFAs) [1, 2] and foreshock bubbles (FBs) [3–8] are different
types of transient structures in the Earth’s foreshock region [9]. HFAs are characterized
by one or two compressional boundaries and a low-density, heated core with significant
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flow deflection [2]. The typical duration and spatial scale of HFAs
are a few minutes and 1–2 RE, respectively [10, 11], and they can
extend away from the Earth’s bow shock to 4.7 RE [12]. FBs are
observed as a density depletion accompanied by strong heating and
flow deflection, followed by a shock boundary on the upstream
side [5]. They typically measure 5–10 RE along the solar wind flow
direction [4, 13], and their transverse spatial scale can be as large as
the foreshock width seen in global hybrid simulations [5].

A rotational discontinuity (RD) or a tangential discontinuity
(TD) can transfer the kinetic energy of foreshock ions to thermal
energy, leading to the development of HFAs or FBs through the Hall
current driven by demagnetized foreshock ions upstream of the bow
shock [14, 15]. In this study, we refer to these as kinetic HFAs and
FBs, as they are generated from kinetic effects of foreshock ions.
Although the FBs are first believed to be generated only by RDs in
the solar wind [5], subsequent observations have shown that the TD
can be an efficient driver for FBs as for HFAs [16] if the gyroradii of
foreshock ions are larger than the thickness of TDs [3, 4, 17]. When
the supersonic solar wind encounters the bow shock, some plasmas
is reflected and transitions sunward (see review by [18]). An RD
or TD can distort the magnetic field lines, which demagnetize the
back-streaming foreshock ions. Depending on how the foreshock
ions interact with the RD or TD, either an HFA with one or two
compressional boundaries or an FB with a secondary shock can
formdue to differentHall current geometries through similar kinetic
process (e.g., [19, 20]). The newly formed shock upstream of the FB
can reflect incoming solar wind and generate a new foreshock region
[21], while also accelerating particles through Fermi acceleration
as it moves toward the bow shock [22, 23]. With the magnetic
field piling up at the upstream shock, electrons can be energized to
hundreds of keV through betatron acceleration [24]. Additionally,
both observations and simulations show that HFAs and FBs can
disturb the local bow shock and further affect the magnetosheath,
magnetopause, and, consequently, the magnetosphere
(e.g., [13, 25–27]).

MHD HFAs, on the other hand, can be described by MHD
models and thus differ from kinetic HFAs (as well as FBs) in their
processes of generation, locations, populations and core conditions
[28–30]. MHD HFAs are produced by low-density flux tubes
upstream of the bow shock, while kinetic HFAs are associated with
discontinuities propagating along the bow shock surface [10, 14].
MHD HFAs are generated at the bow shock, whereas kinetic HFAs
are generated upstream of the bow shock [2]. The ion distribution
within MHD HFAs is more Maxwellian compared to that in kinetic
HFAs, which are associated with suprathermal foreshock ions. The
densities with the cores of kinetic HFA are consistently lower than
the ambient solar wind density, while MHD HFAs exhibit density
depletions in their cores relative to the ambient magnetosheath
density. This is because MHD HFAs with high-density cores are
generated through the interaction between low-density flux tubes
and the oblique fast shock, which stretches denser magnetosheath
plasmas outwards to fill the core region [28]. The earthward low-
density flux tubes are not only solar wind structures but also include
other foreshock transients with low density, such as foreshock
cavities [31] and foreshock density holes (DHs) [32, 33], which
convect with discontinuities that do not directly generate HFAs.

Previous studies show that either the kinetic process or theMHD
method can independently form foreshock transients. In this study,

conjugate observations reveal that these two formation mechanisms
can coexist within a local area. Two spacecraft from theTimeHistory
of Events andMacroscale InteractionsDuring Substorms (THEMIS)
observed a kinetic FB and an MHD HFA simultaneously. This may
enhance our understanding of HFAs and improve comprehension of
foreshock transients. Understanding the formation mechanisms is a
necessary step toward forecasting the disturbances driven by these
transient structures.

2 Data

TheAdvancedComposition Explorer (ACE) and theDeep Space
Climate Observatory (DSCOVR) are used to identify upstream
solar wind discontinuities. At the Lagrange 1 (L1) point, solar wind
plasma parameters (density, bulk velocity and temperature) are
measured by the solar wind electron, proton and alpha monitor
(SWEPAM) [34] aboard ACE [35, 36] and the Faraday cup
boarded on DSCOVR [37, 38]. The available resolutions of the
data from these two instruments are 64 s and ∼4.5 s, respectively.
Magnetic field data with a 1 s time resolution are provided by
the magnetic field experiment (MAG) [39] on ACE and the
magnetometer on DSCOVR.

Near the Earth’s bow shock, THEMIS [40], consisting of
three spacecraft (THA, THD and THE), provides plasma data
measured by the electrostatic analyzer (ESA) [41] and magnetic
field data from the fluxgate magnetometer (FGM) [42], both with
a time resolution of ∼2.76 s. The solid state telescope (SST) [43]
provides pitch angle and energy spectra of suprathermal
electrons.

The Magnetospheric Multiscale Mission (MMS) [44] is used
to track the magnetosheath responses caused by foreshock
transients. Fast survey mode data for plasma parameters (time
resolution ∼4.5 s) and magnetic fields (time resolution 1/16 s) are
obtained from the fast plasma investigator (FPI) [45] and the flux
magnetometers [46], respectively. The energetic particle detector
(EDP) provides the electron spectrum (time resolution ∼2.5 s) and
the pitch angle distribution (time resolution ∼19.7 s) through the
fly’s eye energetic particle sensor (FEEPS) [47].

3 Case study

Multi-point observations of THA and THE on 29 September
2017, show that an HFA with a high-density core (relative to the
solar wind density) and a typical FB (Figure 1, marked by purple
shadows) formed under the same IMF conditions at ∼08:32 UT.
Two spacecraft are situated close to the bow shock, with THE
positioned nearer to the subsolar point (Figure 1O). They cross the
bow shock from themagnetosheath into the foreshock at ∼08:26 UT
and return to the magnetosheath at ∼08:37/08:38 UT (Figures 2E,
3E). The estimated geometries of the bow shock and magnetopause
are from the bow shock model [48] and the magnetopause model
[49], respectively (black curves in Figure 1O). The y-component
of the magnetic fields (By) is ∼0 on the downstream side of the
transients and positive on the upstream side for both observations,
indicating a discontinuity corresponding to the transient structures
(Figures 1B, I). Before THA and THE return to the magnetosheath,
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FIGURE 1
THA and THE observations of events on 29 September 2017, and the locations of the spacecraft in GSM coordinates. Panels (A–G) and (I–N) are
magnetic field strength, magnetic field vectors in GSE coordinates, electron density, ion bulk velocity in GSE coordinates, electron and ion
temperatures, pressures and the entropy for THA and THE, respectively. Panel (O) shows the positions of THA, THD, THE and MMS1 and the two black
solid curves are the estimated bow shock and the magnetopause.

Bz changes from negative to 0 around 08:36 UT (Figures 1B, I),
suggesting another discontinuity. The bow shock normal, derived
from the shock crossings, is between [0.98, 0.02, −0.18] and [0.85,
0.14, −0.50] based on the coplanarity method (n̂s = ±

(ΔB×ΔV)×ΔB
|(ΔB×ΔV)×ΔB |

,
where Δ represents the difference between the upstream value
and downstream values of the quantities). Both spacecraft are in
a quasi-parallel foreshock geometry (θBn ≈ 33° < 45°) when they
cross the bow shock into the solar wind (around 08:28 UT,
Figures 1B, I).

The HFA observed by THA, located at [11.3, −6.2, −3.0]
RE in GSE coordinates, has two compressional boundaries in
density (Figure 1C). Inside the core region, the electron density is
greater than that of the ambient solar wind (∼1 cm-3) but lower
than the magnetosheath value (∼8 cm-3). The flow is significantly
deflected from earthward to sunward at the core (Figure 1D), and
the temperatures of ions (∼750 eV) and electrons (∼100 eV) are

comparable to those in the magnetosheath (Figure 1E). The total
ram pressure (Pram = 2Pdyn + Pth + PB, where the dynamic pressure
Pdyn = nempv

2
n, the thermal pressure Pth = nikTi + nekTe, and the

magnetic pressure PB =
B2

2μ0
) reaches the maximum at the leading

boundary (∼08:30:50 UT) and drops to less than 1 nPa at the core
(Figure 1F). The entropy of the single fluid (S = − 1

n
∫d3v f ln f in

unit of ln(s3/cm6), where n is the number density in cm-3 and f is the
phase space density distribution in s3/cm6) [50] is expressed as the
integral of the particle distribution, and the result is overestimated
by the foreshock ions in the ambient of the HFA (Figures 1G,
2E). These characteristics indicate that this HFA is an MHD HFA
[28–30].The energy of electrons increases from several keV to above
50 keV (Figures 2C, D), likely due to the betatron acceleration from
the compressed magnetic field strength (Figure 2A) at the trailing
boundary, moving into the core along the field lines [24]. The ion
distributions in the core region are shown in the GSE-XY plane
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FIGURE 2
THA’s observation of (A) magnetic field strength, (B) magnetic field vectors, (C, D) electron spectra, and (E) ion spectrum. The black solid lines mark the
boundaries of the hot flow anomaly, and the dashed line marks the time of the velocity distributions in panel (F) and (G). The energy enhancement is
marked by yellow shadow in panels (A–C).

(Figure 2F) and in the BE plane (where the x-axis is along the
magnetic field direction and the y-axis contains the B×V vector)
(Figure 2G). The core material consists of a single component
(Figure 2E) and exhibits the asymmetry along the magnetic field
lines (Figure 2G) [51].

The FB observed by THE, located at [12.2, −4.9 -1.6] RE in
GSE coordinates, shows a low-density core with compressions in
magnetic field strength and electron density on the upstream side
at ∼08:32:30 UT (Figures 1H, J). Using the coplanarity method and
mass flux conservation (Vs =

(nuVu−ndVd)∙n̂s
nu−nd

, where the subscript d
represents the downstream and u represents the upstream), we find
that the upstream edge is propagating toward Earth with a speed
of Vs = 238.12km/s and a normal n̂s = [−0.96,0.26,0.10], consistent
with typical FBs (e.g., [7]). There is a strong deflection of the ion
bulk flow, along with heating of both electrons and ions, and an
enhancement of entropy in the core (Figures 1K, L, N). The total
ram pressure drops to nearly 0 in the core and is significantly
enhanced at the boundary (Figure 1M), which differs from the
MHD HFA. Figures 3C, D show that electrons within the FB are
energized to above 50 keV. The gradual increase in electron energy

shown in Figure 3D is consistent with Fermi acceleration (seemodel
comparison in Supplementary Figure S1 in the supplementary
material) as the FB shock progressively propagates toward the bow
shock [22]. Betatron acceleration [24] plays a minor role in the
core region but likely dominates at the compressional boundary. For
electrons above 30 keV, the acceleration appears weaker compared
to that within the HFA. It is possible that the electrons accelerated
by the FB could be further accelerated when reaching the HFA,
potentially due to further field strength enhancement. The pitch
angles of these electrons suggest a direction toward the upstream
(Figure 3B), indicating that they are not from the solar wind but
are associated with the bow shock and the transient structure.
It is clear to see solar wind beam and foreshock ions in the
ambient solar wind in the ion distributions (Figures 3F, K). Inside
the FB, the solar wind beam weakens and becomes separated
from foreshock ions (Figures 3G–J), which is distinct from the
observations within the MHD HFA.

At the L1 point, ACE (located at [231.2, 40.8, −17.5] RE
in GSE coordinates) and DSCOVR (located at [227.7, −37.0,
10.4] RE in GSE coordinates) identified two discontinuities in
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FIGURE 3
THE’s observation of (A) magnetic field strength, (B) magnetic field vectors, (C) electron pitch angle for energy above 30 keV, (D, E) electron spectra
and (F) ion spectrum. The black solid lines mark the boundaries of the foreshock bubble. Panels (G–L) are velocity distributions, where (K) is at the
boundary, (H–J) are inside foreshock bubble’s core and (G) and (L) are in the ambient solar wind.

the solar wind, indicated by changes in By from negative or
∼0 to positive, and in Bz from negative to positive or ∼0
(Figures 4B, C, H, I, marked by dashed lines; also see comparison
in cone angle and clock angle in Supplementary Figure S2 in
the supplementary material). The separation between the two
discontinuities is 2–4 min, consistent with THEMIS observations.
ACE does not show a clear density depletion (Figure 4D). Possibly
due to its higher time resolution, DSCOVR observed multiple
density depletion structures (Figure 4J), accompanied by proton
temperature depletion as well (Figure 4K). Thus, these structures
are not pressure balanced (Figure 4L), and their nature and origins
remain unclear.

To further confirm that the first discontinuity, who contributes
to the formation of the transients, is the same one observed by
THEMIS, we compute the normal directions of it for comparison
between THEMIS, ACE and DSCOVR. Using the minimum
variance analysis (MVA) method on ACE’s magnetic field, the
normal directions are close to those derived from the cross
product (n̂TD = ±

Bu×Bd
|Bu×Bd|

). For the first discontinuity, we have
n1MVA
= ± [0.90,−0.43,0.02] and n1TD = ± [0.80,−0.44,0.40]. The

angle between the two normal directions is 22.6°, providing
reasonable ground to assume that the first discontinuity is a TD.
Measurement at DSCOVR shows that the normal direction of the
first TD is [0.64,−0.57,0.51]. Using the cross product method at
THEMIS, the normal of the first TD (using background field on
two sides of transient structures) is n1THA

= ± [0.65,−0.07,0.76] or
n1THE
= ± [0.68,0.09,0.73], which are roughly consistent with ACE

and DSCOVR observations. The propagation time of the first TD
from ACE to THEMIS is calculated to be 31.3 min, using n1TD
and Vsw = [−634.4,−15.4,−14.6]km/s, which roughly align with
observed times (∼40 min). The ∼9 min discrepancy may arise from
measurement uncertainty from ACE (which is currently not well

calibrated), leading to a deviation from the correct direction in
the calculation. From the DSCOVR data, the estimated duration is
calculated to be 37.9 min, which agrees with the observation and is
considered more reliable.

Approximately 5 min after the observations around the bow
shock by THEMIS, MMS1 (located at [-7.9, 21.2, 6.3] RE in
GSE coordinates on the dusk side) in the magnetosheath detects
the same magnetic field profile with an HFA core-like structure
(Figure 5, marked in purple shadow). The density drops from
∼7.0 cm-3 to 2.3 cm-3, followed by an enhancement to 13.3 cm-3

(Figure 5C). The bulk velocity is slightly deflected, averaging to
VM′sh = [−465.0,183.7,87.8]km/s (Figure 5D). Electron and ion
temperatures are doubled in the low-density region compared
to the ambient conditions (Figures 5E, F). The entire structure is
pressure-balanced (Figure 5G). Some electrons are observed to be
energized above 50 keV in the spectra around 08:36–08:38 UT
(Figures 5I, J). The pitch angle of the energetic electrons is anti-
parallel to the magnetic field within the structure and mainly
parallel in the background (also see Supplementary Figure S3 in
the supplementary material). Because the IMF is sunward, the
localized anti-parallel asymmetry suggests that these energetic
electrons locally originate from the bow shock side (Figure 5H),
further confirming that the transient structure acts as an accelerator.
Using the coplanarity method and the conservation of mass flux,
the upstream boundary of the HFA moves in the direction of n̂s =
[−0.93,0.33,0.15] at a speed Vs = 153.0km/s. The calculated time
delay from the THEMIS location to MMS is ∼6 min, based on the
TD normal direction measured by DSCOVR, which is consistent
with the observation.

THD on the downstream side of THA and THE (Figure 1O;
around the sameMLT sector) observes clear ULF waves (Figure 6C)
in the magnetosphere [52], with a period comparable to the time
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FIGURE 4
ACE and DSCOVR observations in the upstream solar wind. Panels (A–C) and (G–I) are magnetic field vectors in GSE coordinates. (D, J) are proton
density, and (E, K) are proton temperatures. (F, L) show the magnetic pressures, thermal pressures and static pressures. Four dash lines mark two
discontinuities across and after the transients.

scale of the MHD HFA. The velocity oscillations associated with
the ULF waves (Figure 6E) modulate the energy of cold ions
(Figure 6H), consistent with Wang et al. [17]. This modulation
causes cold ion energy to periodically increase to levels detectable
by ESA, thereby affecting the ion temperature (Figure 6F).
These conjunction observations from THEMIS to MMS indicate
that the transient structures are localized structures convecting
with the discontinuities from the dawn side to the dusk side,
continuously accelerating electrons and disturbing the local
magnetosphere.

4 Discussion and summary

Using conjunction observations from three THEMIS spacecraft
and one MMS spacecraft, we demonstrate that a kinetic FB and
an MHD HFA can occur simultaneously, accelerating electrons
up to 100 keV and locally disturbing the magnetosheath and
magnetosphere while convecting from the dawn side to the dusk
side with solar wind discontinuities.The coexistence of an FB and an

HFA indicates the limitation of single spacecraft observations, which
may not reveal the full scope of foreshock transients. For example,
if only one spacecraft had been observing the small FB, the electron
acceleration energy (∼50 keV vs∼100 keV) and the scale (∼1 min vs.
∼3 min) of the disturbances in the bow shock, magnetosheath,
and magnetosphere could have been significantly underestimated.
The existence of MHD HFAs might also have been overlooked. In
the future, more conjunction observations are essential to enhance
our understanding of the formation and impacts of foreshock
transients.

In the previous study, a 2.5-D global hybrid simulation
reproduced both an FB and an HFA coexisting with a single
discontinuity (see run 6 in [6]). We observe this situation for
the first time. In the simulation, as a rotational discontinuity
(RD) moves into the foreshock, a planar FB can form due to
the interaction between the RD and the back-streaming ions.
When the RD continues to convect and interacts with the bow
shock, the FB dissipates while an HFA forms. The core of an FB
can shift the displacements of the bow shock and magnetosheath
outward due to its low dynamic pressure, potentially acting as a
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FIGURE 5
MMS observation in the magnetosheath. Panels are (A) magnetic field strength, (B) magnetic field vectors in GSE coordinates, (C) electron density, (D)
ion bulk velocity, (E) electron temperatures, (F) ion temperatures, (G) magnetic pressure, thermal pressure and static pressure, (H) pitch angle of
electrons between 40 and 100 keV, (I) electron intensity above 50 keV, (J) electron energy spectrum and (K) ion energy spectrum.
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FIGURE 6
THD observation in the magnetosphere. Panels are (A) magnetic field strength, (B) magnetic field vectors in GSE coordinates, (C) magnetic field
variations relative to the time average dB, (D) electron density, (E) ion bulk velocity, (F) ion and electron temperatures, (G) electron energy spectrum
and (H) ion energy spectrum.

low-density flux tube that generates HFAs and explains the
simultaneous observations. However, in our cases, the FB itself
is unlikely large enough to be the direct driver, so there could
be a combination of other processes. Previous observations and

simulations by Otto and Zhang [28] indicate that a low-density flux
tube can drive MHD HFAs, such as those observed by DSCOVR.
This low-density flux tube does not have to be solar wind structures,
but can also be some other foreshock transients, such as foreshock
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density holes [29, 30, 33] and foreshock cavities [53]. Further
analysis is still needed to uncover the mechanisms behind the
coexistence of an FB and an HFA.

How electrons are accelerated to 100 keV around the bow shock
remains an open question. Our results suggest a possibility of
multi-step acceleration. Electrons may first be energized within
a foreshock transient, e.g., through Fermi acceleration. As these
electrons reach the bow shock along with the foreshock transient,
the significant enhancement of field strength associated with
the development of an MHD HFA may further energize them
through betatron acceleration and other possible mechanisms. This
scenario suggests that foreshock transients could energize electrons
through an additional step when interacting with the bow shock,
leading to higher acceleration capability than previously thought.
Further observations and modeling efforts are needed to confirm
this scenario.
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