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Evolutionary modeling and
analysis of opinion exchange and
epidemic spread among
individuals

Rong Zeng1†, Xinghua Chang2*† and Bo Liu1

1School of Mathematics and Statistics, Shanxi University, Taiyuan, China, 2Department of Mathematics,
Taiyuan University, Taiyuan, China

The opinions of individuals within a group about an ongoing epidemic play
a crucial role in the dynamics of epidemic spread. People’s acceptance of
others' opinions also changes with the changing epidemic situation and the
dynamics of communication between individuals, how individuals' opinions and
acceptance of others' views on epidemics affect the spread of epidemics has
become an unresolved issue. In this study, we construct a two-layer coupled
network that integrates the Hegselmann-Krause (HK) continuous opinionmodel
with an epidemic model. This framework takes into account the evolutionary
game of opinion acceptance among individuals within the group. We investigate
the dynamic interaction between opinion exchange among individuals and the
spread of the epidemic and derive the epidemic spread threshold of the model
using the Quasi-Mean-Field (QMF) approach. The results indicate that under
different infection rates, individuals in the group spontaneously form varying
levels of opinion about the epidemic, which in turn evolve into different final
infection states for the group. The higher the infection rate, the faster a positive
and unified opinion forms. Promoting communication among individuals within
the group can, to some extent, inhibit the spread of the epidemic. However, due
to the diversity and complexity of information in the real world, the phenomenon
of “delayed epidemic prevention” often occurs.
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1 Introduction

Infectious diseases not only pose a serious threat to individual health but also
have significant impacts on public health security at the community level and globally
[1, 2]. Consequently, many scholars have conducted research and analysis on the spread
of infectious diseases. During the 2003 outbreak of SARS, people adopted simple self-
protection measures after obtaining information about SARS, such as reducing travel,
avoiding crowded places, frequent handwashing, staying at home, and wearing masks.
Along with mandatory measures from the government or health departments, these
actions effectively controlled the spread of the disease [3–6]. Devi et al. [7] developed
a SEI Q 1 Q 2 R model with fuzzy parameters for COVID-19 and computed the basic
reproduction number using the next-generationmatrixmethod and used it for further study
of model prediction. Moran Duan et al. [8] focused on age heterogeneity in epidemiologic
models and considered the effect of pharmacologic interventions on disease transmission.
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Yang et al. [9] proposed a heterogeneous disease-behavior-
information spreading model to study how infection risk is affected
by information diffusion, behavioral changes, and disease spread.
Sarafa et al. [10] introduced time-varying exposure rates in epidemic
modeling, taking into account that exposure rates and social contact
patterns vary by age and time.

The role of information dissemination can contribute to
knowledge dissemination, social communication, decision support,
etc., as well as assisting governments in the performance of their
functions [11–13]. People usually acquire relevant information
about social events, share interests, discuss trending topics, and
express their opinions [14]. An opinion is a view, attitude, or
evaluation of a thing, event, or issue by an individual or group
of individuals, which is subjective and not necessarily based on
factual or scientific evidence, and which can be construed as a
discrete choice [15]. At the same time, individuals in society are
often influenced by the opinions and information of others.Through
frequent interactions, they promote the spread of opinions within
social networks, a process that exhibits typical characteristics of
complex systems such as complexity, uncertainty, and openness
[16]. People’s viewpoints and opinions have a profound impact on
various aspects of society, from personal life to national security,
from business operations to public policy, the dissemination of
online information and discussion is shaping modern society [17].
Meanwhile, the complexity, diversity, and sudden negative impacts
of public opinion are often overlooked. For instance, rumors
about COVID-19 confused people worldwide, rumors about the
scientific and political sphere affecting society. Many important
results have been achieved in the study of opinion dissemination
among individuals in social networks [18, 19]. Street et al. [20]
proposed a novelMultipathAsynchronousThreshold (MAT)model,
modeling influence decay on diffusion paths, time decay, and
individual diffusiondynamics, to study influence diffusionmodeling
and maximization problems in the context of viral marketing.
Zhao et al. [21] constructed a comprehensive bounded confidence
model to simulate the evolution of followers? Opinions under
two advertising opinion leaders. They found that the weight of
advertising influence has a dual effect on the evolution of followers?
Opinions, and the information transmission probability of opinion
leaders significantly impacts collective opinion evolution. Li et al.
[22] developed two opinion dynamics models to study the evolution
of public opinion among decision-makers and other related
individuals on social media. They then proposed a consensus-
reaching process based on public opinionmanagement to handle the
public opinion formed by all related groups. Liu et al. [23] proposed
a new Negative Feedback SIR (NFSIR) model for social network
information dissemination by analyzing the characteristics of social
networks and the social attributes of propagators and combining
it with traditional epidemiological models. They constructed
an information transmission tree according to the evolution
mechanism of information interaction and established differential
equations for transmission dynamics, revealing the complex
interactions and mutual influences between user relationships,
social communities, and information in cyberspace.Wang et al. [24]
proposed an algorithm for constructing a two-layer social network,
considering the weights of strong and weak tie networks and
individuals' subjective emotional tendencies.They introduced the E-
HK, WHK, and E-WHK models to study the impact of emotional

tendencies on opinion dissemination and evolution. Su et al. [25]
studied a continuous-time model of opinion separation on signed
networks by combining Degroot’s positive and negative weighting
rules to describe the influence of neighbors and Jadbabaies leader-
follower reflection mechanism to describe followers' trust/distrust
relationships with leaders.

Complex Network Theory Provides a Framework and Tools
for Modeling and Analyzing the Spread of Infectious Diseases
and Information [9, 26, 27]. Researchers have conducted extensive
studies on the spread of infectious diseases [10, 28, 29] and
information [30–32] within complex network frameworks. Sun
et al. [33] investigated the effect of resource diffusion on disease
transmission in two-layer higher-order networks. Their results
showed that expanding resource dispersion on 2-simplexes can
inhibit the spread and outbreak of infectious diseases. Li et al. [34]
modeled the spread of a multi-informative infectious disease on a
two-layer network by considering both local and global information
as well as individual differences. Huang et al. [35] investigated
whether people believe more in social influences or risk perceptions
when faced with asymptomatic infections, and developed a model
of infectious disease in a multilayer network topology. Xia et al.
[36] proposed a SIQRS model with quarantine, investigated its
evolution on a simple complex, and derived transmission thresholds
and steady-state infection proportions as well as their stability
conditions using the QMF method. Wang et al. [37] constructed
a two-layer metapopulation network model and explored the
group-perceived information transmission on the spatial spread of
epidemics. Huo et al. [38] proposed a three-layer coupled network
model in order to investigate the influence of government policies
on the co-evolution of information transmission, vaccination
behavior and disease transmission, in which the information,
behavior and infectious disease layers considered the influence of
government policies.

Previous studies often dichotomize individuals' awareness or
concepts of disease, yet real-world information and people’s
opinion states tend to be continuous values, the acceptance
of others' opinions has not been taken into consideration.
Therefore, this paper constructs a two-layer coupled network that
integrates a continuous opinion model with an epidemic model,
incorporating individuals' varying receptiveness to others' opinions,
investigating the co-evolution of dynamic opinion exchange among
individuals regarding epidemics and the spread of infectious
diseases within the group. The main contributions of this paper
are as follows: (1) Combining the HK continuous opinion model
with an epidemic model, we constructed a two-layer coupled
network. The upper layer represents the HK opinion model,
and the lower layer represents the epidemic spread model. By
introducing the epidemic spread situation into the opinion update
function of the HK model, we studied the dynamic interaction
between individual opinion changes and epidemic spread. (2)
Considering the openness of individuals within the group to
others' opinions, we introduced the evolutionary game of opinion
acceptance attitudes. (3) Using the QMF approach, we derived the
dynamic epidemic spread threshold of the model. The structure
of the paper is as follows: Chapter two introduces the model,
Chapter 3 analyzes the epidemic spread threshold using QMF,
Chapter 4 presents the simulation results, and Chapter 5 provides
the conclusion.
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2 Model introduction

Exchange of views on epidemics plays a crucial role in
determining how an epidemic spreads within a community.
When people discuss their perspectives on the severity of an
epidemic, the effectiveness of preventive measures, and their
experiences, these conversations can both promote widespread
adherence to public health guidelines and foster skepticism and
misinformation. Constructive dialogue that spreads accurate
information can raise awareness and encourage collective
action, thereby slowing the spread of the disease. Conversely, if
exchanges are filled with misinformation or fear, they can lead to
resistance against recommended behaviors, such as vaccination,
or encourage social distancing, thereby accelerating the spread
of the epidemic. Whether through social media, community
discussions, or interpersonal conversations, the nature and
content of these exchanges can significantly influence public
perceptions and behaviors, ultimately affecting the trajectory
of the epidemic.

This paper considers the dynamic interaction between changes
in individual opinions within a group and the spread of an
epidemic, establishing a two-layer coupled infectious disease model
(as shown in Figure 1), we represent people’s opinions as a series
of continuous values and use game theory to represent changes
in people’s receptive attitudes toward opinions. The first layer is
the individual opinion propagation layer, and the second layer
is the SIRS disease transmission layer. The individual opinion
propagation layer is modeled using the HK propagation model,
assuming that the opinion values of individuals can be positive
or negative. The sign of the opinion value represents the pro or
con opinions about the epidemic (such as the degree of epidemic
control), correct or incorrect epidemic response knowledge, true
information, or rumors. Assume there are N individuals in the
network, with individuals i and j having opinions Xi(t) and Xj(t)
at time t, respectively, and j ∈ Ni represents the set of neighbors
of node i. If individual j is within the communication radius ϵ
of individual i, it means that communication can occur between
individuals, exchanging their respective opinion values about the
epidemic, that is:

|Xi(t) −Xj(t)| < ϵ

Due to the fact that different individuals may experience
different changes in opinion after communicating with others,
this paper considers individual heterogeneity by classifying
individuals i into those who are open to opinion exchange
(open), meaning they are easily influenced by others' opinions,
and those who are persistent (persist), meaning they retain their
own opinions regardless of whether others' opinions are correct
or incorrect. Thus, their opinion value will remain the same as
the previous time step. When individual i exchanges opinions
with their neighbors, they can communicate with neighbors
who meet the trust radius. Let z(t) denote the current epidemic
prevalence rate, then the opinion update function for individual
i is as follows:

z(t) = I(t)/(I(t) + S(t) +R(t))

FIGURE 1
Epidemiological modeling in conjunction with the HK model.

{{{{
{{{{
{

Xi(t+ 1) =

∑
j∈Ni

Xj(t)

nj
+ z(t)(max{Xj(t)} −Xi(t)),open

Xi(t+ 1) = Xi(t),persist

where nj is the number of neighbors.
Individuals within a communication radius of ϵ communicate

with each other, and their attitudes affect whether their opinion
values are updated and the benefits obtained from communication.
Individuals' obtained benefits affect attitudes toward subsequent
opinion exchanges, and this changes in attitudes toward acceptance
of others' opinions is described through game theory. Suppose the
payoff for individual i after exchanging with j is the change in
their opinion value, defined as Oi(t) = Xj(t) −Xi(t). Thus, Oi(t) can
be positive or negative. Additionally, the cost of communication
C (such as time cost, economic cost, or emotional cost) must
be considered. Assuming that people with open attitudes can be
influenced by positive or negative opinions, the payoff matrix
M for individual i and the payoff function πi(t) are defined
as follows:

πi(t) = ∑
j∈Ni

SiMSj
T

where si and sj represent the strategies of nodes i and j, respectively,
with si, sj ∈ {O,P},O = (1,0),P = (0,1). j ∈ Ni represents the set of
neighbors of node i.

Assume that individual i randomly selects one of its neighbors to
imitate their “open” or “persist” attitude toward opinion acceptance.
LetKi denote the ease or difficulty with which an individual changes
their strategy. Considering individual heterogeneity, assume that

Type/type O P

O Oi(t)
2
−C Oi(t) −C

P −C −C
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FIGURE 2
Evolution of system state over time for β = 0.2. (A) Individual's opinion values. (B) The proportions of S, I, R states.

FIGURE 3
Evolution of system state over time for β = 0.5. (A) Individual's opinion values. (B) The proportions of S, I, R states.

Ki ∈ U[0.1,0.9]. The probability of strategy transition for individual
i is then given by:

Pi(si→ sj) = 1/(1+ e
−

πj(t)−πi(t)

Ki )

The second layer is the physical transmission layer of the
infectious disease, where individuals may be in one of three states:
Susceptible (S-state), Infectious (I-state), or Recovered (R-state).
S-state represents individuals susceptible to the epidemic, I-state
represents individuals who are infected and show clinical symptoms,
and R-state represents individuals who have recovered from the
disease. Assume that R-state individuals still have a risk of infection
and can revert to the S-state. An individual’s opinion value regarding
the epidemic affects their transition probabilities across all states of
the epidemic. Assume that S-state individuals in the group become

infected at a rate βi(t) to become I-state individuals. If an individual
holds a negative opinion, their infection probability increases, while
it decreases with a positive opinion. I-state individuals recover to
the R-state at a recovery rate μi(t). If an individual holds a negative
opinion, their recovery probability decreases, while it increases
with a positive opinion. R-state individuals revert to the S-state
at an immunity loss probability σi(t). If an individual holds a
negative opinion, this probability increases, while it decreases with
a positive opinion.

{{{{
{{{{
{

βi(t) = (1− 0.125(Xi(t))
3 − 0.075Xi(t))β,S→ I

μi(t) = (1+ 0.05(Xi(t))
3 + 0.05Xi(t))μ, I→ R

σi(t) = (1− 0.05(Xi(t))
3 − 0.05Xi(t))σ,R→ S
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FIGURE 4
Evolution of system state over time for β = 0.8. (A) Individual's opinion values. (B) The proportions of S, I, R states.

FIGURE 5
Evolution of system state over time for ε = 0.1. (A) Individual's opinion values. (B) The proportions of S, I, R states.

3 Model analysis

This section uses the QMF approach to analyze the epidemic
spread threshold under dynamic interaction of individual opinions.
Let Aij be the adjacency matrix of the epidemic layer in the second
layer. The probabilities that node i is in the Susceptible state Si(t),
Infectious state Ii(t), and Recovered state ,Ri(t) at time t can be
expressed by the dynamic Equations 1–3:

dSi(t)
dt
= −Si(t)

N

∏
j=1

AijIj(t)βj(t) +Ri(t)σi(t) (1)

dIi(t)
dt
= Si(t)

N

∏
j=1

AijIj(t)βj(t) − Ii(t)μi(t) (2)

dRi(t)
dt
= Ii(t)μi(t) −Ri(t)σi(t) (3)

If β ≤ βc, when the epidemic spread reaches its steady state, only
a finite number of individuals in the system will be infected, and
the number of infected individuals will not increase as the network
size increases. This implies that for any time t, the infection density
Ii(t) →  0 holds. When the epidemic threshold is reached, for all i
and t, Ii(t) = ϵ≪ 1. Ignoring higher-order terms in (2), i.e., Ii(t)2 =
o(Ii(t)) = 0, Ii(t)Ij(t) = o(Ii(t)) = 0, the probability of node i being in
the Susceptible state is Si(t) = 1− Ii(t) ≈ 1. Equation 2 then becomes:

dIi(t)
dt
=

N

∑
j=1

AijIj(t)βj(t) − Ii(t)μi(t)
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FIGURE 6
Evolution of system state over time for ε = 0.2. (A) Individual's opinion values. (B) The proportions of S, I, R states.

FIGURE 7
Evolution of system state over time for ε = 0.3. (A) Individual's opinion values. (B) The proportions of S, I, R states.

=
N

∑
j=1
(Aijβj(t) − μi(t)δij)Ij(t) (4)

where δij is the element of the identity matrix.
The average infection rate at time t can be calculated as β(t) =

∑Nj=1βj(t)

N
, and the average recovery rate as μ(t) =

∑Nj=1μi(t)

N
. Equation 4 is

represented as Equation 5:

dIi(t)
dt
= β(t)

N

∑
j=1
(Aij −

μ(t)
 β(t)

δij)Ij(t) (5)

Let A = Aij represent the elements of the matrix A. The solution
to the above equations is transformed into solving for the eigenvalues
of matrix A. When the largest eigenvalue of matrix A is greater than

0, the infection density will grow exponentially over time, leading
to a global epidemic spread in the system. Let Δmax(A) denote the
largest eigenvalue of matrix A. The epidemic spread threshold of the
system at time t is given by Equation 6:

βc(t) =
μ(t)
Δmax(A)

(6)

substituting the expression for μi(t) yields Equation 7:

βc(t) =
μ

N

∑
i=1
(1+ 0.05(Xi(t))

3 + 0.05Xi(t)),

NΔmax(A)
(7)
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FIGURE 8
Dynamic epidemic outbreak thresholds for different ε,μ,σ. (A) ε = 0.1,0.2,0.3. (B) μ = 0.2,0.5,0.8. (C) σ = 0.2,0.5,0.8.

4 Numerical simulation

This paper uses Monte Carlo simulations to analyze the spread
of epidemics under dynamic interaction of individual opinions
through the synchronized update mechanism on a BA-BA network,
and the results are the average of 100 independent realizations. The
initial setup consists of a total of 2000 nodes, with 1,000 nodes in
each layer, and an average degree of k = 8. Nodes in the lower layer
are connected to their corresponding nodes in the upper layer. The
initial proportions of Susceptible (S) and Infectious (E) individuals
are 98% and 2%, respectively. Each node chooses to adopt an “Open”
or “persist” attitude towards communication with neighbors with
a probability of 50%. In order to investigate the effect of opinion
values evolving over time on epidemics, this paper does not limit
the size of opinion values, which represents the emergence of new
scientific studies or new rumors about epidemics as time advances,
and this co-evolutionary phenomenon is investigated in this paper.
The initial parameter settings for themodel are as follows:Xi(t = 0) ∼
U[−1,1],ε = 0.5,β = 0.5,σ = 0.5,μ = 0.4,C = 0.05.

Figure 2A shows the evolution of the proportions of different
states in the epidemic layer over time, while Figure 2B illustrates the
evolution of the opinion layer over time, where each curve represents
the change in an individual’s opinion value over time. From
Figure 2A, it can be observed that when the epidemic transmission
rate is low, the overall level of positive opinion values regarding the
epidemic within the group is not high and is quite dispersed. This
corresponds to a relatively low level of awareness and knowledge
about epidemic prevention among individuals in reality. Figure 2B
shows that although most individuals remain in the susceptible
state under stable conditions, there is always a certain proportion of
individuals who are in the infectious state.This suggests that people’s
differing opinions about epidemics cause them to spread.

When β = 0.5, as shown in Figure 3A, after some time of
opinion exchange among individuals, all individuals develop a more
unified opinion regarding the epidemic, and the opinion values are
relatively high. Figure 3B Shows that the proportion of the S-state in
the epidemic layer has significantly increased, reaching 90%, while
the proportion of infected individuals is relatively low.
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When β = 0.8, that is, under high infection rates of the disease,
Figure 4A shows that the group’s opinion values are extremely
unified and have reached the highest value observed in the
experiment. Additionally, the group’s opinion values stabilize more
quickly and at a higher level compared to Figure 3A. Figure 4B
indicates that the proportion of the S-state in the epidemic layer
has reached 100% in the stable state, with no infected individuals
present. Combining Figures 2–4, it can be seen that only under
high infection rates can individuals within the group form a
unified and positive opinion about the epidemic. Otherwise,
individuals will have divergent opinions on the epidemic, and
the epidemic situation will continue to spread. This suggests
that external interventions are needed to control the spread of
epidemics.

When ε = 0.1, that is, when the communication radius is relatively
small, Figure 5A shows that it is difficult for the group’s opinion values
to unify, and they remain at a relatively low level. Figure 5B Indicates
that the proportion of individuals in the S-state is almost equivalent
to that in the I-state, with the proportion of infected individuals
remaining at 40% in the stable state. When ε = 0.2, Figure 6A
shows that as the communication radius increases, the overall
opinion value of the group rises and gradually converges towards a
uniform opinion. Over time, all individuals' opinion values increase
to a higher and more unified level. Figure 6B indicates that the
proportion of individuals in the S-state also gradually increases,
while the proportion of infected individuals decreases over time.
The number of S-state individuals is higher compared to Figure 5A.
However, even though a more unified and higher opinion value is
formed, the epidemic has already spread. The speed at which the
group forms a positive opinion about the epidemic cannot keep up
with the spread of the epidemic, resulting in a situation where it
is too late for the entire group to address the epidemic, leading to
widespread and uncontrollable spread within the group.

When ε = 0.3, Figure 7A shows that the opinion values are more
unified and higher compared to Figure 6A. Figure 7B indicates that
the proportion of individuals in the S-state is also higher compared
to Figure 6A, while the proportion of individuals in the I-state
is lower. Similar to Figure 6, individual opinion values gradually
increase to a higher level over time, and the proportion of S-state
individuals also gradually rises. However, by this time, the epidemic
has already spread. Even though a positive and unified opinion about
the epidemic is eventually formed, it cannot control the spread of
the epidemic. Combining Figures 5–7, it can be seen that facilitating
communication among individuals within the group can somewhat
suppress the spread of the epidemic. However, changes in the group’s
opinion often lag behind the spread of the epidemic, resulting in a
phenomenon of ‘epidemic response lag.'

As shown in Figure 8A, when the communication radius ε is
increased, the epidemic threshold significantly rises. Additionally, as
the dynamics of the two-layer coupled network evolve, the threshold
also changes continually, stabilizing as the dynamic network reaches
equilibrium. Figure 8B indicates that as μ increases, the dynamic
epidemic outbreak threshold also increases significantly. Figure 8C
shows that the epidemic outbreak thresholds for σ = 0.2 and σ = 0.8
exhibit similar developmental trends. This similarity may be due to

the fact that the development trends of group opinion values are
similar under these two parameter settings.

5 Conclusion

The perspectives of individuals within a population play a
crucial role in the dynamics of epidemic spread. People’s views on
an epidemic can influence their behaviors, such as adherence to
public health guidelines, acceptance of vaccinations, and compliance
with social distancing measures. Understanding the evolution of
individuals' opinions on an epidemic is vital for controlling its spread
and ensuring the success of public health interventions. Therefore,
this paper establishes a two-layer coupling of the HK continuous
opinion model and the epidemic model, using QMF to derive the
epidemic dynamic spreading threshold, examining the dynamic
interactions between individual opinion exchanges and epidemic
spread within a population. The results show that under different
infection rates, individuals within the population spontaneously
form varying degrees of opinion on the epidemic, which then evolve
into different final infection states for the group. Higher infection
rates lead to faster formation of a positive and unified opinion value.
The communication radius of individuals within the population
significantly affects the development trend and threshold of the
epidemic; a smaller communication radius makes it difficult to
form a high-level and unified opinion. Promoting communication
among individuals within the population can partially suppress
epidemic spread, but due to the presence of diverse positive and
negative information in the real world, changes in group opinion
often lag behind the speed of epidemic spread, leading to a
phenomenon of ‘epidemic control lag.' The communication radius
between individuals, recovery rate, and immune loss probability
all affect the epidemic spreading threshold in different ways. To
control the spread of an epidemic, it is not only necessary to promote
communication within the group, but also to increase external
intervention in controlling the disease when the transmission rate
is high. The limitation of this paper is that it does not capture
more complex real-world phenomena such as polarization, media
influence, or echo chambers. In the future, factors such as individual
knowledge levels, learning, mobility, and time-varying network
topology can be integrated and taken into account in epidemic
transmission.
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