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of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China, 3College of
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The dynamics of plant-insect interactions play a crucial role in the ecosystem,
influenced by complex molecular signaling pathways. This study extends
existing deterministic models of plant-insect systems by incorporating
stochastic elements and molecular interactions, particularly focusing on the
roles of Botrytis Induced Kinase-1 (BIK1) and Phyto Alexin Deficient-4 (PAD4)
proteins. The model evaluates the effects of constant inhibition, pulsed
inhibition, and adaptive feedback control on plant biomass (y1), insect herbivore
density (y2), PAD4 levels (y3), and BIK1 levels (y4). Additionally, we examine
the impact of different noise types, including deterministic, Gaussian, and Lévy
noise, on system variability and stability. Results indicate that our stochastic
model is superior as it shows a significant reduction in BIK1 levels, particularly
under higher noise intensities, which enhances PAD4 activity and improves plant
defense mechanisms. Moreover, moderate noise intensity (σ = 0.05) provides
an optimal balance, sustaining PAD4 levels while effectively controlling insect
herbivore populations. We also integrate MEMS-based feedback mechanisms,
which dynamically adjust plant biomass and molecular signaling, further
stabilizing the system’s response to environmental variability.
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1 Introduction

The intricate dynamics of plant-insect interactions have long captivated ecologists
and biologists due to their profound implications for ecosystem stability and agricultural
productivity. A notable example of such interaction is the relationship between plants and
herbivorous insects, such as aphids, which are significant contributors to crop damage
and yield loss globally [1]. Plants have evolved sophisticated defense mechanisms to
counteract these insect attacks, initiating a complex interplay of molecular signals and
physiological responses aimed at mitigating damage and ensuring survival [2, 3]. In this
context, the role of Botrytis Induced Kinase-1 (BIK1) has emerged as a critical component
of the plant defense arsenal. BIK1 is involved in the phosphorylation of the flagellin
receptor FLS2 and BAK1 proteins, initiating a cascade of defense responses that include
the production of phytoalexins and other defensive compounds [4]. These responses are
modulated by signaling pathways mediated by jasmonic acid (JA) and salicylic acid (SA),
which are crucial for the activation of plant immune responses [5, 6]. Recent research has
highlighted the interaction between BIK1 and Phytoalexin Deficient-4 (PAD4), another
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key player in the plant defense response. PAD4 is known to enhance
the plant’s resistance to aphids by promoting the synthesis of
antixenotic compounds that deter insect feeding [7]. However, BIK1
has been shown to suppress PAD4 expression, thereby modulating
the plant’s defensive capabilities [8]. Given the pivotal roles of BIK1
and PAD4 in plant-insect interactions, understanding themolecular
underpinnings of their interaction and its impact on plant health
is of paramount importance. We further enhance the deterministic
model [9] by incorporating MEMS-based feedback mechanisms,
allowing for real-time dynamic adjustments in plant biomass and
molecular signaling based on environmental conditions and sensor
data. Our study addresses critical gaps in existing research by
incorporating stochastic elements to capture the inherent variability
and extreme events in these systems, offering novel insights into how
molecular signaling pathways influence plant defense mechanisms
and herbivore population dynamics. The model simulates the
dynamics of plant biomass (P), insect herbivore density (I), PAD4
protein, and BIK1 protein under various conditions. Mathematical
modeling has evolved from deterministic approaches, such as those
by [10, 11], to stochastic models that account for variability and
randomness, as highlighted by [12, 13], and [14]. These stochastic
models provide a more realistic depiction of ecological systems by
incorporating environmental noise, as seen in works like [15, 16].

The stochastic processes, particularly Lévy noise, enhances
the model’s ability to capture extreme events, such as insect
outbreaks, which are not well represented by Gaussian noise
alone. Stochastic modeling techniques, as demonstrated by
[17, 18], offer valuable insights for predicting population dynamics,
evaluating control strategies, and understanding the influence of
environmental variability. The use of Lévy noise in our model
allows for the simulation of significant, abrupt changes in plant-
insect interactions, providing a comprehensive representation of
random phenomena. This approach underscores the importance of
stochastic models in understanding complex biological systems and
informing agricultural and environmental management practices.
The characteristic function of a Lévy process is given by,

𝔼[eiuL(t)] = exp(t(iuγ− 1
2
σ2u2 +∫

ℝ\{0}
(eiux − 1− iux1|x|<1)ν (dx))),

where γ represents the drift coefficient, σ2 is the variance of the
Gaussian part, and ν is the Lévy measure that describes the jump
intensity and distribution.

The plant-insect interaction system is a well-studied model
in ecology, evolving from predator-prey analogies to more
sophisticated mathematical models incorporating plant immunity
concepts. This study extends these models by including molecular
interactions in the plant defense system, inspired by [9].The primary
objective of this research is to develop a stochastic mathematical
model to analyze plant-insect interaction dynamics, focusing on the
molecular interplay between PAD4 and BIK1 proteins. It explores
the impact of noise types, deterministic, Gaussian, and Lévy noise
on the system’s variability and stability. This research contributes
to understanding plant-insect interactions at the molecular level,
with potential applications in agriculture. It highlights the benefits
of adaptive feedback control for plant protection, dynamically
adjusting to changing conditions. By incorporating noise, especially
Lévy noise, the model captures extreme fluctuations, providing a

realistic depiction of variability in plant-insect interactions. The
study aims to answer key questions about the effects of control
strategies, noise types, and the broader ecological implications of
these findings.

2 Model equations

The system of differential equations governing the
deterministic model is [9],

dy1
dt
= a1y1(1−

y1
K
)− a2y1y2,

dy2
dt
= a3y1y2 − a4y2 − a5y3y2,

dy3
dt
= a6y1y2 − a7y3 − a8y3y4,

dy4
dt
= a9y1y2 − a10y4 − a11 ⋅ InBIK1.

(1)

The stochastic differential equations is,

dy1 = (a1y1(1−
y1
K
)− a2y1y2)dt+ σ1y1dW1,

dy2 = (a3y1y2 − a4y2 − a5y3y2)dt+ σ2y2dW2,

dy3 = (a6y1y2 − a7y3 − a8y3y4)dt+ σ3y3dW3,

dy4 = (a9y1y2 − a10y4 − a11 ⋅ InBIK1)dt+ σ4y4dW4,

(2)

The choice of noise addition is grounded in both biological
and mathematical reasoning. Biologically, in ecological systems
like plant-insect interactions, fluctuations in population densities
and molecular levels are typically influenced by current population
or protein levels [19–21]. Environmental stresses, such as insect
outbreaks or weather conditions, do not affect the system uniformly
but have a state-dependent effect: larger populations or protein levels
experiencemore significant impacts. As a result, multiplicative noise
(state-dependent noise) is biologically appropriate because it reflects
that larger variables are more susceptible to noise. Mathematically,
adding noise terms directly allows for stochastic perturbation while
preserving the structure of the deterministic model. This approach
simplifies the analysis and is commonly used in models involving
stochastic dynamics through stochastic differential equations
(SDEs), providing a meaningful representation of randomness.

PAD4 is a crucial gene that helps Arabidopsis plants defend
against aphids. When aphids feed on the plant, PAD4 gets activated,
boosting the plant’s defenses. PAD4 helps in two main ways: by
producing substances that deter aphids (antixenosis) and by creating
chemicals that can harm aphids (antibiosis). PAD4’s activity is
regulated by other genes like TPS11 and LOX5. TPS11 deals with
sugar metabolism, while LOX5 is involved in fatty acid metabolism.
TPS11’s activity increases in the plant shoots when aphids attack,
while LOX5 activity increases in the leaves. Aphid attacks also
trigger another gene, MPL1, which helps in defense but works
independently of PAD4. The BIK1 gene suppresses PAD4. If BIK1
is less active (as in BIK1 mutants), PAD4 levels rise, making the
plant more resistant to aphids. The interaction between BIK1 and
PAD4 involves ethylene (ET), a plant hormone that also plays a
role in defense. PAD4 is essential for a full defense response against
aphids, involving the production of deterrents and toxins. The
plant’s ability to emit ethylene is crucial for repelling aphids and
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FIGURE 1
Insights into the plant-insects dynamical model. (A) Schematic diagram of Mathematical model formation. (B) Underlying process of the model.

TABLE 1 Variables of the model.

S. No System component Description Notation

1 P Plant Biomass y1

2 I Insect herbivore density y2

3 PAD4 Phytoalexin Deficient protein y3

4 BIK1 Botrytis Induced Kinase protein y4

5 InBIK1 BIK1 inhibitor InBIK1

is dependent on PAD4 activity [22–27]. The mathematical model
formation on this basis is shown in Figure 1A. This underlying
process is shown in Figure 1B. The variables of the model are shown
in Table 1.

The key assumptions of the model 1,2 are as follow,

i. Themodel assumes that the plant biomass (P), insect herbivore
density (I), PAD4 protein (PAD4), and BIK1 protein (BIK1)
are homogeneously mixed within the environment. This
means that these components are evenly distributed, and their
interactions occur uniformly throughout the system.

ii. The environmental conditions, such as temperature, humidity,
and nutrient availability, are assumed to be constant.

iii. The model considers a closed system with no immigration or
emigration of insect herbivores. The population dynamics of
the insect herbivores are governed solely by the birth and death
rates within the system.

iv. The concentration of the BIK1 inhibitor (InBIK1) is assumed to
be constant and does not change over time.

v. The rate constants (ai) and carrying capacity (K) are assumed
to be constant over time.

vi. The model does not consider time delays in the responses
of the components. All interactions and changes occur
instantaneously.

vii. The model assumes that there are no external
interventions, such as pesticide applications or genetic
modifications.

3 Qualitative analysis of the model

3.1 Existence and uniqueness of the
solution

The following section provides existence, boundedness, and
equilibrium analysis for the current model. Theorem 3.1 ensures
that the interactions between variables of the system are well-
defined and consistent under all modeled conditions, making the
system biologically predictable. While the approach used here is
specific to our system, similar results in other contexts can be
found in [28, 29].
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TABLE 2 Parameter values used in the model.

Description Rate constants Values of rate constants References

Plant biomass production rate a1 0.2 [30, 31]

Insect infestation on plants a2 0.6 [30, 31]

Insect reproduction rate a3 0.01 [30, 31]

Insect death rate a4 0.02 [30, 31]

Antixenosis by PAD4 a5 0.002 [32]

PAD4 production a6 1 Assumed

PAD4 degradation a7 0.1 [33, 34]

BIK1 mediated PAD4 decrease a8 0.1 [35]

BIK1 production a9 1 [36–38]

BIK1 degradation a10 0.1 Assumed

Inhibitor based BIK1 decrease a11 0.1 Assumed

Carrying capacity of plant biomass K 1.0 Assumed

Noise intensity σ 0.01 Assumed

Theorem 3.1: For system 1, there exists a unique solution.
Proof. The proof is given in appendix section (Theorem 3.1).

Theorem3.2: The solutions of the system 1 are bounded for all t ≥ 0.
Proof. The proof is given in appendix section (Theorem 3.1).

Theorem 3.2 reflects that the population levels of plants, insects, and
proteins will not grow indefinitely or collapse to zero, showing the
natural limits on growth due to environmental factors and resource
constraints. The proof is given in appendix section (Theorem 3.2).

3.2 Equilibrium analysis

In this section, we analyze the equilibrium points of the system
and assess their stability. The variational matrix is a matrix of first-
order partial derivatives that encapsulates the local linearization
of a nonlinear dynamical system around its equilibrium points. If
the system is described by a set of ordinary differential equations
ẏ = f(y), where y = (y1,y2,…,yn) represents the state variables, the
variational matrix V is given by,

V =
∂ f (y)
∂y
=
((((((

(

∂ f1
∂y1

∂ f1
∂y2
…

∂ f1
∂yn

∂ f2
∂y1

∂ f2
∂y2
…

∂ f2
∂yn

⋮ ⋮ ⋱ ⋮
∂ fn
∂y1

∂ fn
∂y2
…

∂ fn
∂yn

))))))

)

.

This matrix captures the infinitesimal behavior of the system
around the equilibrium points by linearizing the system. The

eigenvalue spectrum of the variational matrix governs the local
stability properties of the equilibrium. If all eigenvalues have
negative real parts, the system exhibits asymptotic stability at
the equilibrium point. If any eigenvalue has a positive real part,
the equilibrium is unstable. The variational matrix of our model
is given by,

V =(

(

a1 (1−
2
K) − a2 −a2 0 0

a3 a3 − a4 − a5 −a5 0

a6 a6 −a7 − a8 −a8

a9 a9 0 −a10

)

)

.

3.2.1 E1(0,0,0,0)
The variational matrix V at E1(0,0,0,0) is,

V|E1(0,0,0,0) =
(

(

a1 0 0 0

0 −a4 0 0

0 0 −a7 0

0 0 0 −a10

)

)

.

So, the eigenvalues at the equilibrium point E1(0,0,0,0) are,

λ1 = a1, λ2 = −a4, λ3 = −a7, λ4 = −a10

Theorem 3.3: The equilibrium point E1(0,0,0,0) is locally
asymptotically stable, if a1 < 0.

Proof. The proof is easy to follow.
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FIGURE 2
Time series plots of the system variables under different noise
conditions (deterministic, Gaussian, and Lévy noise). For all
variables—plant biomass (y1), insect herbivore density (y2), PAD4 levels
(y3), and BIK1 levels (y4) deterministic conditions show smooth trends,
Gaussian noise introduces minor fluctuations, and Lévy noise results in
more extreme variations and larger deviations. (A) Series plot for y1. (B)
Series plot for y2. (C) Series plot for y3. (D) Series plot for y4.

3.2.2 E2(1,0,0,0)
The variational matrix V at E2(1,0,0,0) is,

V|E2(1,0,0,0) =
(

(

a1 (1−
2
K) −a2 0 0

0 a3 − a4 0 0

0 a6 −a7 0

0 a9 0 −a10

)

)

.

So, the eigenvalues at the equilibrium point E2(1,0,0,0) are,

λ1 = a1(1−
2
K
), λ2 = a3 − a4, λ3 = −a7, λ4 = −a10

Theorem 3.4: The equilibrium point E2(1,0,0,0) is locally
asymptotically stable, if K < 2 and a1 < a2 or a3 < a4 + a5.

Proof. The proof is easy to follow.

3.2.3 E3(0,1,0,0)
The variational matrix for E3(0,1,0,0) is,

V|E3(0,1,0,0) =
(

(

a1 − a2 0 0 0

a3 −a4 −a5 0

a6 0 −a7 0

a9 0 0 −a10

)

)

.

The eigenvalues are for the equilibrium point E3(0,1,0,0) are,

λ1 = a1 − a2, λ2 = −a4, λ3 = −a7, λ4 = −a10

Theorem 3.5: The equilibrium point E3(0,1,0,0) is locally
asymptotically stable, if a1 < a2.

Proof. The proof is easy to follow.

3.2.4 E4(0,0,1,0)
The variational matrix for E4(0,0,1,0) is,

V|E4(0,0,1,0) =
(

(

a1 0 0 0

0 −a4 − a5 0 0

0 0 −a7 −a8

0 0 0 −a10

)

)

.

The eigenvalues are for the equilibrium point E4(0,0,1,0) are,

λ1 = a1, λ2 = −a4 − a5, λ3 = −a7, λ4 = −a10

Theorem 3.6: The equilibrium point E4(0,0,1,0) is locally
asymptotically stable, if a1 < 0.

Proof. The proof is easy to follow.

3.2.5 E5(0,0,0,1)
The variational matrix for E5(0,0,0,1) is,

V|E5(0,0,0,1) =
(

(

a1 0 0 0

0 −a4 0 0

0 0 −a7 − a8 0

0 0 0 −a10

)

)

.

The eigenvalues are for the equilibrium point E5(0,0,0,1) are,

λ1 = a1, λ2 = −a4, λ3 = −a7 − a8, λ4 = −a10

Theorem 3.7: The equilibrium point E5(0,0,0,1) is locally
asymptotically stable, if a1 < 0.

Proof. The proof is easy to follow.

3.2.6 E6(1,1,0,0)
The variational matrix for E6(0,0,0,1) is,

V|E6(1,1,0,0) =
(

(

a1 (1−
2
K) − a2 −a2 0 0

a3 a3 − a4 0 0

a6 a6 −a7 0

a9 a9 0 −a10

)

)

.
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FIGURE 3
Effect of plant biomass production constant.

The eigenvalues are for the equilibrium point E6(1,1,0,0) are,

λ1 = a1(1−
2
K
)− a2, λ2 = a3 − a4, λ3 = −a7, λ4 = −a10

Theorem 3.8: The equilibrium point E6(1,1,0,0) is locally
asymptotically stable, if a1 (1−

2
K
) < a2 and a3 < a4.

Proof. The proof is easy to follow.

3.2.7 E7(1,0,1,0)
The variational matrix at E7(1,0,1,0) is,

V|E7(1,0,1,0) =
(

(

a1 (1−
2
K) 0 0 0

0 −a4 − a5 0 0

0 a6 −a7 0

0 0 0 −a10

)

)

.

The eigenvalues are for the equilibrium point E7(1,0,1,0) are,

λ1 = a1(1−
2
K
), λ2 = −a4 − a5, λ3 = −a7, λ4 = −a10

Theorem 3.9: The equilibrium point E7(1,1,0,0) is locally
asymptotically stable, if 1− 2

K
< 0 (i.e., K < 2).

Proof. The proof is easy to follow.

3.2.8 E8(1,0,1,1)
The variational matrix at E8(1,0,1,1) is,

V|E8(1,0,1,1) =
(

(

a1 (1−
2
K) 0 0 0

0 −a4 − a5 0 0

0 a6 −a7 − a8 −a8

0 0 0 −a10

)

)

.

The eigenvalues are for the equilibrium point E8(1,0,1,1) are,

λ1 = a1(1−
2
K
), λ2 = −a4 − a5, λ3 = −a7 − a8, λ4 = −a10

Theorem 3.10: The equilibrium point E8(1,0,1,1) is locally
asymptotically stable, if 1− 2

K
< 0 (i.e., K < 2).

Proof. The proof is easy to follow.

3.3 Biological significance

The equilibrium analysis emphasizes the essential dynamics
between plant biomass, insect herbivores, and defense
proteins, PAD4 and BIK1, in maintaining ecological stability.
Theorems 3.4, 3.5 establish the foundational roles of plants and
insects in the system, highlighting how their coexistence is
necessary for sustaining balanced populations.Themost biologically
significant results are demonstrated in Theorems 3.9, 3.10,
where plants maintain stable coexistence with PAD4 or both
PAD4 and BIK1 proteins. These equilibria reflect the plant’s
defensive mechanisms being actively regulated by these proteins,
ensuring preparedness for potential herbivore attacks. Theorem 3.8
presents the ecologically balanced state, where both plants
and insect herbivores coexist, with PAD4 and BIK1 proteins
playing a regulatory role. This equilibrium ensures that
plant defense systems, driven by these proteins, manage
herbivore populations effectively, maintaining system stability.
This section highlights the crucial role of plant defense
proteins in regulating insect interactions, ensuring long-term
ecological balance.

3.4 Basic reproduction number

The basic reproduction number R0 is given by,

R0 =
a3K
a4
.

Theorem 3.11: If R0 > 1, then the system is uniformly persistent,
meaning there exists a positive constant δ such that for any solution
(y1(t),y2(t),y3(t),y4(t)) with initial conditions in the interior of the
positive orthant, we have,

Proof. The proof is given in appendix (Theorem 3.11).

lim inf
t→∞

yi (t) ≥ δ > 0, for i = 1,2,3,4.
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FIGURE 4
Time series of insect herbivore density (y2) under different noise intensities. With higher noise intensity (σ = 0.1), the fluctuations are significantly larger,
leading to increased variability in the system’s behavior. (A) Series plot for σ=0.01. (B) Series plot for σ=0.05. (C) Series plot for σ=0.1.

3.5 Stochastic analysis

For stochastic system with y1,y2,y3,y4, we define Γ as

Γ = {(y1 (t) ,y2 (t) ,y3 (t) ,y4 (t)) ∈ ℝ
4
+ :y1 (t) + y2 (t) + y3 (t) + y4 (t) ≤

a1
a2
}

We need to show that Γ fulfills almost sure invariance principle.

Theorem 3.12: The closed set Γ fulfills almost sure invariance
principle for the stochastic system 2.

Proof. This theorem guarantees that the system remains within
realistic bounds even under stochastic influences, indicating that the
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FIGURE 5
Time series of PAD4 protein levels (y3) under different noise intensities. With higher noise intensity (σ = 0.1), significant fluctuations occur, showing
increased sensitivity to the noise. (A) Series plot for σ=0.01. (B) Series plot for σ=0.05. (C) Series plot for σ=0.1.

ecosystem is robust to fluctuations in population and protein levels.
The proof is given in appendix section (Theorem 3.12).

Theorem 3.13: For (y1(0),y2(0),y3(0),y4(0)) ∈ Γ, system 2 has a
unique and positive solution almost surely.

Proof. This theorem assures that despite randomness, the
system’s biological variables (plants, insects, proteins) maintain
positive values, ensuring the ecological system remains functional.
The proof is given in appendix section (Theorem 3.13).

4 Numerical simulations

In the following subsections, various numerical results are
provided. The values of the parameters used in the model

are given in Table 2. The Euler-Maruyama method is used to solve
the stochastic differential equations iteratively as follow,

y1 (t+Δt) = y1 (t) + (k1y1 (t)(1−
y1 (t)
K )− k2y1 (t)y2 (t))Δt+ σ√Δt ⋅ η1 (t) ,

y2 (t+Δt) = y2 (t) + (k3y1 (t)y2 (t) − k4y2 (t) − k5y3 (t)y2 (t))Δt+ σ√Δt ⋅ η2 (t) ,
y3 (t+Δt) = y3 (t) + (k6y1 (t)y2 (t) − k7y3 (t) − k8y3 (t)y4 (t))Δt+ σ√Δt ⋅ η3 (t) ,
y4 (t+Δt) = y4 (t) + (k9y1 (t)y2 (t) − k10y4 (t) − k11 ⋅ 0.1)Δt+ σ√Δt ⋅ η4 (t) ,

where ηi(t) represents the noise term. For Gaussian noise, ηi(t) is
from a normal distribution N (0,1),

ηi (t) ∼N (0,1) .

For Lévy noise, ηi(t) is from a Lévy distribution.

ηi (t) ∼ Lvy (α,β) .
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FIGURE 6
Time series of BIK1 protein levels (y4) under different noise intensities. At higher noise intensity (σ = 0.1), the system exhibits large variability, indicating a
stronger response to the perturbations. (A) Relationship between PAD4 Levels (y3) and BIK1 Levels (y4). (B) Relationship between Plant Biomass (y1) and
Insect Herbivore Density (y2).

where,

ΔWt ∼N (0,Δt) .

And

ΔWt = √Δt ⋅Z,

where Z is a standard normal random variable (Z ∼N (0,1)).

4.1 Noises comparison

Figure 2A shows the dynamics of plant biomass (y1) under
deterministic, Gaussian, and Lévy noise conditions. Under

deterministic conditions, plant biomass follows a smooth decline
and recovery trajectory. When Gaussian noise is introduced, the
system exhibits more fluctuations compared to the deterministic
case but maintains a generally similar trend. Lévy noise, however,
results in significantly larger fluctuations, reflecting more extreme
variations in plant biomass. This observation is consistent with
findings from the study [39], which highlighted the importance of
Lévy noise in capturing extreme events in biological systems.

The dynamics of insect herbivore density (y2) under different
noise conditions are illustrated in Figure 2B. Deterministic
conditions show a continuous decline in insect density. Gaussian
noise introduces more variability into the system, causing minor
fluctuations around the declining trend. Lévy noise, on the other
hand, introduces significant variability, leading tomore pronounced
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FIGURE 7
The plot shows the relationships in the plant-insect interaction model: (A) between PAD4 Levels (y3) and BIK1 Levels (y4), and (B) between Plant
Biomass (y1) and Insect Herbivore Density (y2).

FIGURE 8
Density Distribution of the model variable’s.
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FIGURE 9
Time series plots of system variables with MEMS feedback under
stochastic conditions. For all variables—plant biomass (y1), insect
herbivore density (y2), PAD4 levels (y3), and BIK1 levels (y4)—MEMS
feedback stabilizes the system’s oscillations. Plant biomass and
herbivore density recover more quickly compared to the deterministic
case, while PAD4 and BIK1 show increased fluctuations due to
dynamic feedback responses. (A) Series plot for y1. (B) Series plot for
y2. (C) Series plot for y3. (D) Series plot for y4.

fluctuations in insect density. The same trend is followed by other
variables (Figures 2C, D).

The parameter a1 significantly impacts plant biomass
y1 (Figure 3A).Higher values of a1 indicate better soil conditions and
other suitable conditions, allowing plants to maintain or increase
their biomass over time.

4.2 Lévy noise

The insect herbivore density (y2) exhibits distinct behaviors
under different noise intensities (Figure 4). At low noise

intensity (σ = 0.01) (Figure 4A), the herbivore density decreases
steadily, closely mirroring the deterministic model. However,
as noise intensity increases, particularly at moderate levels
(σ = 0.05) (Figure 4B), there is an observable increase in fluctuations
around the declining trend.

Similarly, the PAD4 levels (y3) show an interesting pattern under
varying noise intensities (Figure 5). At a moderate noise intensity
of σ = 0.05 (Figure 5A), PAD4 levels maintain a relatively stable and
higher average compared to both lower and higher noise intensities.
This stability at moderate noise levels suggests that the system can
better sustain its defense mechanisms, making this noise intensity
particularly beneficial for maintaining PAD4 activity. Conversely, at
higher noise intensities (σ = 0.1) (Figure 5C), PAD4 levels decrease
significantly, indicating that excessive noise can disrupt the plant’s
defense responses.

The comparison between the deterministic and stochastic
models reveals critical insights into the behavior of the system
under different noise intensities (Figure 6). One of the most notable
observations is the impact of stochasticity on the BIK1 levels
(y4). As noise intensity increases, BIK1 levels exhibit significant
fluctuations. For higher noise intensities, BIK1 levels decrease more
rapidly, indicating that the stochastic model is more sensitive to
perturbations. This sensitivity suggests that in real-world scenarios,
BIK1 levels are likely to be more variable due to environmental
and internal noise, which the deterministic model fails to capture
(Figures 6A–C) [40, 41].

4.3 Queir plots

Queir plots visually represent how the states of a system
evolve over time, especially in complex, nonlinear systems. These
plots show the system’s trajectory or path in a simplified, multi-
dimensional space, focusing on key variables.

Theorem 4.1: Consider the system defined by,

dy1
dt
= a1y1(1−

y1
K
)− a2y1y2.

If y2(t) ≤
a1
a2
(1− y1

K
), the plant biomass y1(t) will grow.

Proof. The proof is given in appendix section (Theorem 4.1).

Theorem 4.2: Consider the system defined by,

dy3
dt
= a6y1y2 − a7y3 − a8y3y4,

dy4
dt
= a9y1y2 − a10y4 − a11 ⋅ InBIK1.

If y1y2 exceeds the thresholds a7y3+a8y3y4
a6

and a10y4+a11⋅InBIK1

a9
, both y3(t)

and y4(t)will increase, contributing to the plant’s defensive response.
Proof. The proof is given in appendix section (Theorem 4.2).

4.3.1 Relationship between PAD4 levels (y3) and
BIK1 levels (y4)

As shown in Figure 7A, the relationship between PAD4 (y3)
and BIK1 (y4) levels exhibits a complex trend where increases
in PAD4 lead to increases in BIK1 up to a threshold, after
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which the relationship stabilizes. This pattern reflects regulatory
feedback mechanisms, where PAD4 activation upregulates BIK1
until feedback stabilization occurs. The findings align with studies
on plant signaling pathways, where BIK1 is essential in defense
responses, and stochastic dynamics impact regulatory networks.

4.3.2 Relationship between plant biomass (y1)
and insect herbivore density (y2)

Figure 7B shows that the relationship between plant biomass
(y1) and insect herbivore density (y2) is inversely correlated,
where increases in plant biomass lead to reductions in herbivore
density. This reflects the plant’s defense mechanisms, mediated by
proteins like PAD4 and BIK1, which regulate herbivore populations.
Stochastic fluctuations observed are consistent with known plant-
herbivore interaction models.

4.4 Probability density distributions

The stationary distribution describes the long-term behavior of
a stochastic process, offering insights into the stability of system.
A Markov process, which models a sequence of potential events, is
primarily influenced by the state attained in the previous event. In
simpler terms, it can be thought of as “what happens in the future
depends only on the current situation.”

In the space ℝm+ , consider that the process J(t) is regular and
time-homogeneous, exhibiting Markovian behavior with respect to
time t of the form:

dJ (t) =
l

∑
s=1

κsdBs (t) + b (J)dt.

Here, A(J) = [ιij(y)] is the matrix associated with the mixing terms,
where ιij(y) = ∑

l
s=1κ

i
s(y)κ

j
s(y).

Lemma 4.1: [42, 43] The process J(t) is said to possess a unique
stationary distribution m(⋅) if we can identify a bounded domain with
regular boundaries U,U ⊂ ℝd, such that,

1. The smallest eigenvalue of A(t) is bounded away from zero
within the domain U and its vicinity.

Additionally, if y ∈ ℝd\U, the mean time τ (at which a path
originating from y reaches U) is finite, and supy∈L𝔼τ <∞ for
each compact subset L ⊂ ℝm. Furthermore, let g(⋅) be an integrable
function with respect to the measure π, then

lim
T→∞

1
T
∫
T

0
f (Jy (t))dt = ∫

ℝd
g (y)π (dy) = 1 forally ∈ ℝd.

we define,

Rp
0 =

a1a3a6

(a2 +
ζ21
2
)(a4 +

ζ22
2
)(a7 +

ζ23
2
)(a10 +

ζ24
2
)
. (3)

Theorem 4.3: For (y1(0),y2(0),y3(0),y4(0)) ∈ Γ, the system has
a unique stationary distribution π(.) as well as the solution
(y1(t),y2(t),y3(t),y4(t)) to the model is ergodic in nature.

Proof. The proof is given in appendix section (Theorem 4.3).
Figure 8 presents the probability density distributions for the key

variables in our stochastic model of plant-insect interactions. The

density of y1 (is predominantly concentrated around 0.5, indicating
that this is the most common biomass level. y2 exhibits its highest
density at approximately 0.1, showing that insect populations reach
this density influenced by factors such as available plant biomass
and natural predator presence. For y3, the density peaks sharply,
demonstrating that PAD4 protein levels consistently reach an
optimal level for effective response to insect herbivory. In contrast,
y4 displays a bimodal distribution, indicating two dominant states
of this protein. The lower levels of BIK1, corresponding to the first
peak, are associated with heightened PAD4 activity, reflecting a
robust plant defense mechanism. The second peak at higher BIK1
levels suggests a regulatory balance where BIK1 moderates the
defense response to prevent overreaction.

5 MEMs in control

The integration of Micro-Electromechanical Systems (MEMS)
in plant systems has revolutionized the field of precision agriculture
by providing real-time monitoring and adaptive control capabilities.
MEMS sensors are widely used for tracking environmental
parameters such as soil moisture, temperature, humidity, and
nutrient levels, enabling more efficient and precise irrigation and
fertilization strategies. For example, The increasing demand for
the miniaturization of biosensors has driven growing interest in
microelectromechanical systems (MEMS) [44, 45], along with
nanoelectromechanical systems (NEMS) and microfluidic or lab-
on-a-chip based biosensors [35, 46].These compact systems provide
enhanced accuracy, sensitivity, specificity, and cost-efficiency, while
also offering high-performance biosensing capabilities. MEMS-
based biosensors leverage a range of detection methods, including
optical, mechanical, magnetic, and electrochemical approaches. For
optical detection, probes like organic dyes, semiconductor quantum
dots, and other fluorescence markers are commonly employed.
In magnetic MEMS biosensors, nanoparticles such as magnetic,
paramagnetic, or ferromagnetic particles are utilized. Mechanical
MEMS biosensors operate based on changes in surface stress or
mass [47], where biochemical reactions or analyte adsorption
on the cantilever induce surface stress changes. Electrochemical
MEMS biosensors, on the other hand, rely on amperometric,
potentiometric, or conductometric detection methods [48–51]. For
each variable, sensor-based feedback terms can be introduced to
adjust the differential equations based on real-time data gathered
by MEMS. This can include intervention strategies or feedback
loops that modify plant biomass growth, herbivore density, and
molecular signals. We extend the stochastic Equation 2 to include
MEMS input, denoted by a new variable M(t), representing MEMS
sensor feedback,

dy1 = (a1y1(1−
y1
K
)− a2y1y2 +M1 (t))dt+ σ1y1dW1,

dy2 = (a3y1y2 − a4y2 − a5y3y2 +M2 (t))dt+ σ2y2dW2,

dy3 = (a6y1y2 − a7y3 − a8y3y4 +M3 (t))dt+ σ3y3dW3,

dy4 = (a9y1y2 − a10y4 − a11 ⋅ InBIK1 +M4 (t))dt+ σ4y4dW4.
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For each variable yi(t), the MEMS feedback terms Mi(t) are
defined as follows,

M1 (t) = β1 ⋅ControlFunctionfor y1 (t) ,

M2 (t) = β2 ⋅ControlFunctionfor y2 (t) ,

M3 (t) = β3 ⋅ControlFunctionfor y3 (t) ,

M4 (t) = β4 ⋅ControlFunctionfor y4 (t) .

The parameters β1,β2,β3, and β4 represent scaling factors
that control the strength of the feedback applied by the MEMS
sensors for each variable. Figure 9 presents the results incorporating
MEMS feedback into the system. In 5, the plant biomass y1
shows a significant oscillatory behavior in the stochastic case,
with a generally increasing trend after an initial decline. The
MEMS feedback helps stabilize biomass growth, resulting in
quicker recovery compared to the deterministic solution, which
shows a smoother, slower increase. In 5, the insect herbivore
density y2 demonstrates a steady decline, with MEMS further
suppressing insect growth. The stochastic model exhibits more
variability and faster suppression of herbivores, while the
deterministic model shows a smoother, more gradual reduction.
The PAD4 protein dynamics y3 in five show an initial peak
followed by a decline and eventual stabilization, with MEMS
feedback leading to more active and pronounced fluctuations
in the stochastic case compared to the smoother deterministic
curve. In 5, the BIK1 protein y4 follows a similar trend to
the other variables, with MEMS inducing stronger oscillations
in the stochastic model, particularly towards the later stages.
The deterministic solution, on the other hand, stabilizes more
smoothly without such fluctuations. The implementation of
MEMS introduces dynamic feedback into the system, leading
to faster recovery, better control of herbivore density, and more
pronounced fluctuations in protein levels. This highlights MEMS’
effectiveness in dynamically regulating plant-insect interactions and
molecular signals.

6 Discussion

Our comparison of noise conditions revealed distinct behaviors
in plant biomass and insect herbivore density. Deterministic
conditions produced smooth trajectories, while Gaussian noise
caused moderate fluctuations, and Lévy noise led to extreme
variations, effectively capturing sudden changes in biological
systems. High PAD4 levels and low BIK1 levels were associated
with increased plant biomass and reduced herbivore density,
indicating effective plant defense mechanisms. Moderate noise
intensity (σ = 0.05) sustained PAD4 activity, providing a balance
between system stability and variability.

Lévy noise had a significant impact on PAD4 and herbivore
density, with moderate noise intensities sustaining PAD4 activity
for optimal plant defense. Queir plots revealed non-linear
regulatory interactions between PAD4 and BIK1, emphasizing
the role of stochastic dynamics in biological networks. The

results suggest that moderate noise intensity is optimal for
maintaining system function, with MEMS-based feedback
showing potential for adaptability by continuously adjusting key
parameters.

7 Conclusion

This study provides a comprehensive analysis of the dynamic
interactions between plants and insect herbivores, focusing on
the molecular interplay between PAD4 and BIK1 proteins, under
various control strategies and noise conditions. The inclusion of
different noise types in themodel reveals significant insights into the
system’s variability. Gaussian noise introducesmoderate fluctuations
around the deterministic trends, while Lévy noise induces more
extreme fluctuations and variability, capturing the sudden changes
and extreme events often observed in biological systems. This
emphasizes the necessity of incorporating stochastic elements,
particularly Lévy noise, to accurately model and understand the
complex dynamics of plant-insect interactions. By incorporating
MEMS-driven adaptive feedback, we demonstrated how real-
time sensor-based interventions can enhance the system’s stability
and effectiveness, particularly in maintaining plant health and
controlling insect populations under varying noise conditions. Our
study advances our understanding of plant-insect interactions and
offers valuable insights into the role of noise and control strategies
in modulating system behavior.These findings have implications for
the development of effective management strategies in agricultural
and ecological contexts, paving the way for more robust and
sustainable approaches to mitigating the impacts of insect herbivory
on plant health and productivity.
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