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This paper features a survey of the periodic property of micro-electro-
mechanical systems by the homotopy perturbation method, the variational
iteration method, the variational theory, He’s frequency formulation, and
Taylor series method. Fractal MEMS systems are also introduced, and future
prospective is elucidated. The emphasis of this min-review article is put mainly on
the developments in last decade, so the references, therefore, are not exhaustive.
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1 Introduction

A micro-electro-mechanical system (MEMS) [1–3] is the most fundamental micro
device, integrating micro-mechanical structures with electronic technology to achieve
micro-scale dimensions, minimal power consumption, and high-performance
mechanical and electronic functions. Its remarkable versatility stems from its low cost,
compact size, advanced intelligence, and high degree of control. It has a wide range of
applications as an extremely sensitive sensor [4] and can now be fabricated using three-
dimensional printing technology [5, 6]. The system operates periodically under normal
conditions [7]; however, failure may occur when the phenomenon known as pull-in
instability [8] arises. The governing equation can be expressed in the following form [9]:

€x + x − k

1 − x
� 0 (1)

with zero initial conditions

x 0( ) � 0 (2)
_x 0( ) � 0 (3)

where x is the dimensionless displacement, and k is a voltage-relative constant. This is a
special oscillator with zero initial conditions and a singularity at x = 1. It differs from
traditional nonlinear oscillators in the literature, such as those described in references [10,
11], making the solution process extremely challenging using known analytical methods. In
this section, we will review some effective approaches to determining the periodic properties
of the MEMS oscillator.

2 Homotopy perturbation method

The homotopy perturbation method, which was first proposed in 1999, involves
decomposing a nonlinear equation into a linear system through the use of homotopy
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technology [12]. The method has become a mature approach for
nonlinear oscillators, making it an effective tool for analyzingMEMS
systems [13–15]. Li-He’s modification is particularly well-suited for
analyzing such singular oscillators [16, 17].

In order to employ the aforementioned method, we must first
rewrite Equation 1 in the following form:

€x + x − €xx − x2 − k � 0 (4)
The homotopy equation can be constructed in the

following form:

€x + ω2x( ) − €x0 + ω2x0( )
+ p 1 − ω2( )x − €xx − x2 − k + €x0 + ω2x0( )[ ] � 0

(5)

where p represents a homotopy parameter, ω is to be determined at a
later stage. When p = 0, in accordance with the initial conditions
specified in Equation 2, we commence with

x0 � A sin 2 ωt (6)
When p = 1, Equation 4 becomes Equation 3. The homotopy
perturbation method is to assume that

x � x0 + px1 + p2x2 + L (7)
From Equation 4 we obtain a series of linear equations:

€x1 + ω2x1 + 1 − ω2( )x0 − €x0x0 − x0
2 − k + €x0 + ω2x0( ) � 0

x1 0( ) � 0, _x1 0( ) � 0
{ (8)

€x2 + ω2x2 + 1 − ω2( )x1 − €x0x1 − €x1x0 − 2x0x1 � 0
x2 0( ) � 0, _x2 0( ) � 0

{ (9)

The values of A and ω can be determined in view of no secular
terms in x1 and x2.

3 Variational iteration method

The variational iteration method, initially proposed in 1999,
entails the construction of a correction function involving a
generalized Lagrange multiplier, which is determined by the
variational theory [18], Tang, et al. gave a standard schedule for
solving MEMS oscillators [19], Anjum, et al. recommended a new
approach to dealing with the zero initial conditions [20], Zhang,
et al. demonstrated that the method can be used to determine
frequency-amplitude relationship with ease [21], Rastegar, et al.
employed the method to determine diaphragm deflection [22].
According to the variational iteration method, the following
correction functional can be written:

xn+1 t( ) � xn + ∫t

0
λ s, t( ) d2xn s( )

ds2
+ xn s( ) − xn s( ) d

2xn s( )
ds2

− xn s( )( )2 − k{ }ds
(10)

where λ is the generalized Lagrange multiplier.
The identification of the multiplier represents a key objective in

the context of its applications. In its original formulation, this can be
determined by variational theory [18]. Anjum and his colleague
introduced two Lagrange multipliers into the correction functional,
as detailed in reference [23]. In 2019, the Laplace transform was
successfully incorporated into the variational iteration method,

thereby enhancing its appeal considerably [24, 25]. The He
transform, a generalized Laplace transform [26], has recently
facilitated a significant advancement in the variational
iteration method [27].

4 He’s frequency formulation

In 2019, the frequency formulation [28, 29] was proposed as a
means of solving nonlinear oscillators, and has since been regarded
as the most straightforward method of doing so. Chinese
mathematician Chun-Hui He and his colleague provided a
rigorous mathematical analysis and proposed an amendment [30].

We re-write Equation 1 in the form

€x + f x( ) � 0, x 0( ) � 0, _x 0( ) � 0 (11)
Here

f x( ) � x − k

1 − x
(12)

It is obvious that x moves from x = 0 to A, and then from x =A to
negative A, where A is the maximal displacement. It is easy to find
that the equilibrium point locates at x = A/2, that means

f A/2( ) � 0 (13)

That implies

A

2
− k

1 − A
2

� 0 (14)

or

A � −1 + 





1 + 4k

√
(15)

For given k, the maximal displacement can be easily determined
by Equation 14. According to He’s frequency formulation [28, 29],
we have

ω2 � f A/2( ) − f A/4( )
A/2 − A/4 � f A/4( )

A/4 (16)

That is

ω2 � 1 − k

1 − A
4( ) A

4

� 4A − A2 − 16k
4 − A( )A (17)

In view of Equation 14, ω can be solved with ease.

ω �


















−6 + 6







1 + 4k

√ − 20k

−6 + 6






1 + 4k

√ − 4k

√
(18)

For a given value of k, its frequency can be obtained easily. For
periodic solution, it requires that ω> 0, i.e.,

−6 + 6






1 + 4k

√ − 20k> 0 (19)
i.e.,

k< 0.19 (20)

The precise value is k < 0.20363, the relative error is 6.68%,
which is deemed acceptable for engineering applications. The
simplicity and reliability of the formulation make it a valuable
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mathematical tool for gaining physical insight into the periodic
properties of nonlinear oscillators. Zhang et al. extended the
formulation to nonlinear vibration systems with generalized
initial conditions [31]. Ji-Huan He and his colleagues applied it
to nonlinear oscillators with quadratic nonlinearity [32]. Tian found
the formulation is also valid for fractal vibration systems [33].
Additionally, numerous other researchers have also found it to be
a straightforward method for nonlinear oscillators [34, 35].

5 Hamilton principle

Variational principles are widely used in physics and
engineering, but not every physical problem admit a variational
formulation, and Galerkin technology has to be used [36]. Shao,
et al. established a variational formulation for a generalized third
order equations [37], Zuo established a variational formulation for
nano-lubrication problems [38], Jiao et al. studied the variational
principle for the Schrödinger-KdV system [39], and Wu and his
colleague found a variational theory for the Kaup-Newell system
[40]. The study on the variational principle for the MEMS systems
was rare and primarily [41]. Among all variational principles,
Hamilton principle is the most famous one.

The variational formulation for Equation 1 is

J x( ) � ∫ 1
2
_x2 − 1

2
x2 + k ln 1 − x( )[ ]{ }dt (21)

Hereby 1
2 _x

2 and 1
2x

2 + k ln(1 − x) are, respectively, the kinetic
energy and the potential energy of the oscillator. Equation 4 is the
well-known Hamilton principle, and the total energy keeps
unchanged during the oscillation, that means

1
2
_x2 + 1

2
x2 + k ln 1 − x( ) � H (22)

where H is a constant which can be identified by the initial
conditions. In view of Equations 2. 3, , we have

1
2
_x2 + 1

2
x2 + k ln 1 − x( ) � 0 (23)

The variational-based analytical method might be powerful
applied to the MEMS oscillator.

6 Taylor series method

Taylor series method is accessible to all students [42, 43], it is a
simple, reliable and promising method for various nonlinear
problems [44], here the method is used to study the periodic
property of the MEMS system.

Differentiating Equation 1 4 times with respect to time, and
setting t = 0, we can obtain

€x 0( ) � k (24)
x
...

0( ) � 0 (25)
x 4( ) � k2 − k (26)
x 5( ) � 0 (27)

x 6( ) � 1 − k( )2k + 6k3 (28)

We, therefore, obtain the following Taylor series solution

x t( ) � 1
2!
kt2 + 1

4!
k2 − k( )t4 + 1

6!
1 − k( )2k + 6k3[ ]t6 (29)

Its accuracy can be increased if higher order approximate
solution is solved. The Taylor series solution provides a good
physical insight into the solution properties near t = 0, we need
an approximate solution valid for the whole solution domain.

7 Fractal MEMS

The concept of the fractal MEMS system was first proposed by
Tian and his colleagues in 2021, it was proposed to solve the pull-in
instability [45–47]. The fractal MEMS oscillator can be expressed as.

d2αx

dt2α
+ x − k

1 − x
� 0, x 0( ) � 0,

dαx

dtα
0( ) � 0 (30)

where dαx
dtα is the two-scale fractal derivative [48–50], α is the two-

scale fractal dimensions, its value can be calculated by He-Liu’s
fractal dimensions formulation [51, 52].

Tian et al. found that in the fractal space, the pull-in instability
can be overcome for various MEMS systems [45–47], this was
further proved Feng et al. [53], and a new concept of pull-in
plateau was recommended in Ref. [54]. The vibration
phenomena in a fractal space triggers a new mathematical
direction, that is the fractal vibration theory [55–57].

8 Summary and conclusion

This paper presents a brief review of the latest developments
in MEMS systems, with an emphasis on their periodic properties.
The homotopy perturbation method, variational iteration
method, Hamilton principle, He’s frequency formulation, and
fractal MEMS systems are all reviewed. A simple yet relatively
accurate estimation of the periodic property is crucial for both
theoretical analysis and practical applications. The reviewed
analytical methods for MEMS oscillators have shed new light
on quickly understanding the periodic property of the pull-in
instability of MEMS devices.

As MEMS systems have gained popularity in industrial
applications, optimal design considering vibration properties is
highly needed. Future research should focus on an improved
MEMS oscillator that takes into account the coupled factors of
Casimir force, geometrical potential, and Van der Waals force.
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