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This study focuses on obtaining differences in rock fracture surface morphology
under various loading directions and speeds to infer rock damage mechanics by
using micro-electro–mechanical system (MEMS) sensors, which can measure
stress, strain, and displacement during loading accurately, providing detailed data
for understanding the rock fracture mechanism for physics-informed statistics.
Statistical variables analyze directional angle samples of the normal vector central
line. The deviation normal distribution coefficient (DNDC) for rock fracture
surface normal vectors is defined by the kurtosis coefficient. Brazilian splitting
tests calculate the DNDC for Brazilian disk fracture surfaces. The variation in the
DNDC with a measurement scale distinguishes morphological differences. Three
results are obtained: the DNDC has a scale effect; loading the specimen in
another direction before compression causes internal damage; and different
loading speeds do not significantly change the DNDC. This research holds
promise for a better understanding of rock fractures.
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1 Introduction

Rock deformation and fracture commence with changes in nano/micro-scale
morphology. Micro-electro–mechanical system (MEMS) sensors [1, 2] can be used to
measure stress, strain, and displacement during the loading process, and they have ultra-
sensitivity [3, 4]. This provides more detailed data on the behavior of rock and enables a
more comprehensive understanding of the rock fracture mechanism. Additionally, MEMS
sensors can be used to monitor the internal structure of rock in real-time, detecting any
micro-cracks or damage that may occur before macroscopic fractures become visible [5].
This could assist in predicting rock failure and taking preventive measures to ensure safety
in engineering applications.

Statistical methods can help determine the probability of rock fracture based on the
sensor readings. For example, by analyzing the variance in stress measurements over time, it
is possible to predict when a rock is approaching its breaking point. This combination of
MEMS sensors and statistics produces a physics-informed statistical method.

In the process of Earth’s crustal movement, such as earthquakes, landslides, and
mudslides, most processes are accompanied by rock deformation and fracture. For
example, in construction projects such as mining, civil engineering, slopes, bridges, and
tunnels, these processes are accompanied by rock deformation and fracture. Rock, as a
geological mineral of building materials, is increasingly receiving widespread attention from
industry professionals, thus forming the discipline of rock mechanics. Rock mechanics
mainly studies the stress and fracture conditions of rocks from a mechanical perspective.
Nowadays, more and more researchers are starting from the morphology of rock fracture
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surfaces to infer the mechanical mechanism of rock stress until
fracture, also known as micro- and macro-rock mechanics.

In the study of rock fracture morphology, experts have proposed a
series ofmethods, such asMandlebrot’s theory [6–10] and the two-scale
fractal geometry [11–15]. Due to the highly irregular and complex
fractal characteristics of rock fracture surfaces, researchers have
proposed that fractal dimension can be used to characterize the
roughness of rock fracture surfaces, and the morphology of rock
fracture surfaces can be quantified by roughness [16–19]. Heping
Xie, Jingan Wang, and others accurately characterized the
relationship between the roughness of the rock fracture surface and
its singular indexes using multi-fractal spectra and drew a graph of
function changes [20]. Hongwei Zhou, H. P. Xie, and others used power
spectral density and cumulative power spectral density to describe the
anisotropy of the profile line on rock fracture surfaces [21]. T. Belem, F.
Homand-Etienne M. Souley discovered the joint roughness coefficient
of rock joint, which divides the roughness of rock joint surfaces into
10 levels [22]. V. Rasouli and J.P.Harrison proposed using the Reimann
statistical method to estimate the roughness of a rock fracture section
with linear profiles [23, 24]. M. Borri-Brunetto, A. Carpinteri, S.
Invernizzi, and M. Paggi researched the micro-variation of rough
surfaces under cyclic tangential loading [25]. M. Borri Brunetto, B.
Chiaia, S. studied the multi-fractal properties of rough rock interfaces
under pressure and the porosity of the contact domain [26]. A.
Carpinteri, B. Chiaia, S. Invernizzi studied the direct fractal measure
of fracture surfaces [27]. A. Carpinteri, Chiaia B, Invernizzi S. studied
the three-dimensional fractal analysis of the microstructure
morphology of concrete [28].

This paper proposes a new experimental method and uses
mathematical statistics to study the morphological differences of
rock fracture surfaces under different loading directions and loading
rates and attempts to infer the mechanical mechanism and
mechanism of rock fracture. This physics-informed statistics is
an emerging and powerful approach that combines principles
from physics and statistics.

2 Experimental design and operation

The experimental procedure is as follows: first, granite from
Beishan, Gansu, was selected as the rock material as this material is
relatively uniform. The ZS100 rock drilling machine used in
engineering takes cylindrical rock cores with a diameter of
50 mm and a height of 120 mm and then cuts them into
Brazilian disks with a diameter of 50 mm and a thickness of
20 mm using a cutting machine. The disks were polished into
standard Brazilian disk specimens with a smooth surface using a
polishing machine. The purpose of polishing was to ensure that the
rock has a relatively uniform stress process as much as possible.
Second, a mechanical test system (MTS) machine was used in the
laboratory to load the disk vertically at different rates (as shown in
Figure 1), with loading speeds of 0.01 mm/min, 0.1 mm/min, and
1 mm/min until the disk was fractured vertically. Moreover, the
following experiments were taken. First, the MTS machine loaded
the disk to 13 KN at a speed of 0.01 mm/min, which was
approximately equal to 2/3 of the rock fracture threshold. Then,
the upper and lower loading jaws of the MTSmachine were released,
the disk was rotated clockwise around the center by 30°, and it was

loaded to fracture (as shown in Figure 2). Three sample specimens
were prepared for each of the experiments for a total of
12 specimens. From the principle of rock mechanics, this
experiment involved indirectly stretching the Brazilian disk
specimen horizontally toward both sides until the disk fractured
vertically from themiddle (as shown in Figure 3). During the loading
process, due to the brittle nature of the rock, the stress on the edges
of the rock was uneven, and some specimens may have a small
amount of rock debris falling off the edges. Therefore, relatively
speaking, the stress on the inner layer of the rock was most uniform.
In view of this, the 2-mm equidistant ends of the rectangular section
were removed separately (as shown in Figure 4), and the center of
the rock rectangular section was kept 46 mm long. This way, the
measured data are most representative. Finally, a laser scanner was
used to scan the fracture surface of the rock, with a spacing of
0.1 mm. A total of 461 sets of coordinate data were extracted. Before
scanning, contrast imaging agents can be sprayed onto the fracture
surface to prevent reflection of certain points on the fracture surface.

FIGURE 1
MTS machine loads the Brazilian disk.

FIGURE 2
Schematic diagram of two loading cycles with a rotation angle
of 30°.
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3 Data acquisition, analysis, and the
purpose of researching

The coordinate data on a central section line were extracted
along the loading direction on the rock fracture surface from the
data obtained from the above scanning for research and analysis (as
shown in Figure 4). In order to reduce errors, a linear interpolation
method was used to fit the approximate two-dimensional curve
image of this section line (as shown in Figure 5) because the error
between the curve fitted by the linear interpolation method and the
real curve was within the allowable range [29–31]. Two “peaks” with
similar curve contours were connected using a straight line segment
(hereafter referred to as the scale), the vector perpendicular to this

scale and pointing upward was taken as the normal vector (as shown
in Figure 6), and the angle at which the normal vector deviates from
the vertical upward vector was measured [23]. Here, it was agreed
that the angle of the vector pointing vertically upward was zero
degrees, the angle of the vector deviating to the left was negative, and
the angle of the vector deviating to the right was positive. These
statistical degree data are referred to as the direction angle of the
normal vector of the center section line on the fracture surface of
each specimen (herein referred to as the direction angle of the
specimen). The distribution of directional angles of each specimen at
different scales is researched below. Through computer program
operation, it was shown that the measurement scale from 1.1 to
0.7 mm is a relatively effective transition range for the directional
angle distribution of most specimens from accepting normal
distribution to rejecting normal distribution. Therefore, the above
measurements were carried out at scales of 1.1, 1.0, 0.9, 0.8, and
0.7 mm to obtain sample data on the directional angle of each
specimen. Finally, the sample data obtained by statistical methods
were processed to calculate the statistical measures of the directional
angles of each specimen at different scales (herein referred to as the
statistical measures of the specimens). The above design ideas aimed
to achieve three objectives: first, to compare the variation patterns of
corresponding statistical quantities of the same specimen at different
measurement scales; second, to compare corresponding statistics
between specimens that were loaded to 2/3 of the fracture strength
threshold at a loading rate of 0.01 mm/min and then rotated at a 30°

FIGURE 3
Schematic diagram of the disk breaking.

FIGURE 4
Schematic diagram of the central section along the middle line
on the rectangular rock fracture surface.

FIGURE 5
Linear interpolation, two-dimensional.

FIGURE 6
Schematic diagram of the normal vector curve graph of the
central section line measurement of the scale connecting two peak
points on a profile curve.
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angle before being crushed and specimens that were directly crushed
without rotation; and finally, to reveal the effect and degree of the
loading rate on the corresponding statistics of each specimen.

4 Using a statistical method to process
the data on rock fracture surfaces

On one hand, we calculate the following statistics. Let
X1, X2/, Xn be a set of samples. Denote

�X � 1
n
∑n
i�1
Xi (1)

as the sample mean (herein referred to as the mean), which
reflects the central tendency of the sample data. Denote

s2 � 1
n − 1

∑n
i�1

Xi − �X( )2 (2)

as sample variance (herein referred to as variance). Denote

s �
���������������
1

n − 1
∑n
i�1

Xi − �X( )2√
(3)

as sample standard variance (herein referred to as standard
variance). Variance and standard deviation are statistical
measures used to describe the deviation trend of sample data
from the mean. Denote

g1 � 1
s3
∑n
i�1

Xi − �X( )3 (4)

as the skewness coefficient. Denote

g2 � 1
s4
∑n
i�1

Xi − �X( )4 (5)

as the kurtosis coefficient.
Skewness and kurtosis are two statistical measures of describing the

shape of sample data. The skewness coefficient reflects the symmetry of
the distribution of the sample data. It is called right skewedwheng1 > 0,
which indicates that the data to the right of themean are more scattered
than the data to the left of the mean. Conversely, it is called left skewed
when g1 < 0, which indicates that the data to the left of the mean are
more scattered than the data to the right of the mean. When g1

approaches 0, it is called unbiased, and the distribution can be
considered symmetric. Kurtosis reflects the normal distribution of
the samples, where the kurtosis of the normal distribution is 3.
When g2 > 3, it indicates that there is a significant amount of data
in the sample that are far from the mean. The distributional density
function curve has a flatter shape than that of normal distribution.
Conversely, wheng2 < 3, it indicates that there are a fewer data points in
the sample that are far from the mean. The distributional density
function curve has a steeper shape than that of normal distribution.
Moreover, in the distribution function graph, the red dashed straight
line represents the standard normal distribution function graph. The
closer the distribution function graph is to the red dashed line, the closer
the data distribution is to a normal distribution. On the contrary, if the
distribution function graph deviates further from the red dashed line, it
indicates that the data distribution deviates further from the normal
distribution.

On the other hand, a hypothesis test is conducted on the normal
distribution of the input direction angle data. The angle data here are
subjected to Jarque–Bera testing, with a default significance level. In
each data table, “P” represents the probability value of accepting the
null hypothesis, and “Jbstat” is the value of the test statistic. CV �
5.9915 is the threshold for rejecting the null hypothesis. “H”

represents the testing result, and if H is equal to 0, it can be
assumed that the data of the angle belong to the null hypothesis
of normal distribution. If H is equal to 1, it cannot be assumed that
the angle data follow the null hypothesis of normal distribution. In
addition, there are also the same judgment methods consistent with
the previously mentioned judgments. If P< α, the null hypothesis of
normal distribution can be rejected. Similarly, if Jbstat>CV, the
null hypothesis of normal distribution can also be rejected [32, 33].

(a) Process 1: Under the condition of a loading speed of 0.01 mm/
min, first, the specimen is loaded to 13K N; the upper and
lower jaws of the MTS machine are then released; and the
specimen is then rotated clockwise at a 30° angle along the
center of the disk, continuing to load it vertically until it
fractures. Process 2: The loading speed remains at 0.01 mm/
min, but the specimen did not rotate and is directly loaded
until it fractures. The commonalities and differences in the
statistical and directional angle distributions of each specimen
in processes 1 and 2 are compared (reference Table 1).

Table 1 shows that the measurement scale range is from 1.1 mm
to 0.7 mm, and the commonality of the statistics between specimens
rotated 30° and specimens not rotated is that as the measurement
scale decreases, the distribution of directional angles of the
specimens deviates more and more from the normal distribution.
Therefore, if the measurement scale range is from 0.7mm to 0.8mm,
the null hypothesis of normal distribution is completely denied.
Taking sample specimen A1 (R) as an example, its probability
distribution function diagrams are shown in Figures 7–11 within
the scale range of 1.1 mm–0.7 mm. The figure shows that as the scale
decreases, most of the points on the image deviate more from the
“red dashed line,” indicating that the distribution of the normal
vector deviates more from the normal distribution. Moreover, the
variance and standard deviation further increase with the decrease in
the measurement scale, indicating that as the scale decreases, the
degree of deviation of the angle data from the mean increases.
However, from the skewness coefficient being close to 0, it can be
concluded that the degree of data dispersion on both sides of the
mean is comparable, and other specimens also have similar
commonalities. The difference is in statistical characteristics
between specimens rotated 30° and those not rotated. From the
variation patterns of H, P, Jbstat, and kurtosis coefficient values, it
can be concluded that the distribution of directional angles for the
three specimens rotated 30° can be accepted as a normal distribution
when the measurement scale ranges from 1.1 mm to 0.9 mm, while
the distribution of directional angles for the specimens not rotated
can only be accepted as a normal distribution when the
measurement scale is 1.1 mm. At the same scale, the average
variance and standard deviation of the three specimens rotated at
a 30° angle are smaller than those of the three specimens not rotated,
indicating that the deviation of the direction angle of the specimens
rotated is smaller than that of the specimens not rotated. The
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difference between the statistical values of the specimens in the
above two experimental processes fully demonstrates the difference
in statistical characteristics between specimens with a 30° rotation
angle and specimens without a rotation angle. From the changes in
the values of H, P, Jbstat, and kurtosis coefficient values, it can be
concluded that the distribution of directional angles for the three

specimens with a 30° rotation angle can be accepted as a normal
distribution when the measurement scale ranges from 1.1 mm to
0.9 mm, while the distribution of directional angles for specimens
without a rotation angle can only be accepted as a normal
distribution when the measurement scale is 1.1 mm. At the same
scale, the average variance and standard deviation of the three

TABLE 1 Statistical values of specimens rotated 30° and not rotated (“A” represents a loading speed of 0.01 mm/min. “1, 2, and 3” represent the specimen
number. “R” represents specimens rotated 30°).

Test
statistics
Rock label

Scale
(unit: mm)

H P Jbstat Variance Standard
variance

Skewness
coefficient

Kurtosis
coefficient

A1 (R) 1.1 0 0.7657 0.5338 2,076.8 45.5719 −0.0115 2.6684

1.0 0 0.4795 1.4698 2,525.5 50.2547 −0.0661 2.4697

0.9 0 0.1533 3.7513 3,002.5 54.7946 −0.0330 2.1823

0.8 1 0.0494 6.0165 3,292.5 57.3803 −0.0216 2.0827

0.7 1 0.0360 6.6476 3,260.2 57.0980 0.0229 2.0682

A2 (R) 1.1 0 0.7673 0.5297 1,600.3 40.0043 −0.0782 2.9409

1.0 0 0.9466 0.1098 2,144.7 46.3107 −0.0524 2.9205

0.9 0 0.4888 1.4316 2,631.2 51.2956 −0.0371 2.4404

0.8 0 0.0855 4.9174 3,241.8 56.9364 −0.0917 2.0747

0.7 1 0.0392 6.4790 3,336.6 57.7632 0.0845 1.9986

A3 (R) 1.1 0 0.6456 0.8752 2,401.9 49.0096 −0.0305 2.5642

1.0 0 0.5844 1.0744 2,543.8 50.4359 −0.0866 2.5637

0.9 0 0.1023 4.5602 3,203.7 56.6016 −0.0586 2.1050

0.8 1 0.0290 7.0822 3,373.4 58.0812 −0.0289 1.9665

0.7 1 0.0110 9.0147 3,514.0 59.2791 0.0322 1.9209

A1 1.1 0 0.0938 4.7328 3,319.2 57.6121 0.0312 1.9323

1.0 1 0.0080 9.6580 3,966.1 62.9768 −0.0327 1.6389

0.9 1 0.0016 12.9376 4,191.0 64.7377 0.0085 1.5917

0.8 1 4.1940e-
005

20.1586 4,599.9 67.8225 −0.0072 1.4554

0.7 1 1.3472e-
006

27.0349 4,795.5 69.2498 −0.0039 1.4097

A2 1.1 0 0.0948 4.7119 3,452.4 58.7568 0.0234 1.9397

1.0 1 0.0230 7.5465 3,853.2 62.0739 0.0230 1.7713

0.9 1 0.0086 9.5047 3,911.7 62.5435 −0.0040 1.7348

0.8 1 0.0051 10.5384 3,908.4 62.5174 0.0250 1.7420

0.7 1 0.0039 11.0936 3,842.6 61.9888 0.0398 1.7682

A3 1.1 0 0.1329 4.0369 3,180.4 56.3954 −0.0088 1.9903

1.0 1 0.0140 8.5375 3,818.1 61.7909 −0.0772 1.7362

0.9 1 0.0056 10.3812 3,877.1 62.2662 −0.0884 1.7290

0.8 1 9.8485e-
004

13.8460 4,109.3 64.1038 −0.0660 1.6351

0.7 1 3.1029e-
004

16.1560 4,166.6 64.5488 −0.0503 1.6135
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specimens rotated at a 30° angle are smaller than the average
variance and standard deviation of the three specimens not
rotated, indicating that the deviation of the direction angle of the
specimens rotated is smaller than that of the specimens not rotated.
The difference between the statistical values of the specimens in the
above two experimental processes fully demonstrates that the 13-KN
pressure experienced before the turning angle caused some damage
to the interior of the rock specimen, thereby changing the directional
angle distribution of the specimen.

(b) The differences in directional angle distribution between
specimens with loading speeds 0.01 mm/m and 0.1 mm/m
are shown in Tables 1, 2.

Compared with the statistical values of specimens A1, A2, and
A3 in Table 1, the difference between them is that for the first
velocity A (0.01 mm/m), the three specimens can accept a normal

distribution at a measurement scale of 1.1 mm, while for the second
velocity B (0.1 mm/min), the variation patterns ofH, P, Jbstat, and
kurtosis coefficient values indicate that the three specimens cannot
accept a normal distribution at a measurement scale ranging from
1.1 mm to 0.7 mm. This indicates that these two loading speeds also
caused a difference in the distribution of directional angles of the
specimens, thus indicating that these two loading speeds caused a
difference in the fracture of the specimens.

(c) The relationship and differences between the statistical values
of the directional angle samples of each specimen under
loading rate 0.01 mm/m and 1 mm/m are compared (refer
to Tables 1–3).

After comparison, the statistical value of the directional angle
data on the specimens under the third velocity C is similar to the
corresponding statistical value under the first velocity A. Both are

FIGURE 7
Normal vector distribution function diagram of the centerline of
A1 (R) (L = 1.1 mm).

FIGURE 8
Normal vector distribution function diagram of the centerline of
A1 (R) (L = 1.0 mm).

FIGURE 9
Normal vector distribution function diagram of the centerline of
A1 (R) (L = 0.9 mm).

FIGURE 10
Normal vector distribution function diagram of the centerline of
A1 (R) (L = 0.8 mm).
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accepted as normal distributions at a measurement scale of 1.1 mm.
However, overall, at a measurement scale of 1.1 mm, the average
value of the statistical value P of the directional angles of the three
specimens under the third velocity C is larger than that under the
first velocity A. The average value of the test statistic Jbstat is smaller
than the average value of Jbstat of the three specimens at the first

velocity A, and of course, all of them are less than the measurement
threshold CV � 5.9915.

Themean value of the kurtosis coefficient is also higher than that
of the first velocity A, indicating that under the condition of loading
speed of 1 mm/min, the probability of the distribution of the
specimen direction angle accepting the null hypothesis of normal
distribution is greater than that under the condition of velocity of
0.01 mm/m. This indicates that there are differences in the fracture
morphology of granite caused by these two different loading rates.
On the other hand, under the conditions of a loading rate of 0.1 mm/
m and a loading rate of 1 mm/m, comparing Tables 2, 3 showed that
the faster the loading rate, the more deviated the degree distribution
of the directional angle from the normal distribution. This is because
under the condition of a loading rate of 1 mm/m, when the
measurement scale is 1.1 mm, the distribution can accept the
null hypothesis of normal distribution. However, when the
loading rate is 0.1 mm/m, the null hypothesis of normal
distribution cannot be accepted within the range of 1.1 mm–0.7 mm.

5 Skewness coefficient

Based on the above analysis, for a kurtosis coefficient of 3, the
sample of the direction angle of the normal vector of the center
section on the fracture surface of the specimen follows a standard

FIGURE 11
Normal vector distribution function of the centerline of A1 (R)
(L = 0.7 mm).

TABLE 2 Under the condition of loading speed 0.1 mm/m, statistical values of each specimen (“B” represents a loading speed of 0.01 mm/min. “1, 2, and 3”
represent the specimen number).

Test
statistics
Rock label

Scale
(unit: mm)

H P Jbstat Variance Standard
variance

Skewness
coefficient

Kurtosis
coefficient

B1 1.1 1 0.0403 6.4232 3,597.0 59.9751 −0.0033 1.8392

1.0 1 0.0090 9.4292 3,964.9 62.9676 −0.0076 1.7309

0.9 1 0.0023 12.1815 4,081.8 63.8889 0.0259 1.6617

0.8 1 0.0011 13.5585 4,078.0 63.8594 0.0460 1.6844

0.7 1 4.0387e-
004

15.6288 4,095.3 63.9944 0.0144 1.6638

B2 1.1 1 0.0218 7.6550 3,800.6 61.6490 0.0409 1.7693

1.0 1 0.0015 13.0320 4,386.0 66.2267 −0.0131 1.6091

0.9 1 4.9083e-
004

15.2388 4,444.2 66.6648 −0.0030 1.5819

0.8 1 1.6742e-
004

17.3901 4,494.2 67.0391 −0.0105 1.5804

0.7 1 1.6711e-
004

17.3938 4,328.3 65.7901 −0.0182 1.5567

B3 1.1 1 0.0420 6.3414 3,671.8 60.5955 0.0662 1.8380

1.0 1 0.0031 11.5568 4,266.8 65.3206 0.0595 1.6349

0.9 1 0.0013 13.2818 4,198.4 64.7947 0.0808 1.6002

0.8 1 3.6955e-
004

15.8065 4,351.3 65.9645 0.0400 1.5949

0.7 1 1.0420e-
004

18.3384 4,378.0 66.1661 0.0332 1.5755
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normal distribution (referred to as the sample of the direction angle
of the specimen follows the standard normal distribution).
Therefore, from the kurtosis coefficient of the direction angle of
each specimen at different scales, the deviation normal distribution
coefficient (DNDC) that varies with scale can be defined. The
formula is defined as follows:

D j( ) � Kj − 3
∣∣∣∣ ∣∣∣∣( )/3, (6)

whereD(j) is the skewness coefficient,Kj is the kurtosis coefficient,
and the subscript j is equal to 1.1, 1.0, 0.9, 0.8, and 0.7 and its unit is
millimeters (mm). The skewness coefficient reflects the relative error
of the deviation of the direction angle of the specimen from the
normal distribution at different scales from the perspective of the
kurtosis coefficient. In particular, when Kj is equal to 3, the
skewness coefficient D(j) is equal to 0. The distribution of the
sample strictly follows normal distribution, which is called unbiased.

The content below is an analysis of the difference in the
skewness coefficient of the normal vector of the central section
line on the fracture surface of the specimen under different
loading methods (referred to as the skewness coefficient of
the specimen).

(i) The relationship between the skewness coefficient and scale
of each specimen is revealed.

(ii) The difference in the skewness coefficient between specimens
rotated 30o and those not rotated at a loading rate 0.01 mm/
m is revealed.

(iii) The differences in the skewness coefficients of specimens
under different loading rates are revealed (the data are given
in Table 4).

The overall conclusions could be obtained from Table 4. First,
for each specimen, its skewness coefficient increases as the scale
decreases (refer to Figures 12, 13). Second, for two kinds of
specimens at loading speed 0.01 mm/m and the specimens
rotated 30°, the variation range of their skewness coefficient is
concentrated from 0.1105 to 0.3597, and as the scale decreases,
differences in their skewness coefficient become larger and larger.
However, for the not-rotated-specimens, their skewness coefficient
is concentrated between 0.3534 and 0.5301; so, from Figure 12 and
Figure 13, overall, the skewness coefficient of specimens without
rotating angles is greater than that of specimens with rotating 30°

angles, which shows that when the specimen is loaded to about 2/
3 of the fracture threshold, the inside of the rock is indeed damaged.
As mentioned above, the skewness coefficients of specimens with a
loading rate of 0.01 mm/m are concentrated between 0.3534 and
0.5301, and its range is 0.1767. For the specimens of loading rate
0.1 mm/m, their skewness coefficients range from 0.3869 to 0.4811,
with a range of 0.0942. For the specimens of loading rate 1 mm/m,
their skewness coefficients are concentrated from 0.2678 to 0.4928,
with a range of 0.225. From the range of skewness coefficients, the
following conclusion can be obtained. Neither the faster the loading
rate of the specimen, the greater the range of skewness coefficients,
nor the slower the loading speed of the specimen, the larger the
range of skewness coefficients (refer to Figure 13). The variable

TABLE 3 Statistical values of directional angle data for each specimen under the condition of loading speed 1 mm/m (“C” represents a loading speed of
1 mm/m. “1, 2, and 3” represent specimen numbers).

Test
statistics
Rock label

Scale
(unit: mm)

H P Jbstat Variance Standard
variance

Skewness
coefficient

Kurtosis
coefficient

C1 1.1 0 0.3197 2.2808 2,675.8 51.7279 0.0166 2.1944

1.0 1 0.0180 8.0355 3,854.7 62.0863 −0.0015 1.7296

0.9 1 0.0015 13.0695 4,350.0 65.9544 0.0095 1.5675

0.8 1 2.3934e-
004

16.6753 4,489.2 67.0013 0.0057 1.5654

0.7 1 2.1869e-
004

16.8557 4,352.0 65.9697 −0.0452 1.5217

C2 1.1 0 0.2297 2.9417 2,964.3 54.4451 −0.0197 2.1967

1.0 1 0.0380 6.5400 3,498.3 59.1464 0.0033 1.9184

0.9 1 0.0124 8.7872 3,681.3 60.6736 0.0004 1.8348

0.8 1 0.0018 12.6248 3,966.9 62.9837 −0.0132 1.7226

0.7 1 8.4586e-
004

14.1503 3,914.9 62.5692 −0.0384 1.7184

C3 1.1 0 0.0892 4.8343 3,442.3 58.6713 0.0589 1.9578

1.0 1 0.0204 7.7876 3,822.7 61.8278 0.0821 1.9416

0.9 1 0.0161 8.2527 3,779.7 61.4790 0.0492 1.8866

0.8 1 0.0166 8.1959 3,690.2 60.7471 0.0418 1.8530

0.7 1 0.0218 7.6503 3,539.6 59.4947 0.0281 1.8357
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curves in Figure 12 and Figure 13 show that there is no significant
change in the skewness coefficient under the above three loading
rates. It indicates that the effects of the three loading rates on the
rock fracture morphology of the specimens are not
significantly different.

6 Conclusion and outlook

MEMS sensors play a crucial role in understanding rock
fracture. Coupled with statistical analysis, they offer a powerful
approach to studying this complex phenomenon.

MEMS sensors can be strategically placed on or within rocks to
measure parameters such as stress, strain, and vibration. These real-
time measurements provide valuable data on the behavior of rocks
under different conditions. Meanwhile, statistics comes into play by
analyzing these data to identify patterns and trends.

In practical applications, this approach can be used in mining and
construction industries to assess the stability of rock formations and
plan safe operations. It can also aid in geologic research to better
understand the processes that lead to rock fractures. By leveraging
MEMS sensors and statistics, we can gain a deeper understanding of
rock fracture and take proactive measures to ensure safety and stability.

The following conclusion can be obtained from the above rock
testing and normal hypothesis testing analysis. First, the distribution
status of normal vectors of the central profile on rock fracture surfaces
has scale effects from the variable regularity of statistics and skewness
coefficient. It indicates that the smaller themeasurement scale, themore
the distribution deviates from the normal distribution. Second, under
the loading speed 0.01 mm and the same scale, there is obviously a
difference in the directional angle statistics and skewness coefficient of
specimens rotating 30° and not rotating 30° angles. Overall, it is more
likely that the distribution of the direction angle of the specimen rotated
by 30° is accepted as a normal distribution than that of the specimen
without rotation, indicating that the 13-KN pressure applied before
rotation caused some damage to the interior of the specimen. Finally,
the differences in the above three loading rates in rock fracture surfaces
morphology are not obvious. If conditions permit, larger loading rates
can be used to analyze the differences in rock fracture surface
morphology and identify its variation regularity.
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TABLE 4 Skewness coefficient values between specimens rotating 30° and
not rotated (“A” represents loading speed 0.01 mm/m. “1, 2, and 3”
represent specimen numbers. “R” represents the specimens of rotating 30°).

Scale
DNDC
Rock

1.1 mm 1.0 mm 0.9 mm 0.8 mm 0.7 mm

A1 (R) 0.1105 0.1768 0.2726 0.3058 0.3106

A2 (R) 0.0197 0.0265 0.1865 0.3084 0.3338

A3 (R) 0.1453 0.1454 0.2983 0.3445 0.3597

A1 0.3559 0.4537 0.4694 0.5149 0.5301

A2 0.3534 0.4096 0.4217 0.4193 0.4106

A3 0.3366 0.4213 0.4237 0.4550 0.4622

B1 0.3869 0.4230 0.4461 0.4385 0.4454

B2 0.4102 0.4636 0.4727 0.4732 0.4811

B3 0.3873 0.4550 0.4666 0.4684 0.4748

C1 0.2685 0.4235 0.4775 0.4782 0.4928

C2 0.2678 0.3605 0.3884 0.4258 0.4272

C3 0.3474 0.3528 0.3711 0.3823 0.3881

FIGURE 12
Skewness coefficients of Ai and Ai (R) as a function of scale (i = 1,
2, 3).

FIGURE 13
Skewness coefficients of Ai, Bi, and Ci as a function of scale (i = 1,
2, 3; blue, red, and green lines represent loading rates of 0.01mm/min,
0.1 mm/min, and 1 mm/min, respectively).
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