
Dynamic analysis of malicious
behavior propagation based on
feature selection in software
network

Huajian Xue1,2, Yali Wang3* and Qiguang Tang4

1College of Mathematics and Computer Science, Tongling University, Tongling, China, 2Anhui
Engineering Research Center Of Intelligent Manufacturing Of Copper-based Materials, Tongling
University, Tongling, China, 3College of Computing Science and Artificial Intelligence, Suzhou City
University, Suzhou, China, 4Zhongyuan Oilfield Oil and Gas Engineering Service Center, Zhongyuan
Oilfield Company of SINOPEC, Puyang, China

In the era of big data, the propagation of malicious software poses a significant
threat to corporate data security. To safeguard data assets from the
encroachment of malware, it is essential to conduct a dynamic analysis of
various information propagation behaviors within software. This paper
introduces a dynamic analysis detection method for malicious behavior based
on feature extraction (MBDFE), designed to effectively identify and thwart the
spread of malicious software. The method is divided into three stages: First,
variable-length N-gram algorithms are utilized to extract subsequences of
varying lengths from the sample APl call sequences as continuous dynamic
features. Second, feature selection techniques based on information gain are
employed to identify suitable classification features. Lastly, recurrent neural
networks (RNN) are applied for the classification training and prediction of
diverse software behaviors. Experimental results and analysis demonstrate that
this approach can accurately detect and promptly interrupt the information
dissemination of malicious software when such behavior occurs, thereby
enhancing the precision and timeliness of malware detection.

KEYWORDS

recurrent neural networks, information propagation, feature selection, dynamic
analysis, software network

1 Introduction

In the information age, business data has become the lifeblood of enterprises, and one of
the major risks in business operations is the destruction of commercial data by malicious
software. Today, with the high integration of the Internet of Things, big data, and mobile
Internet, malicious attacks pose an unprecedented threat to corporate data information. For
instance, the “Panda Burning Incense” virus in 2006 infected millions of personal computer
users and enterprise local area networks. The Aurora attack in 2010 led to the theft of
information data frommore than 20 companies worldwide. The ransomware virus attack in
2017 prevented the important servers of hundreds of companies from starting. These
malicious software behaviors have stolen or destroyed corporate data assets, causing
immeasurable losses to businesses. Whether enterprise information systems can be used
normally and safely is an important issue that cannot be ignored. To combat the threat

OPEN ACCESS

EDITED BY

Xuzhen Zhu,
Beijing University of Posts and
Telecommunications (BUPT), China

REVIEWED BY

Zhidan Zhao,
Shantou University, China
Lei Gao,
Shandong Agricultural University, China
Chao Fan,
Chengdu University of Technology, China

*CORRESPONDENCE

Yali Wang,
ylwang@szcu.edu.cn

RECEIVED 08 September 2024
ACCEPTED 14 October 2024
PUBLISHED 01 November 2024

CITATION

Xue H, Wang Y and Tang Q (2024) Dynamic
analysis of malicious behavior propagation
based on feature selection in software network.
Front. Phys. 12:1493209.
doi: 10.3389/fphy.2024.1493209

COPYRIGHT

© 2024 Xue, Wang and Tang. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 01 November 2024
DOI 10.3389/fphy.2024.1493209

https://www.frontiersin.org/articles/10.3389/fphy.2024.1493209/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1493209/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1493209/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1493209/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1493209&domain=pdf&date_stamp=2024-11-01
mailto:ylwang@szcu.edu.cn
mailto:ylwang@szcu.edu.cn
https://doi.org/10.3389/fphy.2024.1493209
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1493209

posed by the explosive growth of malicious software to corporate
data information systems, researchers have studied the detection of
malicious behavior from different perspectives.

Social science researchers mainly conduct qualitative analysis
in the detection of malicious behavior, analyzing various risk
factors that enterprises face in the context of big data from a
macro perspective [1–5]. Natural science researchers mainly
study the behavior and characteristics of malicious software
through methods such as N-gram, graph theory, and Bayesian
classification [6–11], committing to finding a strategy that can
quickly detect malicious software, thereby strengthening the risk
prevention of corporate data assets. Although these schemes have
improved the detection rate of malicious behavior, there are still
shortcomings. Methods based on fixed-length N-grams struggle
to fully describe the behavior of malicious software. On one hand,
different behaviors of malicious software correspond to different
sequences of API calls. Moreover, the number of API calls varies
as the malicious software performs different operations. On the
other hand, malicious software can evade traditional fixed-length
API N-gram malware detection methods by inserting
independent API calls during execution. Malware detection
systems based on graph theory can detect variants of
malicious software and have a high detection accuracy.
However, these feature extraction methods have limitations.
Typically, there are hundreds or thousands of vertices or edges
in a program’s behavioral call graph. Therefore, constructing a
behavioral call graph is relatively difficult.

Based on an in-depth analysis of existing research results, in this
paper, we proposes a malicious behavior detection method based on
feature extraction(MBDFE), aimed at identifying whether the
behavior of software programs contains malicious elements. The
work of this paper mainly includes the following two aspects:

• This paper innovatively proposes a software feature selection
technique that uses the N-gram algorithm to capture
operation codes during the software execution process and
employs an information gain calculation method to select the
most representative software features. When new software
behavior patterns are detected in the enterprise software
information system, this feature selection technique can
accurately extract the code that reflects its behavioral
characteristics.

• This paper transforms the dynamic analysis of malicious
behavior into a classification problem, inputs the extracted
software feature codes into a recurrent neural network model
for processing, and judges whether the software is malicious
based on the classification results of the model’s software
behavior. This method can efficiently identify and warn of
potential malicious behavior, providing timely security
protection measures for enterprises.

The subsequent chapters of this paper are arranged as follows:
Chapter 2 reviews the previous research work in the relevant field;
Chapter 3 elaborates on the framework and specific implementation
details of the proposed plan; Chapter 4 validates the performance of
the proposed plan through extensive experiments; finally, Chapter
5 summarizes the proposed plan and provides a perspective on
future research directions.

2 Related works

In this section, we review previous research achievements in
malicious behavior detection. The identification of malicious
software behavior is an interdisciplinary research direction, where
both social science and natural science researchers have conducted
in-depth studies on this topic. Social science researchers primarily
employ qualitative analysis to examine the various risk factors of
corporate risk in the context of big data [1–5], and subsequently
propose strategies and countermeasures to address these risks.

Meng Fanfei in literature [1] reviews the development history of
the COBIT framework, the concepts and theories related to IT
governance and risk management, and applies the content of the
COBIT framework to IT governance and enterprise risk
management. The paper analyzes the advantages and feasibility
of using the COBIT framework from multiple perspectives and
proposes some techniques andmethods in the application process to
facilitate better integration of the COBIT framework into IT
governance and risk management by enterprises. Peng Chaoran
et al. [2] point out that the construction of domestic enterprise
information platforms is lagging, and there are significant security
risks in placing the data assets of large enterprises on platforms of
foreign giants. They propose from a strategic height the construction
of independent enterprise information resource platforms,
accounting information standard firewalls, and enterprise
information security regulations.

Liu Shangxi et al. in literature [3] use neural network technology
to identify corporate tax risks. The paper uses the financial data of
578 enterprises as training samples, derives the characteristics of
enterprise risks, and validates them with a sample of 386 enterprises,
achieving a final accuracy of 99.8%. Yang Ling [4] constructs a
corporate operation risk monitoring classification and grading index
system based on a “big data platform”. The system obtains real-time
monitoring indicator data through a data asset collaborative
application platform, realizes real-time risk early warning,
emergency linkage, and closed-loop risk management according
to preset thresholds, and regularly forms a business risk health index
analysis report based on the statistical scores and weights of various
indicators, serving as an important reference for leadership decision-
making. Zhang Lizhe believes that corporate data asset management
faces unprecedented risks in the era of big data. Establishing a
comprehensive and reliable financial risk management system and
strengthening the prevention of corporate financial risks should
become a key research issue for enterprise development. In literature
[5], the author analyzes the problems in the development of
corporate financial risk management systems, discusses the
significance of establishing a sound prevention system, and
proposes suggestions for the construction of a financial risk
management system model.

Natural science researchers primarily utilize statistical models or
machine learning methods [6–11] to study the behaviors and
characteristics of malicious software. They are committed to
finding a strategy that can rapidly detect malicious software,
thereby enhancing the risk prevention of corporate data assets.
Wang Rui et al. in literature [6] combine dynamic taint
propagation analysis and semantic analysis at the behavioral level
to extract key system calls of malicious software, dependencies
between calls, and related instruction information, constructing a

Frontiers in Physics frontiersin.org02

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

semantic-based malicious software behavior detection system to
detect variants of malicious software.

Sathyanarayan et al. [7] use the static analysis method N-gram to
extract the frequency of key API calls from programs, and by
leveraging the correlation between malicious software semantics
and API calls, construct behavioral signatures for entire families of
malicious software through statistical comparison. Fang et al. [8] use
dynamic analysis methods to extract API calls, return values,
module names, and their frequencies as behavioral features from
programs, and establish an integrated machine learning algorithm-
based malicious software detection model to detect variants of
malicious software. Park et al. [9] construct a Kernel Object
Behavioral Graph (KOBG) for each piece of malicious software,
and then detect new malicious software by clustering to mine the
family’s minimum weight common supergraph (Weighted
Minimum Common Supergraph, WMinCS).

Ding et al. [10] use dynamic taint technology to construct a system
call dependency graph based on the parameter dependency relationships
between system calls, and then extract a commonbehavioral subgraph as
a signature for each family of malicious software based on themaximum
weight subgraph (maximum weight subgraph, MWS) algorithm to
detect variants of malicious software.

Zhang et al. in [11] propose a deep detection method for
malware based on behavior chains (MALDC). This method
monitors behavior points based on API calls and then constructs
behavior chains using the calling sequences of those behavior points
at runtime. Finally, a deep detection method based on Long Short-
Term Memory (LSTM) networks is used to detect malicious
behavior from the behavior chains.

Li et al. in [12]propose a feature fusion, machine learning-based
method to detect malicious mining code. Extracts multi-dim
features via static and statistical analysis. Uses n-gram, TF-IDF
for text feature vectors, selects best via classifier, and fuses with stats
for model training.

Amer et al. in [13] attempted to create universal behavior
models for malicious and benign processes, leveraging statistical,
contextual, and graph mining features to capture API function
relationships in call sequences. Generated models show behavior
contrast, leading to relational perspective models that characterize
process behaviors. Zhan et al. [14] propose an anomaly detection
method for adversarial robustness, analyzing behavior units to tackle
issues. Behavior units, extracted from related actions executing
intentions, hold key semantic info for local behaviors, boosting
analysis robustness. Using a multi-level DL model, it learns
semantics and context of behavior units to counter local and
broad-scale perturbation attacks. Wong et al. [15] use deep
learning to pinpoint API calls linked to malware techniques in
execution traces. APILI sets up multi-attention between API,
resources, and techniques, using a neural net to incorporate
MITRE ATT&CK, tactics, and procedures. It uses fine-tuned
BERT for embedding and SVD for tech representation, with
design tweaks like layering and noise to boost location accuracy.
Chen et al. [16] propose a method for Windows malware detection
uses deep learning on APIs with added parameters. It rates
parameter sensitivity to malware via rules and clustering, then
tags APIs by sensitivity. APIs are encoded by merging native and
sensitivity embeddings to show security relations. These embeddings
are used to train a deep neural network binary classifier for malware.

Pektaş et al. [17] employ the API call graph to depict the full
spectrum of execution routes accessible to malware while it operates.
This graph’s embedding is converted into a compact numerical
vector feature set for integration into a deep neural network.
Following this, the detection of similarities within each binary
function is efficiently trained and evaluated. Streamlining security
analyst tasks, automating Android malware detection and family
classification is crucial. Prior research leveraged machine learning to
tackle these challenges. Yet, the growing app count poses a need for a
scalable, accurate solution in cybersecurity. Here, Sun et al. in [18]
introduce a method enhancing malware and family detection, also
cutting analysis time.

Tharani et al. [19] introduces a range of feature categories and a
streamlined feature extraction technique for Bitcoin and Ethereum
transaction data, considering their interconnections. As per our
awareness, no prior research has utilized feature engineering for
malicious activity detection. These features’ relevance was confirmed
with eight classifiers: RF, XG, Silas, and neural networks.

Zou et al. [20] aim to merge the precision of graph-based
detection with the scalability of social network analysis for
Android malware. We analyze app function call graphs as social
networks to find central nodes, then measure their intimacy with
sensitive APIs. Our IntDroid tool was tested on a dataset with
3,988 benign and 4,265 malicious samples.

3 The proposed method

3.1 The Overview of MBDFE

The solution proposed in this paper is divided into three steps.
The first step is to use variable-length N-gram to extract software
behavior feature codes; the second step is to reduce the
dimensionality of the feature codes through a feature selection
method - information gain; the third step is to train the weights
of the recurrent neural network with the features. The framework of
the solution is shown in Figure 1:

As shown in Figure 1, the framework of the MBDFE method
proposed in this study consists of three core components: feature
extraction, feature selection, and software behavior recognition.
During the feature extraction phase, the n-gram algorithm is
used to extract the software’s operation codes as feature codes. In
the feature selection phase, the information gain algorithm is
employed to select feature codes with higher information content
as classification features. In the behavior recognition phase, after the
classification features are processed through a recurrent neural
network, the resulting software classification probability
distribution is obtained, with the category having the highest
probability being identified as the actual category of the software.
In the proposed MBDFE algorithm, multiple variables are involved,
the specific meanings of which are detailed in Table 1.

3.2 The extraction of variable-length N-
gram features

The N-Gram model is a statistical probability language model
based on the idea of dividing the content of a text into byte-sized

Frontiers in Physics frontiersin.org03

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

sliding windows of length N, forming a sequence of byte segments of
length N. In the field of malicious behavior detection, the N-Gram
algorithm extracts the operation codes from the disassembled files of
software behavior and converts them into a set of bytes. Then,
through a sliding window, a series of n-byte sequences are obtained.
These sequences are the feature codes of the software behavior and
are a feature extraction method based on the dynamic analysis of
malicious software. The variable-length dynamic behavior feature
extraction model breaks down the behavioral call sequence of
malicious software into different N-grams, performs feature
selection on each gram, and then combines them into hyper-

grams of varying lengths as the behavioral features of malicious
software. This approach aims to detect variants of obfuscated
malicious software and improve the accuracy of malicious
software detection. The N-Gram primarily utilizes the Markov
assumption, and in the field of software malicious behavior
detection, the model represents the co-occurrence probability of
each byte code and its preceding feature codes. The model is shown
in the following formula:

p mn|mn−1...m2m1() � F m1m2...mn()
F m1m2...mn−1() (1)

FIGURE 1
The overview of MBDFE scheme.

Frontiers in Physics frontiersin.org04

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

in the formula, p(mn|mn−1...m2m1) represents the conditional
probability of the operation code mn given the preceding
n−1 items, and F(m1m2...mn) and F(m1m2...mn−1) represent
the frequency of co-occurrence of the operation code
sequence. By continuously changing the value of n, the most
suitable feature code can be determined based on the derived
probability values.

The variable-length N-gram algorithm extracts operation code
slices from each software behavior invocation sequence and uses
these slices to construct a set of feature codes for software behavior,
with the following steps:

• Convert the sample program’s invocation behavior into
hexadecimal format and match the program’s features
against a computer virus database.

• Starting from the first position where a match occurs, use a
sliding window method to continuously compare backward
until no identical features are found. Ensure uniqueness while
trying to keep the feature code as short as possible.

• Count the number, or frequency, of features in this byte
stream that are included in the virus feature database.

• Set a threshold; when the count of a certain feature exceeds the
threshold, add this byte stream to the virus database as a
candidate feature code.

3.3 Feature selection by information gain

The feature set obtained through variable-length N-gram
segmentation represents a collection of behavior sequences for
each software. By training the software’s behavior sequences, it is
possible to determine the category to which the software sequence
belongs (i.e., virus, trojan, ransomware, worm, or normal software
access). In this paper, we use recurrent neural networks to classify
the behavior sequences of software. However, the importance of
features in the software behavior feature vector is not the same in the
classification system. To select representative features and improve
classification efficiency, it is necessary to quantify the importance of
software behavior features. This paper uses Information Gain (IG) to
measure the software behavior features. In Information Gain, the
criterion is how much information the feature can bring to the
classification system; the more information it brings, the more
important the feature is.

In the classification system, when a software behavior feature T
can be composed of multiple classes (for example, registry access
behavior, which could be either normal or trojan behavior), the
calculation of conditional entropy needs to consider all its possible
values. In the software system, the specific value of the software
feature behavior T is set as t. Generally, the values of t are t
(indicating that t occurs) and not t (indicating that t does not

TABLE 1 The variable symbols used in MBDFE scheme.

Variable symbol Definition of symbols

T It represents a certain characteristic behavior of the software

t It represents the value of the characteristic behavior T

H(C) It represents the entropy of the overall characteristic behavior of the software

H(C|T) It represents the conditional entropy of feature T

P(t) It represents the proportion of the presence of software behavior T in the entire sequence of software behaviors

P(Ci | t) It represents the proportion of software sequences containing software behavior T and belonging to class c in the entire software system
containing behavior T behavior sequences

U It represents the weight between the input layer and the hidden layer in a recurrent neural network

V It represents the weight between hidden layers

W It represents the weight between the hidden layer and the output layer

ΔU It represents the gradient of weight U

ΔV It represents the gradient of weight V

ΔW It represents the gradient of weight W

zht It represents the value of the hidden layer at time t

aht It represents the activation value of the hidden layer at time t

zot It represents the value of the output layer at time t

aot It represents the activation value of the output layer at time t

δot It represents the gradient of the output layer at time t

δht It represents the gradient of the hidden layer at time t

lr It represents the learning rate in gradient descent algorithm

Frontiers in Physics frontiersin.org05

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

occur). At this point, the conditional entropy of the behavior feature
T is as follows:

H C T|() � P t()H C t|() + P �t()H C �t|() (2)
in the formula, P(t) represents the proportion of the presence of
software behavior T in the entire sequence of software behaviors,
and indicates the proportion of software sequences that contain
behavior T and belong to class Ci among all software behavior
sequences in the software system that include behavior T. Similarly,
P(�t) represents the proportion of sequences without behavior T in
the entire sequence of software behaviors, and P(Ci | �t) denotes the
proportion of software behavior sequences that do not contain
behavior T and belong to class Ci among all software behavior
sequences in the software system that do not include behavior T. The
entropy of H(C | t) and H(C | t) shown in the following formula:

H C t|() � −∑
n

i�1
P Ci t|()log2 P Ci t|()

H C �t|() � −∑
n

i�1
P Ci �t|()log2 P Ci �t|()

(3)

The information gain of software behavior feature T is the
difference between the entropy of the entire software behavior
and the conditional entropy of software feature T. The formula is
as follows:

IG T() � H C() −H C |T()
� −∑

n

i�1
P ci(). log2 P ci()

+∑
n

i�1
P Ci t|()log2 P Ci t|() +∑

n

i�1
P Ci �t|()log2 P Ci �t|()

(4)

3.4 Utilizing recurrent neural networks for
malicious behavior detection

Before training a neural network, it is necessary to first randomly
generate the three weights of the neural network: the weight U, the
weight W and the weight V. When the behavioral feature vector is
input into the network, the forward propagation is as shown in the
following formula:

zht � xt · U + aht−1 ·W
aht � tanh xt · U + aht−1 ·W() (5)

where zht refers to the value of the hidden layer at time t, aht
represents the activation value of the hidden layer at time t, xt
represents the one-hot vector of the API access list at time t, and
tanh() is the activation function of the hidden layer. zot represents
the value of the output layer at time t, aot represents the activation
value of the output layer at time t, and softmax() is the activation
function of the output layer. The forward propagation formula for
the output layer is as follows:

zot � aht · V
aot � softmax aht · V() (6)

In this study, the input of RNN network [21] is the sequence
of API accesses for each software, with the API access sequence

length matching the training time series. After each time step’s
forward propagation calculates the output layer’s activation,
these values are collected into a list. Once the forward
propagation for the entire sequence is complete, the cross-
entropy is used to compute the error between the output
layer’s activations and the true output labels at each time
step. This error is then backpropagated through time to each
layer to compute the gradients, which are essential for updating
the weights. The cross-entropy loss function is expressed as:

Loss � −∑
L1

i�1
yt i()p ln aot i() (7)

where L1 is the length of the one-hot vector, yt represents the
category to which the input feature sequence belongs at time t, and
the error of the output layer at each moment can be obtained
through Formula 7. The output layer error can be used to calculate
the gradient about the output layer through the chain rule. Define δot
as the gradient of the output layer at time t, δht as the gradient of the
hidden layer at time t, ∂Losst∂aot

as the gradient of the loss function at
time t on the activation value of the output layer, and ∂aht

∂zht
as the

gradient of the activation value of the hidden layer at time t on the
hidden layer. The gradients of U, V, and W are defined as ΔU , ΔV ,
and ΔW , and are solved as follows:

ΔU � ∂Losst
∂aot

· ∂a
o
t

∂zot
· ∂z

o
t

∂aht
· ∂a

h
t

∂zht
· ∂z

h
t

∂U
+ ∂Losst+1

∂aot+1
· ∂a

o
t+1

∂zot+1
· ∂z

o
t+1

∂aht+1
· ∂a

h
t+1

∂zht+1

· ∂z
h
t+1

∂aht
· ∂a

h
t

∂zht
· ∂z

h
t

∂U

� δht ·
∂zht
∂U

� δht ·
∂ xt · U + aht−1 ·W()

∂U
� δht · xt

ΔV � ∂Losst
∂aot

· ∂a
o
t

∂zot
· ∂z

o
t

∂V
� δot ·

∂zot
∂V

� δot ·
∂ aht · V()

∂V
� δot · aht

ΔU � ∂Losst
∂aot

· ∂a
o
t

∂zot
· ∂z

o
t

∂aht
· ∂a

h
t

∂zht
· ∂z

h
t

∂W
+ ∂Losst+1

∂aot+1
· ∂a

o
t+1

∂zot+1
· ∂z

o
t+1

∂aht+1
· ∂a

h
t+1

∂zht+1

· ∂z
h
t+1

∂aht
· ∂a

h
t

∂zht
· ∂z

h
t

∂W

� δht ·
∂zht
∂U

� δht ·
∂ xt · U + aht−1 ·W()

∂W
� δht · aht−1

(8)
The weight update of the network is the initial weight updated by

the gradient descent method. Before updating, it is necessary to first
calculate the cumulative update value of the weight gradient. The
initial values of ΔU , ΔV , and ΔW are 0 matrices, and the matrix
dimensions are consistent with the dimensions of U, V, and W.
During each time step of the training feature sequence, ΔU ,ΔV , and
ΔW are accumulated and updated, and the cumulative update
equation is as follows:

ΔU � ΔU + δht · xt

ΔV � ΔV + δot · aht
ΔW � ΔW + δht · aht−1

(9)

When the feature sequence is not yet trained, the three weights
are shared throughout the time sequence training process and will
not be updated. Once the feature sequence of the entire software is
trained, U, V, and W can be updated by the gradient descent
method. The weight update equation is as follows:

Frontiers in Physics frontiersin.org06

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

U � U − lrpΔU
V � V − lrpΔV
W � W − lrpΔW

(10)

When a software behavior is running, our proposed scheme can
quickly determine the probability of this software belonging to
various categories based on the sequence vector of software
behavior and the weight vector, taking the category with the
highest probability as the true category of this software, thereby
quickly predicting whether the software has malicious behavior.

4 Experiments

4.1 Dataset

The experimental dataset includes 172 benign executable
programs and 457 malicious software samples (across 4 types of
malware: Trojans, worms, script viruses, and system viruses). All of
these samples are Windows Portable Executable (PE) files, including
formats such as EXE, DLL, OCX, SYS, and COM. The malicious
samples were randomly selected from the malicious software sample
set downloaded from the VX Heaven website, while the benign
samples were collected from clean Windows systems and the school
FTP website as good executable programs.

In order to obtain the behavioral characteristics of these
programs, we selected the open-source dynamic analysis tool
Cuckoo Sandbox [22]. The Cuckoo Sandbox mainly analyzes file
types such as Windows executable files, DLL files, MS Office files,
compressed files, etc. It can automatically analyze the dynamic
behaviors of executable programs, including process behavior,
network behavior, and file behavior. In our experiment, the
architecture of the Cuckoo Sandbox primarily involves
running the main Cuckoo program on the host machine (the
host system is Ubuntu Server 16.10), with multiple guest
machines (the environments required for the execution of
malicious and benign programs are Windows series operating
systems) connected to the host via a virtual network. Each guest
machine has a Cuckoo Agent program that acts as a monitoring
agent. For data storage security, we have connected a workstation
to the Cuckoo host to back up the generated analysis reports and
process data. Additionally, analysis can be conducted remotely
via the internet by accessing the host. The structure of the Cuckoo
Sandbox is shown in Figure 2:

4.2 Experimental evaluation criteria

The experiments in the paper evaluate the performance of the
proposed scheme based on accuracy, recall, and F1-measure. For
malicious software behavior prediction, accuracy refers to the
proportion of predicted malicious samples that are truly
malicious, while recall is the proportion of malicious samples in
the dataset that we correctly identify as malicious through our
scheme. We define TP as the number of positive samples in the
dataset predicted as positive, FN as the number of positive samples
in the dataset predicted as negative, FP as the number of negative
samples predicted as positive, and TN as the number of negative

samples predicted as negative. The evaluation criteria are shown in
the following formulas:

Accuacy � TP

TP + FP

Recall � TP

TP + FN

F1 −measure � 2Accuacy*Recall
Accuacy + Recall

(11)

4.3 Experimental results and analysis

In this experiment, the hardware configuration utilized is as
follows: the central processing unit (CPU) is an Intel Xeon Gold
6234, equipped with 32 GB of memory, a 2 TB hard disk drive, and
an NVIDIA GeForce RTX 3080Ti graphics card. In the experiment,
we divided the dataset into two parts, with 80% as the training set
and 20% as the test set. Regarding the parameter settings for our
scheme, we conducted the following experiments:

For the parameter n in the N-gram scheme, the range of values
from 1 to 5 was tested, and the results are shown in the figure below:

From Figure 3, it can be observed that when the value of n is 4,
the predictive performance is optimal, with the F1-measure of the
scheme reaching 0.8627. However, with each increment of n in the
n-gram scheme, the number of behavior features increases
exponentially, and the time cost also rises. We can see in the
chart that when n increases from 3 to 4, the time cost jumps
from 386.24 s to 589.84 s. Considering that when n is taken as 3,
the F1-measure of the proposed scheme for identifying malicious
behavior reaches 0.8435, which is only about 2% less than the
performance when n is 4, we opt for n to be 3 after a
comprehensive assessment.

To validate the efficiency of the proposed solution, we first
determined the parameters of the model, which consist of four
elements: the number of iterations for the model, the learning rate of
the model, the dimensionality of the hidden layer, and the number of
features. By adjusting the aforementioned parameters, the model’s
mean loss and accuracy also continuously change, as shown
in Figure 4.

From Figure 4A, it can be observed that when the number of
iterations reaches 1800, the mean loss of the model is at its lowest,
indicating that the model has converged at this point. Figures 4B, C
show that when the learning rate is set to 0.04 and the
dimensionality of the hidden layer is 220, the model performs
the best, with a mean loss value of 0.23416. Regarding the
selection of features, we defined the range of feature selection
from 40 to 260, increasing by 20 each time, resulting in a series
of accuracy values as depicted in Figure 4D. It can be seen from the
figure that when the number of feature values is 200, the model’s
performance is optimal, with an accuracy value of 94.27%.When the
number of feature values continues to increase, the model’s
performance remains essentially unchanged.

In terms of performance comparison, we compared our
proposed scheme MBDFE with RNN and Naive Bayes. By
varying the density of the dataset, the algorithm’s running time
and performance also change continuously, as shown in Figure 5:

Frontiers in Physics frontiersin.org07

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

From Figure 5B, it can be observed that the running times of the
models vary. MBDFE and RNN require training the weights of the
neural network, while the Bayesian method only needs to calculate
the class probabilities for each feature, thus consuming relatively less
time. MBDFE, as an RNN model based on feature selection, has an

advantage in training time over traditional RNNs. As shown in the
figure, when the data density reaches 80%, MBDFE’s training time is
1813.15 s, compared to 2876.56 s for RNN, saving 36.97% in time.

Examining Figure 5A reveals that when the data density is less
than 50%, MBDFE’s performance is inferior to the Bayesian

FIGURE 2
The structure of cuckoo sandbox.

Frontiers in Physics frontiersin.org08

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

FIGURE 3
The Parameter of N-gram. (A) Illustrates the impact of the value of n in n-gram on the performance of the algorithm, and (B) shows the effect of the
value of n in n-gram on the training time of the algorithm.

FIGURE 4
The Parameters of MBDFE. (A) Demonstrates the impact of the number of parameter iterations on algorithm performance, (B) shows the effect of
the learning rate on algorithm performance, (C) illustrates the influence of the hidden layer dimensions on algorithm performance, and (D) presents the
impact of the number of feature selections on algorithm performance.

Frontiers in Physics frontiersin.org09

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

classifier. This is because at lower data densities, the weights of the
RNN model within MBDFE are not fully trained, leading to
decreased classification performance. However, once the data
density exceeds 50%, MBDFE’s performance begins to surpass
that of the Bayesian classifier. This is due to the Naive Bayes [23]
model’s assumption of feature independence, which is often not the
case in practice, especially with malicious software behaviors that
tend to be sequential, limiting the performance of the Bayesian
model. In contrast, the RNN in MBDFE can handle sequential data,
resulting in better classification performance after full training.
Particularly at a data density of 80%, MBDFE achieves an
accuracy rate of 94.86%, which is a 13% improvement over the
Bayesian model’s accuracy rate of 84.29%.

5 Conclusion and future work

This paper explores how to reduce the risk of corporate data
assets being compromised by malicious activities and proposes a
machine learning technique based on feature selection to identify
malicious behaviors within software. The technique primarily uses
feature selection algorithms to identify key features of software
operation and applies them to a recurrent neural network
classifier to determine whether the software’s behavior is
malicious. Experimental results show that compared to existing
algorithms, this approach has improved accuracy in identification.

Although the proposed solution in this paper provides some
reference value for malicious behavior detection, no technical
solution can predict all malicious behaviors once and for all.
Malware attackers will continuously change their attack methods,
seeking vulnerabilities in defense systems. Future research should
not only enhance the technology for identifying malicious behaviors
but also formulate corresponding strategies at the management level
based on the development trends of malicious behavior prediction
methods. Our future research direction is to combine the
engineering methods of natural sciences with the management

methods of social sciences to propose an integrated solution for
more effective detection and defense against malicious behaviors.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

HX: Methodology, Writing–original draft, Writing–review and
editing. YW: Formal Analysis, Writing–review and editing. QT:
Software, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. 1. The project of
enterprise temporary job of Science and engineering teachers from
colleges and universities of Anhui Province (2024jsqygz104). 2. The
Project of Artificial intelligence serving the characteristics of ten
emerging industries of Anhui province (2023sdxx078). 3. Research
on the Teaching Reform of “Software Development and Practice”
Course Based on OBE Education Concept under the Open Source
Software Ecology of Tongling University (2023xj022).

Acknowledgments

In this study, we utilized the Kimi artificial intelligence
technology, version 1.0, 2024, developed by Moonshot AI Co.,
Ltd., to meticulously check the grammar of our article. The

FIGURE 5
The Performance Comparison of Algorithms. (A) Presents a comparison of classification performance between the RNN with feature selection
proposed in the MBDFE and the Naive Bayes algorithm. (B) Illustrates a comparison of algorithmic running times among the MBDFE, the RNN without
feature selection, and the Naive Bayes algorithm.

Frontiers in Physics frontiersin.org10

Xue et al. 10.3389/fphy.2024.1493209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

advanced algorithms and user-friendly interface of Kimi greatly
facilitated our workflow, ensuring the accuracy and professionalism
of the article’s grammar. We are particularly grateful for the
technical support and resources provided by Moonshot AI Co.,
Ltd., which enabled our research work to proceed smoothly. For
more information about Kimi technology, you can visit the official
website: https://kimi.moonshot.cn.

Conflict of interest

Author QT was employed by Zhongyuan Oilfield Company
of SINOPEC.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Fanfei M. Research on IT governance and risk management based on COBIT
framework. Shanghai Business (2021) (1) 3.

2. Peng C. Risk factors and prevention measures of accounting informatization in the
big data era. Fiscal Res (2014) 000(004):73–6. doi:10.19477/j.cnki.11-1077/f.2014.04.020

3. Liu S, Sun J. Big data thinking: application in tax risk management. Econ Res
Reference (2016) (9) 19–26. doi:10.16110/j.cnki.issn2095-3151.2016.09.005

4. Yang L. Construction of enterprise operational risk control system based on “big
data platform”. Econ Management (Digest Edition) (2017) 38–9.

5. Zhang L. Construction of enterprise financial risk management systemmodel based
on big data. China Management Informationization (2017) (17) 2.

6. Rui W, Dengguo F, Yi Y, PuRui S. Semantic-based malicious code behavior feature
extraction and detection method. J Softw (2012) 2:206–11. doi:10.3724/SP.J.1001.2012.03953

7. Sathyanarayan VS, Kohli P, Bruhadeshwar P. Signature generation and detection of
malware families. In: Proc. of the 13th Australia Conference on International Security
and Privacy, 5107. Berlin: Springer Press (2008). p. 336–349.

8. Ying F, Bo Y, Yong T, Liu L, Zexin L, Yi W, et al. A new malware classification
approach based on malware dynamic analysis. In: Proc. Of australasian conference on
information security and privacy ACISP. Berlin: Springer (2017). p. 173–89.

9. Park Y, Reeves DS, Stamp M. Deriving common malware behavior through graph
clustering. Comput and Security (2013) 39:419–30. doi:10.1016/j.cose.2013.09.006

10. Ding Y, Xia X, Chen S, Li Y. A malware detection method based on family
behavior graph. Comput and Security (2018) 73:73–86. doi:10.1016/j.cose.2017.10.007

11. Zhang H, Zhang W, Lv Z, Sangaiah AK, Huang T, Chilamkurti N. MALDC: a
depth detection method for malware based on behavior chains.WorldWideWeb (2020)
23(2):991–1010. doi:10.1007/s11280-019-00675-z

12. Li S, Jiang L, Zhang Q, Wang Z, Tian Z, Guizani M. A malicious mining code
detection method based onmulti-features fusion. IEEE Trans Netw Sci Eng (2022) 10(5):
2731–9. doi:10.1109/tnse.2022.3155187

13. Amer E, Zelinka I, El-Sappagh S. A multi-perspective malware detection approach
through behavioral fusion of api call sequence. Comput and Security (2021) 110:102449.
doi:10.1016/j.cose.2021.102449

14. Zhan D, Tan K, Ye L, Yu X, Zhang H, He Z. An adversarial robust behavior
sequence anomaly detection approach based on critical behavior unit learning. IEEE
Trans Comput (2023) 72:3286–99. doi:10.1109/tc.2023.3292001

15. Wong GW, Huang YT, Guo YR, Sun Y, Chen MC. Attention-based API locating
for malware techniques. IEEE Trans Inf Forensics Security (2023) 19:1199–212. doi:10.
1109/tifs.2023.3330337

16. Chen X, Hao Z, Li L, Cui L, Zhu Y, Ding Z, et al. Cruparamer: learning on
parameter-augmented api sequences for malware detection. IEEE Trans Inf Forensics
Security (2022) 17:788–803. doi:10.1109/tifs.2022.3152360

17. Pektaş A, Acarman T. Deep learning for effective Android malware detection
using API call graph embeddings. Soft Comput (2020) 24:1027–43. doi:10.1007/s00500-
019-03940-5

18. Sun B, Takahashi T, Ban T, Inoue D. Detecting androidmalware and classifying its
families in large-scale datasets. ACM Trans Management Inf Syst (Tmis) (2021) 13(2):
1–21. doi:10.1145/3464323

19. Tharani JS, Hóu Z, Charles EYA, Rathore P, Palaniswami M,Muthukkumarasamy
V. Unified feature engineering for detection of malicious entities in blockchain
networks. IEEE Trans Inf Forensics Security (2024) 19:8924–38. doi:10.1109/tifs.
2024.3412421

20. Zou D, Wu Y, Yang S, Chauhan A, Yang W, Zhong J, et al. IntDroid: android
malware detection based on API intimacy analysis. ACM Trans Softw Eng Methodol
(Tosem) (2021) 30(3):1–32. doi:10.1145/3442588

21. Gao T, Duan L, Feng L, Ni W, Sheng QZ. A novel blockchain-based responsible
recommendation system for service process creation and recommendation. ACM Trans
Intell Syst Technology (2024) 15:1–24. doi:10.1145/3643858

22. Niveditha S, Rr P, Sathya K, Shreyanth S, Subramani N, Deivasigamani B, et al.
Predicting malware classification and family using machine learning: a Cuckoo
environment approach with automated feature selection. Proced Computer Sci
(2024) 235:2434–51. doi:10.1016/j.procs.2024.04.230

23. Verma G, Sahu TP. A correlation-based feature weighting filter for multi-
label Naive Bayes. Int J Inf Technology (2024) 16(1):611–9. doi:10.1007/s41870-
023-01555-6

Frontiers in Physics frontiersin.org11

Xue et al. 10.3389/fphy.2024.1493209

https://kimi.moonshot.cn
https://doi.org/10.19477/j.cnki.11-1077/f.2014.04.020
https://doi.org/10.16110/j.cnki.issn2095-3151.2016.09.005
https://doi.org/10.3724/SP.J.1001.2012.03953
https://doi.org/10.1016/j.cose.2013.09.006
https://doi.org/10.1016/j.cose.2017.10.007
https://doi.org/10.1007/s11280-019-00675-z
https://doi.org/10.1109/tnse.2022.3155187
https://doi.org/10.1016/j.cose.2021.102449
https://doi.org/10.1109/tc.2023.3292001
https://doi.org/10.1109/tifs.2023.3330337
https://doi.org/10.1109/tifs.2023.3330337
https://doi.org/10.1109/tifs.2022.3152360
https://doi.org/10.1007/s00500-019-03940-5
https://doi.org/10.1007/s00500-019-03940-5
https://doi.org/10.1145/3464323
https://doi.org/10.1109/tifs.2024.3412421
https://doi.org/10.1109/tifs.2024.3412421
https://doi.org/10.1145/3442588
https://doi.org/10.1145/3643858
https://doi.org/10.1016/j.procs.2024.04.230
https://doi.org/10.1007/s41870-023-01555-6
https://doi.org/10.1007/s41870-023-01555-6
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1493209

	Dynamic analysis of malicious behavior propagation based on feature selection in software network
	1 Introduction
	2 Related works
	3 The proposed method
	3.1 The Overview of MBDFE
	3.2 The extraction of variable-length N-gram features
	3.3 Feature selection by information gain
	3.4 Utilizing recurrent neural networks for malicious behavior detection

	4 Experiments
	4.1 Dataset
	4.2 Experimental evaluation criteria
	4.3 Experimental results and analysis

	5 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

