
TYPE Original Research
PUBLISHED 03 January 2025
DOI 10.3389/fphy.2024.1492731

OPEN ACCESS

EDITED BY

Xuzhen Zhu,
Beijing University of Posts and
Telecommunications (BUPT), China

REVIEWED BY

Aurelio Patelli,
Enrico Fermi Center for Study and
Research, Italy
Siming Deng,
Dalian University of Technology, China
Zhongjin Li,
Hangzhou Dianzi University, China

*CORRESPONDENCE

Hongshu Chen,
hongshu.chen@bit.edu.cn

RECEIVED 07 September 2024
ACCEPTED 21 November 2024
PUBLISHED 03 January 2025

CITATION

Jia Y, Chen H, Liu J, Wang X, Guo R and
Wang X (2025) Exploring network dynamics in
scientific innovation: collaboration,
knowledge combination, and innovative
performance.
Front. Phys. 12:1492731.
doi: 10.3389/fphy.2024.1492731

COPYRIGHT

© 2025 Jia, Chen, Liu, Wang, Guo and Wang.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Exploring network dynamics in
scientific innovation:
collaboration, knowledge
combination, and innovative
performance

Yangyang Jia1, Hongshu Chen1*, Jingkang Liu2, Xuefeng Wang1,
Rui Guo3 and Ximeng Wang4

1School of Management, Beijing Institute of Technology, Beijing, China, 2School of Economics, Beijing
Institute of Technology, Beijing, China, 3School of Public Policy and Management, University of
Chinese Academy of Sciences, Beijing, China, 4Cyber Finance Department, Postal Savings Bank of
China, Beijing, China

The system of scientific innovation can be characterized as a complex, multi-
layered network of actors, their products and knowledge elements. Despite
the progress that has been made, a more comprehensive understanding of the
interactions and dynamics of this multi-layered network remains a significant
challenge. This paper constructs a multilayer longitudinal network to abstract
institutions, products and ideas of the scientific system, then identifies patterns
and elucidates the mechanism through which actor collaboration and their
knowledge transmission influence the innovation performance and network
dynamics. Aside from fostering a collaborative network of institutions via co-
authorship, fine-grained knowledge elements are extracted using KeyBERT
from academic papers to build knowledge network layer. Empirical studies
demonstrate that actor collaboration and their unique and diverse ideas have
a positive impact on the performance of the research products. This paper also
presents empirical evidence that the embeddedness of the actors, their ideas and
features of their research products influence the network dynamics. This study
gains a deeper understanding of the driving factors that impact the interactions
and dynamics of the multi-layered scientific networks.
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1 Introduction

The system of scientific development and innovation can be described as a complex,
self-organizing, and constantly evolving multi-layered network [1]. The rapid accumulation
of digital data on the process, as well as the results of scientific innovation, have made it
possible to model the overall structure of this dynamic network system [2]. Scientists and
institutions draw on knowledge resources from collaboration networks, feeding back into
the new creation, recombination, and transmission of knowledge elements, giving rise to
new theories, methodologies, and technologies, sparking widespread interest in exploring
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network dynamics in this system that involves social,managerial and
economic values [3–5].

Existing research on the patterns and dynamics of the scientific
system modeling started with single-layer complex networks. As
the scientific innovation landscape gradually shifts from individual
to collaborative activities, research on the complex system began
to attract extensive attention from the academic community to a
series of topics such as the properties and structure of collaboration
networks [6–8], collaboration patterns [9, 10] and the formation
and evolution mechanism of collaboration network [11, 12]. These
networks mainly built from the co-author articles, co-applicant
patents or jointly undertaken research projects reflecting the formal
or informal collaborations among individuals, organizations or even
countries, are commonly used to reveal patterns of collaboration and
research behaviors [13–15].

Further research then illustrated that the scientific innovation
system may exist in a multiplex structure state, where its elements
are simultaneously embedded in both collaboration networks and
knowledge networks [16, 17]. The multi-layered network has
been proved to be have an “internetwork effect”, meaning that
changes in one network may affect the utility of the other [18].
Knowledge networks in the existing studies are mainly created via
co-occurrences in the substance or core elements of innovation
products, including keywords of scientific papers [19], IPC codes
of patents [20], topics [21], MeSH terms [22], hashtags [23] and so
on, reflect the research theme, knowledge flow and combinatorial
history in research collaboration.

Although multi-layered network frameworks have been
proposed for describing scientific innovation, existing research has
not yet developed a comprehensive model to measure the nodes and
links within the multiplex structure, including actors, innovative
products, and knowledge elements, nor has it fully understood the
dynamics mechanisms. Research on complex networks of scientific
innovation has been limited to either collaboration networks or
knowledge networks, providing only partial views of the systematic
structure, and inadequate understanding of the network dynamics.
Some prior studies have explored the impact of the properties of
knowledge owned by individuals or institutions on the collaboration
dynamics [24, 25], which are generally discussed in a macro
perspective that also includes economic, geographical, cultural
and other factors. Despite the progress that has been made, a more
comprehensive understanding of the interaction of themulti-layered
networks of scientific innovation, and their network dynamics,
remains a significant challenge.

In response to these challenges, we consider the interactions
between actors, their innovative products and knowledge element
exchanges to reveal how collaboration and knowledge transmission
influence the innovation performance and the network dynamics of
scientific innovation. This paper constructs multilayer longitudinal
networks to abstract institutions, products and ideas of the scientific
system, and then elucidate the interaction mechanism among
different layers by answering two questions: what features from
collaboration and knowledge network affect the innovation product
layer and how the embeddedness of the actors, their ideas and
research outcome influence the network dynamics. From empirical
perspective, H1 Connect academic articles recommendation
database is used to perform a case study in the field of protein
structure research. We collected scientific papers published from

year 2014 to year 2022, which have been recommended by
researchers on H1 Connect with associated scores and opinion
tags. To further enhance this dataset, we integrated information
from the bibliographic database Web of Science. Fine-granular
knowledge elements are then extracted using KeyBERT from
scientific papers to build knowledge networks. These networks
serve as the foundation for identifying patterns of knowledge
combination. We finally employ the stochastic actor-oriented
models to uncover the underlying mechanisms governing network
evolution in the field of protein structure. This comprehensive study
gains a deeper understanding of the driving factors that impact the
interactions and dynamics of the multi-layered scientific networks.

2 Literature review

2.1 Multi-layered networks for scientific
innovation system

The scientific innovation system can be abstracted as an evolving
complex system of diverse basic units of science that are dynamically
linked and coupled. The key research question is how to model
and simulate the system. The large-scale scientific publication
datasets have created new opportunities to model and explore
this system. With the development of complex network theory
and methodology, and also their application in the science of
science, the modelling of scientific innovation system has gradually
shifted from single layer to multi-layers networks. The collaboration
and knowledge networks have always attracted the most attention
from scholars, as collaboration reveals innovative behavior, and
knowledge reflects results. For example, Guan and Liu [16] have
constructed the collaboration networks based on joint assignees of
patents and knowledge networks based on the co-application of
IPC codes in each patent, and accordingly studied the impact of
organizations’ doubly network embeddedness on innovation. Graf
and Kalthaus [26] have distinguished the research network into
three levels: co-authorship at the researcher level, the collaboration
between organizations, and international collaboration between
countries. Luo and Zhang [27] have constituted a multi-network
includes the collaboration network of R&D organizations, the
collaboration network of R&D employees and the knowledge
network. Ba,Mao [28] have investigated how city-level collaboration
and knowledge networks influence innovation in the energy
conservation field.

A rich body of literature concerning the multi-layered networks
of the scientific innovation systemhas revolved around the impact of
network embeddedness on innovation. Existing research have long
recognized that the collaboration and knowledge recombination
could affect innovation performance [29–31]. While network
embeddedness, especially multi-network embeddedness offers a
unique and valuable lens to gain deeper insights into innovation.
Network embeddedness reflects the position of the actor and the
connection to other actors in the network [32], which determines
the ability to gather, integrate and allocate resources. Gonzalez-
Brambila, Veloso [33] have examined how embeddedness in the
collaboration network affects the research output and impact of
scientists. Zhang and Luo [34] have explored the relationship
between innovation and the knowledge network capital (i.e.,
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knowledge combinatorial capacity, knowledge stocks, technological
distance and network efficiency).

In summary, most existing literature focus on dual layers
network to model and analyze the mechanism of the scientific
innovation system. However, prior literature has demonstrated
that the scientific innovation system is the evolving set of actors,
artifacts, and activities (relations) [35]. Drawing on this, multi-
layered networks cover innovation entities (a publication of actors),
innovative products (artifacts), knowledge elements (content of
artifacts) and the relations among them need to be constructed
to better abstract the system. Exploration under this framework
warrants further research as well.

2.2 Network dynamics on scientific
collaboration

Scientific collaboration forms the fundamental nexus of sharing
and connection among actors, which gradually evolves into a
collaboration network as the number of entities and connections
increase. The majority of existing studies focus on investigating
static properties of collaboration networks, such as network
structure [36–38] and tie configuration [39–41]. However, the
nature of scientific collaboration is far from static, with innovative
entities constantly establishing and discontinuing partnerships [42].
An increasing number of scholars start to adopt a dynamic
perspective to investigate network generation and evolution. Many
statistical methods have been applied to network dynamics analysis,
such as stochastic actor-oriented models (SAOMs), exponential
random graph models (ERGMs), multiple regression quadratic
assignment programs (MRQAPs) and so on. Ma, Yang [11] have
used the ERGMs to investigate the formation mechanism of
big data technology collaboration networks. Fronzetti Colladon,
Grippa [43] have applied SAOMs to investigate the dynamics of
knowledge sharing in healthcare and explored factors that are likely
to influence the evolution of idea sharing and advice seeking.
Aalbers and Ma [44] have examined the influence of organizational
relationships complexities to a firms’ technological entry and exit
through SAOMs. Empirical analysis on various scales have proved
the feasibility and rationality of applying statistical methods like
SAOMs to the analysis of the internal mechanism of network
generation and evolution, through which the understanding of
successful scientific collaborations can be further improved.

In the context of scientific innovation system, the dynamic
coupling of units of the actors, innovative products and also
knowledge elements affect the ongoing formation and breaking-
up of ties in the collaboration network. Brennecke and Rank
[45] have proved that different structural features of the firm’s
knowledge stock shape the transfer of advice among inventors.
Parreira, Machado [24] have found that similar scientific structure
could affect the international collaboration. Li, Zhang [46] have
found that technological proximity is one of the key factors
that promote international green technological collaboration.
Meanwhile, the actors’ performance is also closely associated with
their scientific collaboration. Publishing high-quality papers could
increase the academic reputation of the organization and attract
more attention from academia and industry, which will lead to
more academic opportunities and attract more partners [25, 47].

However, innovation performance is rarely included in the research
framework of collaboration network dynamics, which may focus
more on geographical, economic, social, cultural, cognitive and
other macro factors.

2.3 Knowledge elements extraction and
representations

The knowledge base of an innovative actor is widely regarded as
an aggregation of its knowledge elements, while the article keywords
or topics and predefined categorizations, such as IPC codes have
been valid proxies for knowledge elements [28, 48, 49]. Although
these identifiers are intuitive and clear, it is often difficult to grasp
the rich context and semantic information of the text when deeply
analyzing and understanding the micro-knowledge structure at the
institutional or individual level [17]. Based on this, how to effectively
extract knowledge elements from scientific texts becomes the key to
further build knowledge networks.

Methods for extracting terms from unstructured text can
be divided into four categories: statistical methods, clustering-
based methods, graph-based methods, and deep learning methods.
Statistical learningmethods use determinedmathematical functions
to identify words with abnormal frequencies and generally do not
require any information other than word frequency statistics from
corpora.The aimof the clusteringmethods is to cluster the candidate
terms, and then select the most representative terms from each
cluster. The graph based methods represent the document into a
graph, and use the graph ranking method to identify key terms
[50]. Knowledge embedding methods based on deep learning have
become a research focus in recent years for knowledge extraction
from unstructured scientific texts [51]. This kind of method
can make full use of the semantic and contextual information
of words and phrases, and realize the accurate localization of
knowledge elements in text. The unsupervised method KeyBERT
uses BERT embedding to extract keywords that best represent
the underlying text. Due to its focus on relevancy in sentences,
contextual information in scientific texts can be taken into account
when extracting knowledge elements, and the extraction results have
been evidenced to be superior to traditional methods in terms of the
similarity of keywords specified by the author [50].

3 Methodology

In this study, we abstract and model the complex scientific
innovation system with innovative entities (actors), innovative
products (artifacts) and knowledge elements, and the relations
among these nodes. As illustrated in Figure 1, the multi-layered
network consists of three layers of collaboration network,
knowledge network and innovative products. The collaboration
network is established through co-publication relationships
among institutions. Here we select institutions, a population of
individual authors, as the agent of actors, as this scale better
captures the actors’ ownership of knowledge. Scientific papers, as
the main form of innovative products, constitute the innovative
product layer. The knowledge network is constructed based on
the co-occurrence of knowledge elements extracted from the
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FIGURE 1
Framework of the multi-layered networks of modeling interactions of institutions, research papers and knowledge elements.

papers. As shown in Figure 1, each institution may produce a
certain number of papers, and these research outcomes consist
of knowledge elements that constitute institutions’ knowledge
base. The knowledge network and collaboration network are
interconnected through the product layer.

Based on the abstract scientific innovation system, this
study introduces a model of multi-layered network to explore
the interaction and dynamics of scientific innovation. The
methodology is comprised of four parts: (1) the multi-layered
network construction, including the process of knowledge
element extraction and construction of the knowledge
network and collaboration network in which the institutions
embedded; (2) the measurement of the actors’ and their
knowledge elements’ embeddedness characteristics in the multi-
layered network; (3) the investigation about how network
embeddedness characteristics of institutions and their knowledge
affect performance of innovation products; (4) the network
dynamics analysis of the actors in the multi-layered network
using SAOMs.

3.1 Multi-layered network construction

Theknowledge elements of an institution, is the core competitive
resources of innovation activities [52]. It has been proven that
knowledge plays an important role in the dynamic changes of the
cooperative relationship [25, 53]. In this study, we extract fine-
granular knowledge elements using KeyBERT to build knowledge
networks. These networks serve as the foundation for capturing
patterns of knowledge combination, through which the deep

structural and relational features can be intuitively represented
and explored.

Knowledge elements refer to the facts, theories or methods of a
certain topic in scientific or technical research, which are commonly
used to represent the dimensions of knowledge areas [19, 54]. To
capture rich information from scientific papers, we use KeyBERT,
an unsupervised keyword extraction algorithm, to extract the set
of terms that are most semantically representative to the content of
the paper. KeyBERT algorithm relies on BERT pre-trained model
to generate vectors of documents and candidate terms, and extracts
terms by comparing the cosine similarity between them [55], which
enables to select high-quality terms in scientific texts [50]. Since
KeyBERT supports many embedding models, we choose SciBERT
[56], which trained on scientific text, to obtain vector representation
with state-of-the-art performance. Figure 2 shows the process of
knowledge element extraction usingKeyBERT, and the specific steps
are as follows:

Step I: Creating the list of candidate terms: Extract N-grams (n =
1,2) phrases form the document (abstract and title of
papers), and then clean the term lists through exclusion of
stop words.

Step II: Word embedding: Apply SciBERT model to generate
embedded representations of the document and candidate
words in the same vector space.

Step III: Selecting the most representative terms of a document:
Calculate the cosine similarity between the word
embedding vectors and document embedding vector to
extract the top N terms with the highest similarity to
best describe the document content. Considering that
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FIGURE 2
Process of knowledge elements extraction using KeyBERT.

documents of different lengths may contain different
amounts of knowledge, the value of N is determined
according to the length of the document. N is set as 5% of
the document length.

This study constructs the knowledge network based on their co-
occurrence relationships in scientific papers. Knowledge elements
are linked through the combination process of scientific innovation
[57], which forms the knowledge networks over time [19, 58]. Then
following the prior studies [17, 27, 59], institutions are extracted
from the datasets as the actors of generating innovation products,
research papers; and ties are created based on their co-publication
relations to form the collaboration network. Institutions and the
knowledge elements they possess are linked through the jointly
published papers, which form the innovation product layer.

3.2 Characteristics of the multi-layered
network

The aim of our study is to investigate how the embeddedness of
the actors and their knowledge transmission in the scientific system
influence the innovation performance and network dynamics.
This requires capturing the characteristics of institutions and
their knowledge embedded in different layers of the multi-
layered network. Indicators at the knowledge network, collaboration
network and innovative product layer are described in Table 1
respectively.

This study measures the knowledge transmission and
recombination features using four indicators, including diversity,
uniqueness, combinatorial capability and knowledge proximity.
The knowledge diversity and uniqueness stands for the variety
and scarcity of the knowledge devoted to innovation activities
[45]. The combinatorial capability relates to the position of an
institution’s knowledge elements relative to other elements [60],
indicating the capability of accessing new information in the
transmission [61]. In the calculation, the degree centrality of
knowledge represents the feasibility and desirability of combination
with other knowledge elements [27], while structural holes in the
network implies non-redundant combination opportunities and
further inventive capacity [16]. Knowledge proximity refers to

the similarity of knowledge base between different institutions.
Higher knowledge proximity reduces adverse selection risk caused
by information asymmetry problems in the partner selection [53,
62]. In this study, we apply the doc2vec algorithm to generate vectors
and then calculate cosine similarity between knowledge elements to
measure knowledge proximity. In the collaboration network, being
in a central position in the collaboration network allows institutions
to access information and resources more effectively [54]. Due to
the preferential attachment mechanism [3, 63], we apply the degree
centrality to evaluate the direct partners of an institution.

The innovation performance of an institution is measured by
the level of its innovative products. High-quality papers improve the
academic reputation and visibility of the institutions, thus attracting
more collaborators. In this study, we estimate the innovation
performance of institutions using theH1Connect innovation scores
of their published papers. These scores are provided by senior
researchers within the H1 Connect database who contribute their
expertise by reading, reviewing, and recommending research papers
on the platform.

3.3 Regression model

The recombination and transmission of existing knowledge are
essential for institutions to achieve outstanding innovative output
[64, 65]. From a network perspective, features from collaboration
and knowledge network may affect the innovation product
layer. Accordingly, we perform regression analysis of innovation
performance and knowledge and collaboration characteristics.

As the innovation system is evolving, we model the evolution
of collaboration networks and knowledge networks into different
stages according to the publication year of the research papers. In
regression analysis, these stages are seen as multiple time windows.
The multi-layered network is constructed in each time window. All
variables described in Section 3.2 have been calculated at the actor
level and normalized respectively1. We then apply ordinary least

1 The knowledge proximity for regression model is calculated by Pit =

∑j∈Ci cos( v⃗it, v⃗jt)/(n− 1), where n is the number of institutions in

collaboration network at period t.
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TABLE 1 Indicators in the multi-layered networks.

Layer Indictor and description Measurement

Knowledge network

knowledge_diversity: the variety in knowledge elements possessed
by the institution

Di = |Ki|
Ki is the set of knowledge elements owned by the institution i

knowledge_uniqueness: the scarcity of the knowledge possessed by
the institution

Ui =
∑s∈Ki

1
Ns

|Ki|
Ns is the number of institutions that own knowledge element s.

knowledge_combinatorial_capability: the combination of degree
centrality and structural holes of the knowledge elements possessed
by the institution

CPi =
∑s∈Ki(d(s)+Ss)

|Ki|

Ss = 2−∑
q
(psq +∑

k
pskpkq)

2

d(s) is the degree centrality of knowledge element s in the knowledge
network; psq +∑

k
pskpkq is the proportion of s’s relations that are

directly or indirectly invested in the connection with q.

knowledge_proximity: the similarity of knowledge elements
between different institutions

P (i, j) = cos(v⃗i, v⃗j)
v⃗i and v⃗j represent the vector of knowledge elements owned by

institution i and j respectively

Collaboration network degree_centrality: the number of institution’s partners in the
collaboration network

DCi = |Wi|
Wi is the set of institutions that collaborate with institution i

Innovative product layer innovation_perf ormance: the innovation level of papers published
by the institution

Si =
∑j∈Piscorej
|Pi|

scorej is the innovation score of paper j, Pi is the set of papers
published by institution i

squares (OLS) model with natural logarithm transformation of the
explained variables for our estimation, the regression function is
shown in Equation 1 2.

ln(Sit) = β0 + β1Dit + β2U it + β3CPit + β4Pit + β5DCit+β6Xit + ui + eit
(1)

Where i identifies institutions in t period, β0 is the intercept
and eit is the error term, Xit is thecontrolvariabels. Individual fixed
effects (ui) ensure the individual heterogeneity can be controlled.
In our sample, organizations show individual differences in other
aspects besides the knowledge dimension and papers published by
institutions may have other underlying qualities that have not been
captured, so it is reasonable to adopt fixed effect regression, which
is also statistically proved by Breusch-Pagan test and Hausman test.
We also employ ordinary least squares (OLS) model with robust
standard errors in the robustness check.

To isolate the effects of knowledge and collaboration features on
innovation performance, additional control variables are considered
in the analysis. One of such variables is the number of disciplines,
computed by the number of unique WoS categories of papers
published by the institution, which may affect the innovation
performance. Besides, we measure the innovation input with the
number of authors involved in papers published by the institution,
which can serve as a proxy for the amount of human resources
involved in the innovation activities [66]. For institution i that

2 Although many indicators are related to network density, the main

dependent and independent variables in the regression are calculated

from the institution’ perspective, hencewe have not included the network

density, as it is a fixed value.

published paper j, the human resources involved from institution
i in paper j is calculated as the total number of authors of paper j
divided by the number of institutions involved.

Finally, we perform an additional analysis by using another
indicator of innovation performance, the average number of
citations, to provide a more comprehensive result. Citation are
widely accepted as ameasure of scientific impact and thus as a partial
aspect of innovation performance. We calculate the additional
indicator by dividing the total citations of papers published by
institution i at time t by the number of papers. The citation data
is from the Web of Science database. We log normalize the average
number of citations of each institution to account for its skewed
distribution.

3.4 Modeling network dynamics

We then model the network dynamics from an actor-oriented
perspective, using stochastic actor-oriented model (SAOM). Actor
layer of the multi-layered network, i.e. the collaboration network,
is composed of a set of cooperation relations that are not
independent of each other, and their relational changes (e.g.,
presence/absence of ties) may be the result of the network structure
characteristics among actors or dyads, which is the endogenous
effect difficult to measure in traditional regression models [67,
68]. SAOM is a statistical approach for modeling the process of
network change with longitudinal network data using econometric
discrete choice models and dynamic Markov models, which is
able to capture endogenous effects related to the network and
effectively deal with multicollinearity problems through built-in
model [67, 69], thus enables us to understand which factors and
dynamics could influence actors’ collaboration from the network
perspective.
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TABLE 2 Variables for SAOMs.

SAOM input Effect Variable

Network structure Collaboration network degree_centrality

Individual
characteristics

Knowledge network

knowledge_diversity

knowledge_uniqueness

knowledge_combinatorial
_capability

Innovation
performance

innovation_per formance

Control variable institution_classi fication3

Proximity Proximity knowledge_proximity

SAOM is an actor-based simulation model where the change of
network ties over time is driven by the actor’s choices in accordance
with a set of goals/preferences [68]. These preferences are modeled
as an “evaluation function” (a linear combination of parameters and
local graph statistics) that the actor seeks to maximize, which is
shown in Equation 2. The model incorporate parameters embedded
in network structure that endogenously influence the probabilities
of tie changes and parameters related to characteristics of actors that
exogenously influence the tie formation or termination [70]. Actors
in the model are viewed as making choices one-at-a-time in mini-
steps to maximize the evaluation function and possible changes can
occur across different time points in sequence. The actor-oriented
formulation also offers an explicit lens to gain a direct interpretation
of parameters in SAOM [69].

f i(β,x) = ∑
k
βkski(x) (2)

where fi(β,x) is the value of the objective function for actor i
depending on the state x of the network, ski(x) represent the effects
that affect the selection of the actor’s connected edge, βk are the
statistical parameter estimation representing the effect.

The objective of using SAOM is to investigate which attributes
characterize and affect the dynamic evolution of collaboration
networks. These attributes include the knowledge dimension
characteristics of institutions, their innovation performance and
position in collaboration network. Table 2 summarizes and explains
the indicators of different types required by the SAOM in this
study. We estimate SAOM using the RSiena library, available in R
statistical software [71].

4 Empirical study

4.1 Data

Our empirical analysis is performed on scientific paper data in
the area of protein structure.With the implementation of theHuman

3 1 for academic institutions or 2 for industrial organizations.

Proteome Project as well as the application of artificial intelligence
in protein structure prediction [72], the field of protein structure
research is characterized by rapid knowledge growth, diverse science
linkages and widely existing collaborations. Our analysis mainly
uses data from two primary sources, namely, (1) scientific papers
and their peer-review information from H1 Connect research
articles recommendation database4and (2) bibliographic data of the
scientific papers from Web of Science (WoS) database5. Our final
sample consists of papers published between 2014 and 2022 in the
field of protein structure recommended in the H1 Connect.

Since innovation activities require sufficient time investment,
and the scientific collaboration could last for three to 5 years [73], we
choose a three-year time window to compare the network evolution
in different periods. We divide the dataset into three periods:
2014–2016, 2017–2019, and 2020–2022, and select institutions that
have co-published papers with other institutions within at least two
periods.We then clean and consolidate the institutions in the dataset
to ensure the standardization and consistency of their names6 and
then distinguish them into two categories—industrial organization
and academic institution—the former is identified by the words
“Ltd” (Limited),“Co” (Company) and so on contained in the name
while the latter is identified by the words “University”, “Institution”,
“School”, “College”, “Faculty” and so on [17]. Besides, since the
keyword extraction in this study is based on abstract, papersmissing
abstract are deleted.

The innovation performance of institutions in this study is
measured by the peer review scores in H1 Connect. The reviewers
are experts who are global opinion leaders in the life sciences and
medicine science. Peer experts give higher scores to papers that
show outstanding innovation and importance, and existing research
has proved that better recommendation scores are associated with
higher performing papers [74].

4.2 Descriptive statistics

Figure 3 visualizes the collaboration networks in three periods,
2014–2016,2017–2019 and 2020–2022, respectively. Institutions
are represented as nodes, whereas co-publishing relations are
represented as ties. The descriptive network statistics are presented
in Table 37. The number of institutions participating in the protein
structure research and their ties increase over three periods. The
average number of collaborators for each institution also increased
from 4.056 to 6.678, while the average path length of the network
decreases from 3.220 to 2.929. This phenomenon indicates the
connections between institutions and the efficiency of information
transmission have been enhanced in the collaboration network
layer. In addition, these networks do not show an obvious change
in their density from the first to the third period, which means

4 Last accessed on 15 January 2024.

5 The citation dataset downloaded on 1 October 2024.

6 Due to the limitations of the data itself, “University of California System”

is listed as a single organization, and majority of records from both Web

of Science and H1 Connect do not differentiate between the universities

within the system.

7 The descriptive network statistics are calculated by Gephi.
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FIGURE 3
Collaboration networks for the periods of: (A) 2014–2016; (B) 2017–2019; (C) 2020–2022.

TABLE 3 Descriptive statistics in the collaboration network’s evolution.

2014–2016 2017–2019 2020–2022

Nodes 108 165 174

Edges 219 423 581

Components 12 9 4

Density 0.038 0.031 0.039

Average degree 4.056 5.127 6.678

Average path length 3.220 3.159 2.929

Average clustering coefficient 0.768 0.671 0.666

that the number of realized linkages grows at a similar rate as the
number of actors.

We then select and create co-occurrence networks of knowledge
elements, as illustrated in Figure 4, where the node size represents

the frequency of the terms. Our visualization reveals several
fundamental research topics in the field of protein structure, such
as “protein structure”, “structure prediction”, “protein interaction”
and so on. Moreover, we also recognize the emergence of some hot
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FIGURE 4
Co-occurrence network of the top 100 most frequently used keywords for the periods of: (A) 2014–2016; (B) 2017–2019; (C) 2020–2022.

topics, for example, in the third period, 2020–2022, “coronavirus
sars” and “syndrome coronavirus” have received more attention
and effort. Besides, these snapshots also show the tendency of
increasing and strengthening knowledge linkages in the field of
protein structure.

We compute the number of unique knowledge elements for each
period and find an increasing trend, as shown in Table 4. It describes
the descriptive statistical results of variables in knowledge layer and
innovation performance in the product layer. The mean and median
values of knowledge uniqueness and knowledge diversity have
increased distinctly over three periods, which can be interpreted as
a hint of vibrant innovation and knowledge production activities
in the field of protein structure. Moreover, institutions’ innovation
performance, i.e. the average of innovation scores of papers
published by institutions, also present an increasing trend in the
mean and median values over the three periods, showing the vitality
of high-quality research in the field of protein structure. However,
the increase of standard deviation of innovation performance reveals
that the difference of innovation capability between organizations
expands over time.

4.3 Regression results

We present the results of estimating the regression models in
Equation 1 in Table 5, testing what features from collaboration and
knowledge network affect the innovation product performance.
Model 1 reports the baseline OLS regression results, while Model
2 estimates the OLS regression with cluster-robust standard errors
for robustness checks. In Model 1, the estimated coefficient for
knowledge diversity is positive and significant (β = 0.1240,p <
0.01), indicating that institutions with more diverse knowledge
could produce more outstanding innovation outputs. Meanwhile,
knowledge uniqueness has a significant and positive effect
on innovation performance with estimated coefficients of β =
0.5269 (p < 0.01). This result emphasizes the important role of
unique knowledge resources in innovation. The influence of
knowledge combinatorial capability and proximity on innovation
performance is not significant in our estimation. In addition, the
number of collaborators, i.e. degree centrality, proves instrumental
in improving innovation performance (β = 0.3413,p < 0.01). The
regression results of the control variables show that the number

Frontiers in Physics 09 frontiersin.org

https://doi.org/10.3389/fphy.2024.1492731
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jia et al. 10.3389/fphy.2024.1492731

TABLE 4 Descriptive statistics of variables in knowledge network and innovation performance.

2014–2016 2017–2019 2020–2022

Mean Median S.D. Mean Median S.D. Mean Median S.D.

knowledge_uniqueness 0.0451 0.0357 0.0480 0.0575 0.0519 0.0389 0.0533 0.0476 0.0397

knowledge_diversity 6.7018 8.0000 5.8038 9.0000 9.0000 4.6608 9.4128 9.0000 4.6106

knowledge_combinatorial_capability 0.5149 0.4601 0.3613 0.7752 0.8068 0.3642 0.8774 0.9053 0.3941

knowledge_proximity 0.0143 0.0056 0.0143 0.0074 0.0062 0.0113 0.0079 0.0070 0.0125

innovation_per formance 7.5577 5.0000 8.8986 12.9824 9.4000 11.5729 15.5881 10.3000 20.8938

TABLE 5 OLS results.

Variables Model 1 Model 2

knowledge_diversity 0.1240
∗∗∗

(0.0326) 0.1240
∗∗∗

(0.0376)

knowledge_uniqueness 0.5269
∗∗∗

(0.0296) 0.5296
∗∗∗

(0.0302)

knowledge_combinatorial_capability 0.0411 (0.0363) 0.0411 (0.0384)

knowledge_proximity 0.0227 (0.0217) 0.0227 (0.0214)

degree_centrality 0.3413
∗∗∗

(0.0358) 0.3413
∗∗∗

(0.0428)

number_o f_disciplines -0.0897
∗∗

(0.0353) −0.0897
∗∗∗

(0.0323)

innovation_input 0.0581 (0.0417) 0.0581 (0.0485)

Constant 0.0220 (0.0168) 0.0220
∗∗∗

(0.0018)

N 642 642

Adjusted R2 0.7385 0.8264

Notes: 1. Standard errors in parentheses. 2.∗p < 0.10;∗∗p < 0.05;∗∗∗p < 0.01.

of disciplines may negatively affect the innovation performance
of institutions (β = − 0.0897,p < 0.05), which may be a signal that
participating in too many research fields may lead to the dispersion
of resources and the limitation of knowledge depth, thus detrimental
to further innovation. The results of Model 2 are consistent with
Model 1, confirming the validity of our conclusions.

For an additional analysis, we use average citation counts with
natural logarithm transformation as an alternative measure of
innovation performance, and report the regression results in Table 6.
Model 3 presents the baseline OLS regression results, while
Model 4 estimates the OLS regression with cluster-robust standard
errors for robustness checks. Consist with regression results
using peer-reviewed scores as measure of innovation performance,
knowledge diversity, knowledge uniqueness and degree centrality
in collaboration network have a significant and positive effect on
citation performance inmodel 3 andmodel 4. Moreover, knowledge
combinatorial capability shows a significant and positive influence
on average citation counts, and knowledge proximity positively
affects the citation counts. This suggests that the innovation output
of institutions whose research is more closely aligned with others are

TABLE 6 OLS results using citation as measure of innovation
performance.

Variables Model 3 Model 4

knowledge_diversity 0.0910
∗∗

(0.0433) 0.0910
∗∗

(0.0427)

knowledge_uniqueness 0.3536
∗∗∗

(0.0394) 0.3536
∗∗∗

(0.0372)

knowledge_combinatorial_capability 0.1955
∗∗∗

(0.0483) 0.1955
∗∗∗

(0.0431)

knowledge_proximity 0.0933
∗∗∗

(0.0288) 0.0933
∗∗∗

(0.0330)

degree_centrality 0.3372
∗∗∗

(0.0477) 0.3372
∗∗∗

(0.0507)

number_o f_disciplines −0.0822
∗
(0.0470) −0.0822

∗
(0.0434)

innovation_input 0.1293
∗∗

(0.0555) 0.1293
∗∗

(0.0619)

Constant −0.0186 (0.0223) −0.0186
∗∗∗

(0.0019)

N 642 642

Adjusted R2 0.5641 0.7106

Notes: 1. Standard errors in parentheses. 2.∗p < 0.10;∗∗p < 0.05;∗∗∗p < 0.01.

more likely to gain citations and attentions. For the control variables,
in Models 3 and 4, the number of disciplines has a negative impact
on innovation performance in line with Model 1 and 2, but the
coefficient for innovation input is positive and significant, indicating
the number of scholars participating in innovative activities has
expanded the visibility and impact of the research.

To summarize, it can be concluded that the knowledge diversity
and uniqueness, the degree centrality in the collaboration network
positively affect the institution’s innovative performance measured
by both the peer-reviewed scores and citations. Besides, the
knowledge combinatorial capability and proximity have a positive
impact on citations.

4.4 SAOM results

The SAOM estimation results are presented in Table 7.
Convergence is good for the model, since the overall maximum
convergence ratio is less than 0.25 and all convergence t-ratios
are below 0.1. The estimation of the rate parameters shows that
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TABLE 7 Results of SAOM analysis.

Estimate Standard error

Rate constant r rate (period 1) 8.461 0.897

Rate constant r rate (period 2) 17.552 2.242

Degree (density) −2.046
∗∗∗

0.024

Knowledge proximity −0.279
∗

0.134

Knowledge diversity 0.094
∗∗∗

0.015

Knowledge uniqueness −0.994 1.278

Knowledge combinatorial capability −0.383
∗

0.177

Institution classification −0.859
∗∗∗

0.175

Innovation performance 0.093
∗∗∗

0.011

Notes: 1. † p < 0.10;∗p < 0.05;∗∗p < 0.01;∗∗∗p < 0.001; all coverage t ratios <0.08.2. Overall
maximum convergence ratio 0.09.

the tendency of institutions to change collaboration relations
amplifies over time, from approximately 8.5 opportunities per
organization in Period 1 to around 17.5 opportunities per institution
in Period 2. The coefficient of degree (density) is negative and
significant (β = − 2.046), indicating that institutions with more
collaborators are less inclined to form new ties with others. This
model revels different effects of the knowledge characteristics on
the propensity to collaborate, suggesting that there is a higher
tendency for an institution with more knowledge diversity (β =
0.094) to link with more institutions, while a negative propensity
is found for the institution with more knowledge proximity (β =
− 0.279). This phenomenon may be evidence that diverse and
disparate knowledge is a source of collaboration and innovation
in the field of protein structure. The negative parameter of the
knowledge combinatorial capability (β = − 0.383) reflects that
institutions with higher knowledge combinatorial capability prefer
independent research because the knowledge they own already has
combinatorial experience and potential, in that case, they don't
seem to have a strong incentive in seeking further collaborations.
Besides, the institution classification negatively affects collaboration
(β = − 0.859), suggesting that academic institutions play a more
important role in the evolution of collaboration networks than
industrial organizations. The coefficient of knowledge uniqueness
is not significant. As for innovation performance, it has a positive
and significant effect on collaboration (β = 0.093), which shows that
institutions that already have outstanding innovation outputs are
still willing to establish new collaborative relationship.

We conduct robustness tests by altering the random seeds of
the SAOM (Supplementary Table A1, A2). The random seed plays
a crucial role in the iterations and parameter updates of the SAOM.
If the model has converged to a stable state, different random seeds
will produce similar results, indicating that the model outcomes are
robust [71]. Changing random seeds in our model yields the same
results as the initial findings in Table 7, reinforcing the robustness of
our conclusions.

5 Discussion and conclusion

The scientific innovation is a system can be described as a
multilayer network with complex structure, while more substantial
efforts would be required to model the system and explore its
dynamic mechanisms [2]. This paper constructs a multi-layered
network to model scientific innovation system, in which the
collaboration, innovation products and knowledge elements interact
through the actors’ innovation activities. Building on this, we
analyze how social and knowledge network embeddedness of
actors, and their ideas affects the innovation performance and the
network dynamics.

Our empirical analysis is based on a dataset of research articles
with review scores in the research area of protein structure.
The key findings of our study highlight the positive effects of
knowledge uniqueness, knowledge diversity and the number of
partners of institutions influence the innovation performance of
the research outputs. We also find that, in addition to these
factors, knowledge combinatorial capability and proximity have
a positive impact on citations. Second, this paper also presents
empirical evidence that from a dynamic perspective, the institution’s
innovation performance positively affects the network dynamics,
indicate that institutions with outstanding innovation products
pursue establishing new collaboration and keep active in innovation
activities. Besides, the knowledge diversity has a positive impact in
the dynamics of the network, while the knowledge proximity plays
a negative role, suggesting that actors tend to seek various diverse
and distinct knowledge when choosing partners. These findings do
not fully align with existing research [59, 75]. This may be related to
datasets from different fields that were selected for empirical study.
Emerging areas such as protein structure may have actors and links
in the network are incentives to change, as reflected in our data. In
this situation, institutions with more diverse and distinct knowledge
are more inclined to collaborate with others to increase learning
opportunities and thus achieve possible innovations. These reflect
the heterogeneity of the underlying driving mechanisms of complex
scientific systems and require further exploration and investigation.

Our results also indicate that some of the knowledge
characteristics that promote innovation performance also serve
as catalysts for network dynamics. Collaborations serves as the core
driver of innovation [76, 77] and the organizations’ performance is
relevant to the positions they occupy in the collaboration network
[78]. The knowledge fusion fostered in the multi-layer innovation
network positively affects the actors’ innovation output through
collaboration, and the performance continue to influence the
network dynamics, resulting in the creation of new ideas and
findings. Our empirical results demonstrate that the position of
an institution in the collaboration network fosters innovation,
while their innovation performance reciprocally influences the
evolution of scientific collaboration. This interplay elucidates the
co-evolutionary process occurring between various layers within
the scientific innovation system [4]. These results have direct
implication for both innovation organizations and policymakers
to encourage collaboration and incentivize innovation.

This study makes contributions as follows. It contributes to the
existing literature on scientific innovation system by abstracting
and modeling this system via a multi-layered complex network
covering innovation entities (a population of actors), innovative
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products (artifacts), knowledge elements (content of artifacts)
and the relations among them. Besides, this study enriches the
methods of measuring characteristics of the multi-layered network.
Based on this, we investigate the underlying factors that impact
innovation performance and investigate the mechanism through
which the actor collaboration and their knowledge transmission
in the scientific system influence network dynamics. We provide a
framework for future research to study the patterns and evolutionary
mechanism of scientific innovation systems.

This study also has several limitations. First, we explore
the network dynamics of the scientific innovation system from
an actor-oriented perspective. However, economic and social
factors may also play an important role in it, which is hard
to capture in our data. Second, the underlying mechanisms
governing the scientific innovation system are rather complex and
heterogeneous. This study takes the publication data in the field
of protein structure as an example to shed light on it. This is
an inspiring and meaningful attempt, but the complex scientific
innovation system should be further explored in different contexts in
future work.
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