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In the real world, individuals may become infected with an epidemic after
multiple exposures to the corresponding virus. This occurs because each
individual possesses certain physical defenses and immune capabilities at
the time of exposure to the virus. Repeated exposure to the virus can lead
to a decline in immune competence, consequently resulting in epidemic
infection. The susceptibility of individuals to an epidemic is heterogeneous. We
model this characteristic as the individual heterogeneous infection threshold.
Then, we propose an individual logarithmic-like infection threshold function
on a single-layer complex network to reflect the heterogeneity of individual
susceptibility on infecting the virus and the associated epidemic. Next, we
introduce a partition theory based on the edge and logarithmic-like infection
threshold function to qualitatively analyze the mechanisms of virus infection
and epidemic spreading. Finally, simulation results on Erdő–Rényi (ER) and
scale-free (SF) networks indicate that increasing both the epidemic infection
initial threshold and outbreak threshold, as well as decreasing the virus and
epidemic infection probability, can all effectively suppress epidemic spreading
and epidemic infection outbreak. With an increase in the epidemic infection
outbreak threshold, the increasing pattern of the final epidemic infection scale
transitions from a second-order continuous phase transition to a first-order
discontinuous phase transition. Additionally, degree distribution heterogeneity
also significantly impacts the outbreak and spread of diseases. These findings
provide valuable guidance for the formulation of immunization strategies.

KEYWORDS

epidemic spreading, individual heterogeneous infection threshold, transmission
dynamic, complex network, partition theory

1 Introduction

As early as 1760, Bernoulli proposes the first model for the spread of smallpox,
marking the birth of transmission dynamics [1]. In 2001, Pastor-Satorras and Vespignani
were the first to utilize complex networks to describe transmission pathways and explore
the impact of network topology on epidemic spread, subsequently investigating its
implications on transmission dynamics [2]. This work garners widespread attention
from scholars domestically and internationally, signaling the emergence of complex
network transmission dynamics. Virus infection and epidemic spreading is one of the
primary research subjects within this field. In most real-world networks, common
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phenomena such as the spread of computer viruses and epidemics
are interpreted through the lens of epidemic dynamics on complex
networks [3–5]. The epidemic and infectious disease spreading
not only affects public health but also leads to significant
economic losses.

The study of epidemic spreading on complex networks primarily
focuses on “simple” propagation, where the probability of epidemic
infection remains constant across two consecutive contacts. Scholars
have proposed several classic compartmental models tailored to
different types of diseases, including the susceptible–infectious (SI)
model, the susceptible–infectious–recovered (SIR) model, and the
susceptible–infectious–susceptible (SIS) model [6]. [7] offered new
perspectives for establishing a precise theoretical framework for
spreading dynamics on complex networks by integrating the most
commonly utilized theoretical methods which include mean-field
[8], heterogeneous mean-field, quench mean-field [9], dynamical
message-passing, link percolation, and pairwise approximation.

In the era of big data, we have more opportunities to access
relevant data on human behavioral activities, including social
activity data [10]. This authentic big data allow for a greater
possibility of uncovering the true mechanisms behind epidemic
and disease transmission [11]. Through the analysis of real-world
data, researchers have discovered that human behavioral activities
significantly influence epidemic and disease transmission [12].
Some scholars focus on accurately identifying the epidemic outbreak
thresholds as these thresholds are crucial in many real-world
scenarios. When the number of exposures an individual has to
the virus reaches a certain threshold, the individual may become
infected with the epidemic. The epidemic threshold represents the
critical condition under which a system is in an active outbreak
state [13]. A substantial amount of theoretical research has been
conducted to predict the outbreak thresholds of SIRmodels [14–17].

In theoretical terms, accurately determining the epidemic
infection outbreak thresholds can identify the critical conditions
for the emergence of global large-scale epidemics [18]. It also
significantly impacts the study of critical phenomena, including the
determination of critical exponents [19]. In practical applications,
epidemic infection outbreak thresholds can characterize the
effectiveness of immunization strategies [20] and assist in
identifying the optimal initial transmission source [21].

[22] utilized numerical computations based on the SIR epidemic
model to relatively accurately predict the spread of COVID-19
and other pandemics. [23] employed time-varying networks to
simulate the disease transmission process and proposed the most
effective measures for controlling epidemic spread. [24] investigated
the impact of vaccination on the dynamics of epidemic models,
introducing a novel fractional-order discrete-time SIR epidemic
model aimed at illustrating and quantifying the complex dynamics
of the system. [25] considered the influence of individual and mass
media information dissemination on epidemic spread, exploring
the dynamic interactions between information transmission and
susceptible-exposed-infectious-recovered (SEIR)-based epidemic
spread. Additionally, unlike traditional information transmission,
most current studies on epidemic spreading focus on “simple”
propagation, i.e., a fixed infection threshold, overlooking the
threshold heterogeneity [26–28].

From the factors discussed above, it is recognized that epidemic
infection outbreak thresholds are critical in epidemic spreading,

influencing not only the scale of outbreaks and their critical
conditions but also providing effective guidance for the formulation
of immunization strategies. Traditional studies on viral infection
and epidemic transmission often assume that the probability of
epidemic infection from two consecutive exposures is constant,
suggesting that epidemic transmission lacks memory. Although this
simplification facilitates the analysis of epidemic spread, it does
not accurately reflect reality. In fact, human activities lead to a
certain degree of memory and cumulative effects in the viruses and
epidemic infections. As individuals are repeatedly exposed to the
virus, the likelihood of epidemic infection outbreak increases.

Individuals possess certain physical defenses and immune
capabilities. During initial exposure to the virus, factors such
as the distance between individuals, the distribution of medical
resources like masks, and variations in immune response may
prevent the onset of disease. However, with an increasing number
of viral exposures, individual immunity diminishes, significantly
raising the probability of disease infection. Moreover, repeated
epidemic infections can reduce sensitivity to the virus, leading
to a diminishing marginal effect on the likelihood of developing
the disease. Therefore, the individual susceptibility to infection
epidemic is heterogeneous. Based on this understanding, we
propose an individual heterogeneous infection threshold function,
a logarithmic-like function, to explore the impact of individual
characteristics on sensitivity to the virus and disease.

Based on the aforementioned motivations, we introduce
a generalized SIR model on complex networks and propose
an individual heterogeneous infection threshold function, a
logarithmic-like function, to reflect the heterogeneity of individual
susceptibility on infecting the virus and the associated disease.
Furthermore, a partition theory based on the edge and individual
heterogeneous infection threshold is proposed to theoretically
analyze the dynamic processes of epidemic spreading. Finally,
computer simulation results are presented to validate the findings of
disease transmission, which align with the theoretical analysis. This
study aims to leverage complex networks, computer simulations,
and theoretical analyses to reveal the mechanisms and patterns of
epidemic and disease transmission, thereby providing necessary
theoretical support for early warning and control of epidemics and
public sentiment. The rest of this paper is organized as follows: in
Section 2, we build an epidemic spreadingmodel with the individual
heterogeneous infection threshold on complex networks. Section 3
exhibits an edge partition theory. In Section 4, the experimental
results are discussed. Finally, Section 5 describes the conclusion.

2 Epidemic spreading model with
individual heterogeneity

To investigate the impact of heterogeneity in individual
susceptibility to infection epidemic on epidemic spreading
mechanisms, we first construct two types of single-layer artificial
complex network models, called the Erdő–Rényi (ER) networks
[29] and the scale-free (SF) networks [30], for spreading dynamics.
Each network has N nodes which represent individuals and degree
distribution P(k). The edges depict the interactions between
individuals. We then apply a generalized SIR model, where each
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FIGURE 1
Illustration of the individual heterogeneous infection threshold model.
The symbol x represents APIs of an S-state node, a represents the virus
and epidemic infection initial threshold, and b denotes the epidemic
infection outbreak threshold.

node can exist in one of three potential states: the susceptible state (S-
state), where individuals are at risk of disease infection; the infected
state (I-state), where individuals have contracted the disease and
can spread the corresponding virus to their S-state neighbors; and
the recovered state (R-state), where individuals have recovered from
the infection and are no longer able to transition to any other state
for a certain period of time.

Let the probability of one S-state node successfully being
infected by the virus after coming into contact with its I-state
neighbor node be λ. We introduce the concept of accumulated
received infections (ARIs) to describe the infection accumulative
total number of one S-state node by the virus from its I-state
neighbors. Let n be the ARIs successfully received by the S-state
node. Initially, ni = 0 for the S-state node i, i.e., the virus has not
yet spread within the population. At each time step, each I-state
node transmits the virus to its S-state neighbors with a transmission
probability of λ through the corresponding edge. If an S-state
neighbor, denoted as node i, successfully receives the virus from an
I-state node, the APIs of node i increases by 1, that is, ni→ ni + 1.

To investigate the impact of individual susceptibility
heterogeneity to viruses and epidemic infection, an individual
logarithmic-like infection threshold function, as shown in Figure 1,
is proposed:

y (x,a,b) =
{{{{
{{{{
{

0, 0 ≤ x ≤ a,
ln (x+ 1) − ln (a+ 1)
ln (b+ 1) − ln (a+ 1)

, a < x < b,

1, x ≥ b,

(1)

where a represents the virus and epidemic infection initial threshold,
while b denotes the epidemic infection outbreak threshold. The
difference δ = b− a indicates the interval between the disease
infection threshold outbreak and the initial threshold.

Specifically, a indicates that the S-state node is infected with a
certain number of viruses from its I-state neighbors, indicating the
likelihood of converting to an I-state, i.e., the disease breaks out with
a certain probability. δ denotes the interval length of the disease
spreading probability for the S-state node. b indicates that the S-state

node has received a sufficient quantity of viral infections from its I-
state neighbors tomake disease infection outbreak probability 1, that
is, the probability that the S-state node infects epidemic and converts
to I-state reaches 1. In other words, when the APIs of an S-state node
are equal to or greater than b, the node will inevitably experience an
epidemic infection outbreak and transition to the I-state.

The human body possesses immune capabilities and physical
defenses. As individuals are exposed to the virus more frequently,
the probability of epidemic infection outbreak increases. However,
due to the increasing of APIs, individuals’ sensitivity to the virus
decreases, leading to a diminishing marginal effect of epidemic
infection. Therefore, the logarithmic-like infection threshold
function for individual heterogeneous infection is relevant and
meaningful.

Next, we summarize the process of virus and epidemic spreading
within complex networks. Initially, a proportion ρ0 of nodes is
randomly selected to be infected with the epidemic, while the
remaining nodes are in the S-state. S-state nodes may come into
contact with I-state nodes and have a probability of λ to contract
the virus. As APIs of S-state nodes increase, the probability of
an epidemic infection outbreak is y(x,a,b). For I-state nodes,
recovery occurs with a probability of γ due to factors such as
physical isolation, medical treatment, and immune enhancement,
after which they are not susceptible to reinfection for a certain
period. Ultimately, the epidemic spreading ceases when there are
no longer any infections or diseases present in the network. The
proportion of individuals in the R-state at this point characterizes
the final scale of the epidemic transmission process.

3 The analysis of partition theory
based on edge and individual
heterogeneity

To better investigate the epidemic spreading process, we
develop a partition theory incorporating edge and the epidemic
infection outbreak thresholds to analyze the effect of the individual
heterogeneity on epidemic spreading. In this approach, we assume
that nodes with identical degrees are statistically equivalent. The
variables S(t), I(t), and R(t) are employed to derive the evolution
of epidemic spreading and depict the proportions of nodes in the
S, I, and R states at time t, respectively. When t→∞, R(∞) is
the final proportion of individuals in the complex network who
have ever been infected by epidemic. Therefore, we can express the
relationship as

S (t) + I (t) +R (t) = 1. (2)

Let θ(t) be the probability that an S-state node has not been
infected by the virus through a randomly chosen edge by time t. The
probability that the S-state node i of degree k has q APIs from its
I-state neighbors up to time t is

ϕ(ki,q, t) = C
q
ki
θ(t)ki−q[1− θ (t)]q. (3)

By time t, the S-state node i has been infected q-times virus
from its I-state neighbors.The node i does not experience an disease
infection outbreak and remains in the S-state with the probability
∏q

m=0[1− y(m,a,b)].
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FIGURE 2
In the ER network, the impact of the infection probability λ on the final size R(∞) of the viral and epidemic outbreak with different a and δ. (A) illustrates
the effect of δ on R(∞) when a = 1. (B) Combined effects of a and δ on R(∞). The number of seeds is set to 200. Symbols represent the simulation
results, while the curves depict the theoretical results.

According to the logarithmic threshold function for epidemic
spreading, the probability that an S-state node i has been infected by
the virus q times without experiencing a disease infection outbreak
by time t is

s(ki,q, t) =
∞

∑
q=0

ϕ(ki,q, t)
q

∏
m=0
[1− y (m,a,b)]

=
a

∑
q=0

ϕ(ki,q, t) +
b−1

∑
q=a+1

ϕ(ki,q, t)
q

∏
m=a+1
(1−

ln (m+ 1) − ln (a+ 1)
ln (b+ 1) − ln (a+ 1)

)

=
a

∑
q=0

ϕ(ki,q, t) +
b−1

∑
q=a

ϕ(ki,q, t)
q

∏
m=a+1

ln (b+ 1) − ln (m+ 1)
ln (b+ 1) − ln (a+ 1)

.

(4)

The probability that the APIs of a randomly selected S-state
nodes by time t are less than the corresponding epidemic infection
outbreak threshold is

s (k, t) = ∑
ki

P(ki) s(ki,q, t) . (5)

Therefore, at time t, a randomly selected individual is in S-state,
i.e., the proportion of S-state nodes in the network is

S (t) = (1− ρ0) s (k, t) . (6)

Our goal is to solve for the three terms in Equation 2, specifically
to derive the values of S(t), I(t), and R(t). As indicated from
Equations 3–6, it is necessary to calculate θ(t) in order to obtain the
expression for S(t). Consider the neighbor node j of the I-state node
i. The node j can only be in one of three states: S-state, I-state, or
R-state. Let ψS(t), ψI(t) and ψR(t) represent the probabilities of node
j being in the S-state, I-state, and R-state, respectively. Additionally,
θ(t) can be expressed as

θ (t) = ψS (t) +ψI (t) +ψR (t) . (7)

Since node i is in the S-state, its neighbor j can only likely to
be infected by the virus from the kj − 1 neighbors except node i.
Therefore, the probability of node j being infected by the virus u
times at time t is denoted as

ϕ(kj − 1,u, t) = C
u
kj−1

θ(t)kj−1−u[1− θ (t)]u. (8)
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FIGURE 3
In the ER network, (A) illustrates the influence of the infection probability λ on the final epidemic outbreak size R(∞) when a = 0. (B) depicts the effect
of the epidemic outbreak threshold parameter b on R(∞) under the same condition of a = 0. ρ0 = 0.0001. Symbols represent simulation results, while
curves denote theoretical predictions.

According to the logarithmic threshold function for disease
spreading, the probability that an S-state node j has been infected by
the virus u times without experiencing a disease infection outbreak
by time t is

φ(kj, t) =
∞

∑
u=0

ϕ(kj − 1,u, t)
u

∏
m=0
[1− y (u,a,b)]

=
a

∑
u=0

ϕ(ki − 1,u, t) +
b−1

∑
u=a+1

ϕ(ki − 1,u, t)
u

∏
m=a+1
(1− y (u,a,b))

=
a

∑
u=0

ϕ(ki − 1,u, t) +
b−1

∑
u=a+1

ϕ(ki − 1,u, t)
u

∏
m=a+1

ln (b+ 1) − ln (m+ 1)
ln (b+ 1) − ln (a+ 1)

.

(9)

Let ⟨k⟩ be the average degree of the network, the probability that
node i connects to node jwith degree kj is kjP(kj)/⟨k⟩.Therefore, the
probability that the node i connects to the S-state node jwith degree
kj is

ψS (t) = (1− ρ0)
∑

kj
kjP(kj)φ(kj, t)

⟨k⟩
. (10)

Due to variations in the distance between individuals,
differences in individual immunity, and the protective measures

taken by individuals, after the S-state node i comes into contact with
the I-state node j, the node i has a probability of λ to become infected
by the virus. Thus, the variation in θ(t) can be expressed as

dθ (t)
dt
= −λψI (t) . (11)

The I-state node has a probability of λ to infect its neighbors and
a probability of γ to alter to the R-state. Therefore, the variation in
ψR(t) can be expressed as

dψR (t)
dt
= γ (1− λ)ψI (t) . (12)

Combining Equations 11, 12 and the initial conditions θ(0) = 1
and ψR(0) = 0, we can obtain the evolution of ψR(t):

ψR (t) = γ [1− θ (t)](
1
λ
− 1). (13)

Substituting Equation 10 and Equation 13 into Equation 7, we
obtain

ψA (t) = θ (t) −ψS (t) −ψR (t) = θ (t) − (1− ρ0)
∑

kj
kjP(kj)φ(kj, t)

⟨k⟩

−γ [1− θ (t)](1
λ
− 1).

(14)
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FIGURE 4
Joint effects of the infection probability λ and the epidemic outbreak
threshold parameter b on the final outbreak size R(∞) in an ER
network, with other parameters a = 0 and ρ0 = 0.0001.

Substituting Equation 14 into Equation 11, the evolution of θ(t)
can be rewritten as

dθ (t)
dt
= −λ
{{{{
{{{{
{

θ (t) − (1− ρ0)

∑
kj

kjP(kj)φ(kj, t)

⟨k⟩
− γ [1− θ (t)]( 1

λ
− 1)
}}}}
}}}}
}

= (1− ρ0)λ

∑
kj

kjPX (kj)φ(kj, t)

⟨k⟩
+ γ (1− λ) − [λ+ (1− λ)γ]θ (t) .

(15)

Throughout the network, we have the density variation
of each state

dA (t)
dt
= −

dS (t)
dt
− γA (t) (16)

and

dR (t)
dt
= γA (t) . (17)

Equations 2–6; Equations 15–17 provide a comprehensive
description of the transmission dynamics of viruses and diseases. By
combining and iterating these equations, the density of each state
at arbitrary time step, i.e., the values of S(t), A(t), and R(t), can be
calculated.

As t→∞, there are no I-state nodes, leaving only S-state
nodes and R-state nodes in the network. R(∞) is the epidemic
infection outbreak scale. Let dθ(t)

dt
|t=∞→ 0. The viruses and disease

propagation of the network reaches a steady state. We obtain

θ (∞) =

(1− ρ0)λ∑
kj

kjP(kj)φ(kj,∞)+ ⟨k⟩γ (1− λ)

⟨k⟩γ+ (1− γ)λ⟨k⟩
. (18)

In epidemic spreading, the maximum value of the steady-
state fixed point of Equation 18 is of paramount importance
and is denoted by the critical probability point θc(∞). By

determining when the critical probability point appears, the crucial
conditions under which an epidemic infection outbreak occurs can
be derived by

g[θ (∞),ρ0,q,γ,λ] =
(1− ρ0)λ∑

k
kP (k)φ (k,∞)

⟨k⟩γ+ (1− γ)λ⟨k⟩
+

γ (1− λ)
γ+ (1− γ)λ

− θ (∞)

(19)

and
dg

dθ (∞)
|θc(∞) = 0. (20)

From Equation 20, the critical infection probability can be
calculated as

λc =
γ

ε+ γ− 1
, (21)

where

ε = (1− ρ0)
∑
k
kP (k)φ(kj,∞)|θc(∞)

⟨k⟩
. (22)

Combining Equation 8 and Equation 9, we derive the expression
of

dφ(kj,∞)
dθ(∞)

. Numerically solving Equation 18, Equation 21, and
dφ(kj,∞)
dθ(∞)

, we can obtain the critical value of the virus infection
probability λ.

4 Results and discussions

Our paper focus on numerical experiments and theoretical
analyses conducted on artificial ER networks and SF networks. The
network size is N = 104, with an average network degree of ⟨k⟩ =
10. For I-state nodes, measures such as physical isolation, physical
defense, medication, and immune enhancement are implemented,
so let the recovery probability be γ = 1.0. In ER networks, the
degree distribution of nodes follows the Poisson distribution, i.e.,
P(k) = e−⟨k⟩ ⟨k⟩

k

k!
. In SF networks, the heterogeneity of node degree

distribution is negatively correlated with the degree exponent
v, with the heterogeneity decreasing as the degree exponent v
increases. The degree distribution of nodes follows the power-
law distribution P(k) = ξk−v, where ξ = 1/∑kk

−v. The minimum and
maximum degree are kmin = 4 and kmax ∼ 100, respectively. Our
simulation results are the average value by running the simulation
1,000 times.

We use the relative variance V [31, 32] to illustrate the critical
infection probability and critical conditions. The relative variance is

V = N
⟨R(∞)2⟩ − ⟨R (∞)⟩2

⟨R (∞)⟩
, (23)

where ⟨⋯⟩ represents the ensemble average. The peak values of
the relative variance represent the critical point of global epidemic
spreading.

4.1 The epidemic spreading on the ER
network

Figure 2A indicates that when a = 1, an increase in δ slows down
the spread of the virus and the epidemic infection outbreak. The
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FIGURE 5
Influence of the virus infection probability λ on the final epidemic infection size R(∞) in SF networks with different degree distributions v. Specifically,
(A) v = 2.0 and (B) v = 4.0, with ρ0 = 0.0001 and a = 0.

FIGURE 6
Joint effects of the virus infection probability λ and the epidemic outbreak threshold parameter b on the final epidemic size R(∞) in SF networks. Both
scenarios of global epidemic infection outbreaks and localized epidemic infection outbreaks, as well as continuous and discontinuous phase
transitions, are observed in (A) (v = 2.0) and (B) (v = 4.0). The other parameters are set to a = 0 and ρ0 = 0.0001.

outbreak scale exhibits a first-order discontinuous phase transition.
Figure 2B reveals that for the same δ, when a = 0, the epidemic
outbreak scale corresponds to a second-order continuous phase

transition. As a increases from 0 to 1, there is a significant
suppression of virus transmission and epidemic infection outbreak,
with the final epidemic infection outbreak scale transitioning
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from a second-order continuous phase transition to a first-order
discontinuous phase transition. Similarly, an increase in δ also
mitigates the outbreak of the epidemic. Overall, increasing a and
δ, as well as decreasing λ, can all effectively suppress the epidemic
outbreak. Furthermore, Figures 2C, D display the relative variances
of the theoretical analyses and the critical infection probabilities
corresponding to (a) and (b), respectively. At the critical point, a
phase transition occurs, leading to a global disease infection state.
Our theoretical predictions (lines) align well with the simulation
results (symbols).

Figure 3A shows the influence of the infection probability λ on
the final epidemic outbreak size R(∞) when a = 0. As λ increases,
the virus and disease spread more rapidly through the network,
ultimately leading to a global epidemic infection outbreak. An
increase in the epidemic infection outbreak threshold parameter
b suppresses the occurrence of the disease. When b is small, the
epidemic infection outbreak size exhibits second-order continuous
phase transition. As b increases, the epidemic infection outbreak size
transitions from a second-order continuous phase transition to a
first-order discontinuous phase transition. Figure 3B illustrates the
effect of b on the final epidemic infection outbreak size R(∞) when
a = 0. With increasing b, the epidemic outbreak threshold becomes
significantly higher, greatly reducing the likelihood of an epidemic
outbreak. When λ is small, even a small b can effectively suppress
the outbreak. However, when λ is large, variations in b become
less effective in preventing the outbreak. Therefore, a combined
approach of reducing λ and increasing b is necessary to effectively
suppress the epidemic. Additionally, our theoretical predictions
(lines) align well with the simulation results (symbols).

Figure 4 illustrates the joint effects of the infection probability
λ and the epidemic infection outbreak threshold parameter b on
the final scale of the epidemic outbreak R(∞). As shown in the
figure, with an increase in λ, individuals become more susceptible
to infection, leading to a gradual rise in the number of infected
individuals, ultimately resulting in a global individual infection.
Conversely, as b increases, the epidemic infection threshold
probability decreases, resulting in a reduction in the number
of individuals infected. Additionally, as b increases, a crossover
phenomenon emerges in the trend of the graphical representation.
The parameter space (b,λ) can be divided into two regions. In
Region I, as λ increases, the increasing pattern of R(∞) exhibits
characteristics of a second-order continuous phase transition. In
Region II, as λ increases, the pattern of increase in R(∞) displays
traits of a first-order discontinuous phase transition.

4.2 The epidemic spreading on the SF
network

Figure 5 illustrates the effect of the epidemic infection
probability λ on the final epidemic infection size R(∞) in scale-
free networks characterized by heterogeneous degree distributions.
The vertical subplots utilize the same degree distribution exponent,
with the subplots in the first and second columns corresponding to
v = 2.1 and v = 4, respectively. The initial seed density is set to ρ0 =
0.0001. a = 0. When b is small, R(∞) gradually increases to global
infection as λ increases, exhibiting a second-order continuous phase
transition in the growth pattern of the final epidemic infection

size. However, larger values of b suppress epidemic spreading. On
one hand, epidemic spreading only occurs when λ is sufficiently
high. On the other hand, higher values of b inhibit epidemic global
epidemic infection and spreading. Furthermore, when b is large,
the growth pattern of the final epidemic size displays a weak first-
order discontinuous phase transition. Additionally, increasing the
heterogeneity of the degree distribution (i.e., by using smaller values
of the degree distribution exponent) facilitates disease infection.

Figure 6A, B explores the variation in the final epidemic
infection sizeR(∞) in the epidemic spreading parameter space (λ,b)
with v = 2.0 and v = 4.0, respectively.The initial seed fraction is set to
ρ0 = 0.0001.As the epidemic infection outbreak threshold parameter
b increases, the growth pattern of R(∞) exhibits a crossover phase
transition. The epidemic spreading parameter space (λ,b) is divided
into three regions. In Region I, the epidemic spreads globally and
the growth pattern of R(∞) displays second-order continuous phase
transition characteristics. In Region II, the growth pattern of R(∞)
remains a second-order continuous phase transition; however, the
epidemic spreads locally due to the suppression by b on epidemic
spreading. In Region III, the epidemic spreads locally and the
growth pattern ofR(∞) changes to a first-order discontinuous phase
transition. Comparing (a) and (b), when v is smaller, epidemic
spreading begins with lower values of the virus infection probability
λ and the epidemic outbreak threshold parameter b, but it is
challenging for the epidemic to achieve global spread. However,
when v is larger, the epidemic spreads within the population only
when λ and b exceed certain thresholds. However, under the same
parameters, the weak degree distribution heterogeneity facilitates
the occurrence of global epidemic spreading.

5 Conclusion

This paper considers the heterogeneity of individual
susceptibility to infection epidemic and employs transmission
dynamics to investigate the epidemic spreading process on single-
layer complex networks. First, we propose a logarithmic-like
threshold model and thoroughly examine its validity under the
heterogeneity of individual infection epidemic susceptibility.
Subsequently, we enhance the edge partition theory based on
the individual logarithmic-like threshold function to analyze the
epidemic spreading dynamic process. Through theoretical analysis
and numerical simulations on ER and SF networks, we identify
the factors influencing the scale of disease outbreaks and propose
several strategies for mitigating epidemic spread.
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