
Quasinormal modes and the
analytical continuation of
non-self-adjoint operators

Martín G. Richarte1,2, Júlio C. Fabris1,3 and Alberto Saa4*
1PPGCosmo, CCE - Universidade Federal do Espírito Santo, Vitória, Brazil, 2Departamento de Física,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos
Aires, Argentina, 3Núcleo Cosmo-ufes, Departamento de Física - Universidade Federal do Espírito Santo,
Vitória, Brazil, 4Departamento de Matemática Aplicada, Universidade Estadual de Campinas, Campinas,
Brazil

We briefly review the analytical continuation method for determining
quasinormal modes (QNMs) and the associated frequencies in open systems.
We explore two exactly solvable cases based on the Pöschl–Teller potential to
show that the analytical continuation method cannot determine the full set of
QNMs and frequencies of a given problem starting from the associated bound
state problem in quantum mechanics. The root of the problem is that many
QNMs are the analytically continued counterparts of solutions that do not belong
to the domain where the associated Schrödinger operator is self-adjoint,
challenging the application of the method for determining full sets of QNMs.
We illustrate these problems through the physically relevant case of BTZ black
holes, where the natural domain of the problem is the negative real line.
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1 Introduction

Quasinormal mode (QNM) analysis is one of the main strategies used to inspect the
stability of many physical open systems, with many applications ranging from optics to
general relativity [1–3]. In their simplest formulation, QNMs are separable solutions

Ψ t, x( ) � e−iωtu x( )
of an (1 + 1)-dimensional wave equation. After a separation of variables procedure,

u(x) is typically expected to obey a Schrödinger-like second-order linear
differential equation,

− d2

dx2
+ V x( )( )u � ω2u (1)

on a certain domain ofR. For situations where themodes u are defined on the entire real
line R, and the potential V(x) vanishes sufficiently fast for x →± ∞, the QNM frequencies
are defined as the (typically complex) values of ω such that the solutions of (2) behave as
outgoing waves at x → ∞ and ingoing ones at x → −∞, corresponding intuitively to
solutions that disperse toward infinity. According to our definition for Ψ, these outgoing/
ingoing waves correspond, respectively, to solutions of (2) such that
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u∝ eiωx, for x → ∞,

and

u∝ e−iωx, for → −∞ .

Because (2) admits as solutions both ω and −ω, we need to
assume here R (ω)≥ 0; otherwise, the QNMs are not
unambiguously defined. According to our definition, the modes
will be exponentially suppressed in time if I (ω)< 0. Notice that, in
contrast with the usual spectral theory of Schrödinger operators in
quantum mechanics, the eigenvalues ω2 in (2) can be, and usually
are, complex, and the QNMs are not, in general, a complete set for
the problem [1].

In standard situations involving asymptotically flat black holes
in general relativity (see, for references, [2, 3]), the equivalent of
Equation (1) is obtained by introducing some sort of radial tortoise
coordinate x in the exterior region of the black hole. Typically, in
these cases, the effective potential V(x) is non-negative and has a
barrier shape. Moreover, conditions (3) and (4) have the usual
interpretation of wave solutions escaping to infinity and plunging
into the event horizon, respectively, implying that QNMs are always
associated with dispersive phenomena for these systems because
they imply a net transport of energy outside the system.

In the present article, we will review the analytical continuation
method for determining QNMs and frequencies for problems of
type (2), starting from an associated bound state problem in
quantum mechanics. Through two explicit examples based on
exactly solvable Pöschl–Teller potentials, we will show that the
analytical continuation method cannot determine the complete
set of QNMs and that the origin of the problem is that QNMs
are typically the analytically continued counterparts of solutions that
belong to domains where the associated Schrödinger operator fails
to be self-adjoint.

2 Analytical continuation of
Schrödinger operators

It is rather common to compute the QNMs and their associate
frequencies ω for Equation 1 with a given potential barrier V
through a formal analytical continuation performed in the bound
state problem of a Schrödinger operator H associated with the
potential well corresponding to the inverted potential ~V � −V. Such
an approach, introduced decades ago by Blome, Ferrari, and
Mashhoon [4–6], is one of the best options we have at hand to
obtain analytical answers and gain some physical insights into the
QNM problem. The approach consists basically of a formal map
between the QNM solutions of (2) and the bound states of the
quantum mechanical problem governed by the
Schrödinger operator

Hψ � − Z2

2m
d2

dx2
+ ~V x( )( )ψ � Eψ. (2)

We know that for ~V(x) vanishing sufficiently fast for x →± ∞, the
bound states of H will decay exponentially, that is,

ψ∝ e−
���
−2mE

Z2

√
x, for x → ∞,

and

ψ∝ e
���
−2mE

Z2

√
x, for → −∞ .

Because the literature on bound states of Schrödinger operators
is huge, with many studies exploring a vast range of different
potentials, this method is commonly beneficial for identifying
exact or approximate QNMs.

The original approach is based on the extension of the
solutions of (2) or (5) for the entire complex plane by means
of the formal substitution (Wick rotation) x → ix, which reduces
the QNM boundary conditions (3) and (4) to the bound state
ones (6) and (7). After some parameter redefinitions in the
potential V(x), one can effectively map the QNMs on the
bound states of (5) and, consequently, relate the QNM
frequencies ω of (2) with the energy spectrum E of H. More
explicitly, suppose we know a bound state ψ of (5). It should have
an associate eigenvalue (energy) E< 0 because ~V is assumed to be
a non-positive potential well. Suppose also that the potential ~V
depends on a set of real parameters αk, k � 1, 2, . . . , ~V � ~V(x, αk).
Clearly, both the eigenfunction ψ and the energy E may have a
similar dependence on the parameters, that is, ψ � ψ(x, αk) and
E � E(αk). After the formal substitution x → − ix, the
Schrödinger Equation (2) will read

− d2

dx2
− 2m

h2
~V −ix, αk( )( )ψ � −E αk( )ψ, (3)

and the asymptotic conditions (6) and (7) for ψ are formally
transformed in (3) and (4) for ψ(−ix). Suppose now we can
transform the parameter αk in such a way that the potential ~V
remains invariant under the Wick rotation; that is, let us introduce a
new set of parameters αk′ such that

~V x, αk( ) � ~V −ix, αk′( ).
With this transformation, Equation 3 will read

− d2

dx2
− ~V x, αk( )( )u � −E αk′( )u,

with u(x) � ψ(−ix, αk′). For the sake of simplicity, we have set
h2

2m � 1, without generality loss. Comparing (10) with (2), we see that
u(x) is a QNM of the barrier potential corresponding to the inverted
potential well ~V with QNM frequency ω such that

ω2 � −E αk′( ).
This method was sensibly simplified by the prescription

introduced recently by Hatsuda [7], which is based on the
following observation. Let us consider the Schrödinger operator

Hϵψ � −ϵ2 d
2

dx2
+ ~V x( )( )ψ � Eϵψ,

where ~V is a well-behaved potential well in the entire real lineR, and
ϵ> 0 is some typical scale of the problem. Suppose ψϵ(x) is a bound
state ofHϵ with energy Eϵ. Consider now the analytical continuation
of the Schrödinger operator given by Hiϵ. The function uϵ � ψiϵ
is a QNM of the inverted potential − ~V, with frequency given by
ω2
ϵ � −Eiϵ.
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Before we consider the physically relevant case of BTZ black
holes, let us consider a simple explicit example to illustrate better the
analytical continuation method.

2.1 The Pöschl–Teller potential well

The Pöschl–Teller potentials [8] were the first family of non-
elementary exactly soluble potentials in quantum mechanics. We
will illustrate the analytical continuation method with the
Pöschl–Teller potential corresponding to the potential well
defined for the entire real line R:

~V x( ) � − V0

cosh2 x
,

The Schrödinger Equation 3 with this potential admits
bound states with energy spectrum given by (see, for
instance, [9])

E n( )
ϵ � −

������
V0 + ϵ2

4

√
− ϵ n + 1

2
( )( )2

,

with n integer such that 0≤ n≤ nmax, where

nmax � 1
2

1 +
�������
4V0

ϵ2 + 1

√( )⌊ ⌋. (4)

It is important to stress that we have only a finite number of
bound states for the Pöschl–Teller potential well. This is a well-
known property in quantummechanics for potential wells vanishing
sufficiently fast for x →± ∞.

We can now apply the Hatsuda prescription, and we will have
the following set of QNM frequencies

ω n( )
ϵ �

������
V0 − ϵ2

4

√
− iϵ n + 1

2
( )

for the Pöschl–Teller potential barrier V � − ~V. However, one
could exactly solve the QNM problem for the inverted
Pöschl–Teller potential well V (see, for instance, [2]), and we
would get the QNM frequencies (16) without the restriction
0≤ n≤ nmax. In other words, the Pöschl–Teller potential barrier
has infinitely many QNM frequencies, and only a small set of
them can be obtained from the analytical continuation of the
Schrödinger operator. If one reverses the analytical continuation
procedure, we will have that the QNMs with n> nmax are mapped
in solutions of the Schrödinger equation that do not correspond
to bound states and, hence, do not belong the usual domain where
Hϵ is self-adjoint. This simple example shows that one cannot get
the full set of QNM frequencies starting from the bound states of
the associated quantum mechanics problem. Notwithstanding,
the Pöschl–Teller potential is effectively used to compute some
QNMs in the space-times of black holes as far as they can
mimetize the effective potential in the vicinity of the horizon.
The results using Pöschl–Teller potential can be compared with a
numerical analysis, and the agreement is generally very good. The
difference between both computations is less than 1% and
decreases as the effective potential becomes more localized;
see Ref. [10].

3 BTZ black holes

The BTZ black hole [11] is an appealing solution in three-
dimensional gravity with a negative cosmological constant,
Λ � −1/ℓ2. In the case of zero angular momentum (J � 0), its event
horizon is determined solely by its massM and the Anti-de Sitter (AdS)
space length scale, ℓ. To begin with, we note that the line element for the
exterior BTZ black hole with J � 0 can be expressed as follows:

ds2 � −r
2 − r2+
ℓ
2 dt2 + ℓ

2

r2 − r2+
dr2 + r2dθ2,

where t ∈ R, r> r+, and θ ∈ [0, 2π). In this context, the horizon can
be expressed in terms of ℓ and M as follows: r2+ � Mℓ

2 [11], as
previously noted.

We consider a massless Klein–Gordon scalar field on this
background,

□Φ � 0.

We express the scalar field by means of the parametrization
Φ � e−iωteiμθu(r)/ �

r
√

, where μ ∈ Z and ω ∈ C, the latter
representing the quasinormal mode frequencies according with
our definitions. The case of a massive scalar field propagating on
the rotating BTZ background can be found in [12].

Considering the definition of the tortoise coordinate, expressed
through the familiar relation dx � dr/f(r). We arrive at the
following expression:

x � −ℓ
2

r+
coth−1 r

r+
( ). (5)

Equation 5 tells us that the tortoise coordinate effectively maps
the interval (r+,+∞) onto (−∞, 0). Combining this result (19) with
the equation outlined in (18) leads to a Schrödinger-like second-
order linear differential equation:

− d2

dx2
+ V r x( )[ ]( )u � ω2 u, (6)

where f � r2−r2+
ℓ
2 , and the effective potential reads

V � V0

sinh2 αx( ) +
V1

cosh2 αx( ).

Here, we define α � r+/ℓ2, V0 � 3 r2+
4ℓ2

> 0, and
V1 � r2+

4ℓ2
(1 + 4μ2

r2+
)> 0. It is important to note that when μ � 0, we

return to the scenario examined in [13]. From this point onward, our
goal will be to identify the QNMs associated with the equations given in
(20) and (21). In this context, we will analyze the boundary conditions
pertinent to the half-real (negative) line. As is widely known, this
generalized Pöschl–Teller potential represents an exactly integrable
problem, as established in [10, 14]. Yet the physical contexts differ
significantly. The investigation of the QNMs for the pure de Sitter
spacetime is addressed in [14], whereas the scattering problem
associated with the generalized Pöschl–Teller potential is thoroughly
explored in [10]. The boundary conditions typically imposed at the
horizon must be a purely incoming wave, represented as eiωx, provided
that a BTZ black hole is present. Conversely, at spatial infinity, we
require an outgoing wave, e−iωx, in order to eliminate any incoming
radiation. However, the BTZ potential given in (21) approaches 0 at the
horizon while diverging as one moves toward infinity. For a solution to
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be well defined near infinity, it must decay to 0. The specific cases
wherein this decay condition is satisfied are what determine the QNMs
frequencies [10, 15].

After applying a new variable z � cosh−2(αx) ∈ [0, 1), which
compactifies the interval R−, the original master Equation 6 can be
recast as the Gaussian hypergeometric equation [4]:

z 1 − z( )u″ + c − a + b + 1( )z[ ]u′ − abu � 0,

where the parameters of the Gaussian hypergeometric are given by

a � 1
2
− i

ω

2α
+ 1
4

] + ζ( ),

b � 1
2
− i

ω

2α
+ 1
4

] − ζ( ),

c � 1 − i
ω

α
.

Here, ] �
������
1 + 4 V0

α2

√
and ζ �

������
1 − 4 V1

α2

√
.

We can derive various types of solutions depending on the value
of c. Specifically, when c ∉ Z, we find that the basis of linearly
independent solutions is

uI � z−i
ω
2α 1 − z( )14 1+]( )

2F1 a, b, c, z( ),
uII � z+i

ω
2α 1 − z( )14 1+]( )

2F1 a − c + 1, b − c + 1, 2 − c, z( ).

At this stage, several comments are in order. When we consider
the limit as x → −∞ and the fact that the hypergeometric function
is equal to 1 when evaluated at the origin, the boundary condition of
having an ingoing-wave at the horizon implies that the second
solution uII must be discarded. The other boundary condition
corresponds to imposing that at infinity (z → 1−), the solution
decays to 0, limx→0uI � 0. To do so, we employ Gursat’s
transformation to write2F1(a, b, c, z) in terms of a combination
of2F1(a, b, c, 1 − z) [16]. Expanding z � 1 − (αx)2 +O[(αx)2], the
local expansion of the solution reads,

uI ≃ A αx( )14 1+]( ) + B αx( )14 1−]( ),

with

A � Γ 1 − i ωα( )Γ −]
α( )

Γ 1
2 − i ω

2α − 1
4 ] + ζ( )( )Γ 1

2 − i ω
2α − 1

4 ] − ζ( )( )
and

B � Γ 1 − i ωα( )Γ ]
α( )

Γ 1
2 − i ω

2α + 1
4 ] + ζ( )( )Γ 1

2 − i ω
2α + 1

4 ] − ζ( )( ).
For ]> 1, we notice that the power-law term (αx)14 (1−]) in (28)
diverges as one approaches infinity (which corresponds to
αx → 0−), while the other term decays toward 0. However, the
presence of poles in the Gamma function at negative integers may
effectively make this problematic term vanish. As a result, we
derive a discrete set of countable frequencies that characterize the
QNM solutions,

ω± � −iα 2n + 1 + 1
2

] ± ζ( )( ), (7)

with n ∈ Z≥0. These results, as shown in (7), are consistent with
those presented in [10, 14], and [15]. In addition, Equation 7 can be
derived by analyzing the singular points in the transfer matrix—or

transmission coefficient—where T(ω±) � ∞. This approach was
previously demonstrated in the context of the Pöschl–Teller
potential [17] and also in the case of a generalized Pöschl–Teller
potential [18]. It should be mentioned that other interesting
situations were analyzed in [15], such as:

i. QNMs with the usual exponentially suppressed oscillatory
behavior for V0 > 0 and V1 > α2/4,

ii. The so-called algebraically special QNMs for V1 ≤ α2/4, and
iii. Unstable modes for small V1/α2.

For more information on these possibilities, the reader may
consult Ref. [15].

The QNM solutions have the following effective boundary
condition at x � 0,

limx→0− αx( )−κ αx( )34u′I x( ) − 1

αx( )14 α
1
4
+ κ( )uI x( )[ ] � 0, (8)

where κ �
������
1
16 + V0

α2

√
> 0. Equation 8 resembles the condition

reported in [15]. Another interesting point is to examine whether
or not the functional energy remains bounded spatially for the
QNMs solution at infinity [15]. As long as κ> 7/4, the functional
energy converges to 0 as αx → 0−.

Now, we are in a position to discuss the role played by the
analytical continuation of the QNM problem in the case of the
BTZ black hole. We will give a proof of concept by analyzing one
case based on the ideas presented in Section 2. The outcome of
applying the analytical continuation, defined as x � iy, to the
QNMs of the BTZ black hole [7] is as follows. The solution uI(x)
associated with the potential V(x) will transform into quantum
eigenstates ψ � uI(V → − V(iy, α′),ω → − iω) of the inverted
potential barrier, ~V � −V. Thus, the Schrödinger
equation becomes

− d2

dy2
− V0

sinh2 α′y( ) − V1

cosh2 α′y( )( )ψ � Eψ.

It is important to stress that α parameter must accommodate the
modification introduced by the analytic continuation in order to
keep the shape of potential unspoiled [6]. As result of that
procedure, the energy eigenvalue (E � −ω2) now reads

E � −α′2 2n + 1 + 1
2

] ± ζ( )( )2

.

Including these transformations in the definitions of ] and ζ , the
combination appearing in (34) becomes
] ± ζ �

������
1 − 4 V0

α′2

√
±

������
1 + 4 V1

α′2

√
. The latter fact pinpoints a potential

issue regarding the self-adjoint property of the Schrödinger operator
presented in (33), provided the energy can take complex value. The
reason for suspecting that something might have gone wrong around
y � 0 can be easily confirmed by expanding the inverted potential
around that point. The leading term is ~V � −V0/(α′y)2 < 0. This kind
of potential yields a non-self-adjoint operator on a Hilbert space
L2[(−∞, 0), dy] [19, 20].

From now on, we will focus on the properties of the Schrödinger
operator (33) and the effective boundary condition around y � 0. To
do so, we follow a well-established protocol based on Von
Neumann’s theorem [21, 22]. We begin by computing the
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subspace of solutions with purely imaginary eigenvalues denoted as
N± � ϕ ∈ D(H†), Hϕ � ± iϕ{ } [21], where H stands for the
Schrödinger operator presented in (33). In our case, near y � 0,
these solutions are given by

ϕ± � α′y( )1/4 A± α′y( )�κ + B± α′y( )−�κ( ). (9)

Here, �κ � κ(V0 → − V0, α → α′). Equation 9 indicates that,
locally, in each case ±, only one of the solutions is square-
integrable with respect to the measure dy. This fact shows
that the dimension of the subspaces N± is at least 1 in both
cases. Consequently, the operator admits a self-adjoint extension
parametrized by the U(1) group. In other words, there are an
infinite number of self-adjoint extensions which can be written as
ϕ � ϕ+ + sϕ− with s ∈ C such that |s| � 1. For any element
ψ ∈ D(H†), in order to ensure that the self-adjoint extensions
are well defined, they must fulfill the following
boundary condition,

〈ϕ,Hψ〉 − 〈Hϕ,ψ〉 � lim
y→0−

�ϕ y( )ψ′ y( ) − �ϕ′ y( )ψ y( )[ ] � 0,

where the bracket 〈, 〉 refers to the usual inner product in
L2([−∞, 0), dy). For the sake of simplicity, let us corroborate
whether the analytically continued eigenstates satisfy the same
effective boundary condition of the QNMs (32). We only
consider the situation associated with the QNMs, so from the
general combination, the A± terms must be omitted, while the
identification u � ψ is made explicit. To keep things simple, we
consider the case in which �κ ∈ R; thus, 0<V0/α′2 < 1/4 [15]. The
boundary condition (36) can be recast as

lim
y→0−

α′y( )−�κ α′y( )34u′ y( ) − 1

αy( )14α′ 1
4
− �κ( )u y( )⎡⎢⎣ ⎤⎥⎦ � 0. (10)

The physical implications derived from Equation 10 can be
summarized as follows. Upon determining the self-adjointness of
the generalized (inverted) Pöschl–Teller operator as described in
(33) and imposing the necessary conditions for self-adjointness
at the boundary y � 0, we find that the effective boundary
conditions associated with the quasinormal modes differ from
the original conditions presented in (32). Specifically, for the
range 0< V0

α′2
< 1

4, the self-adjoint extensions do not fulfill to the
same boundary condition specified in (32). This indicates that the
analytically continued QNMs do not belong within the domain of
any self-adjoint extension [15]. This observation further supports
our conclusions regarding the analytical continuation method
and the (inverted) Pöschl–Teller potential, as presented
in Section 2.

4 Summary

We discussed the issues that emerge when employing the analytical
continuation method to obtain the complete set of quasinormal modes
in solvable scenarios, including the Pöschl–Teller potential and the BTZ
black hole case. The absence of (essentially) self-adjointness in the
Schrödinger operator with the inverted potential significantly restricts
the viability of this approach [15]. Nevertheless, it would be interesting
to revisit this BTZ case in light of the recent developments for the
pseudospectrum of the Pöschl–Teller operator [23, 24] and in the case
where the black hole is asymptotically AdS [25–28]. The latter point will
be addressed elsewhere.
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