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Crowd density is an important metric for preventing excessive crowding in
a particular area, but it still faces challenges such as perspective distortion,
scale variation, and pedestrian occlusion. Existing studies have attempted to
model the spatio-temporal dependencies in videos using LSTM and 3D CNNs.
However, these methods suffer from large computational costs, excessive
parameter redundancy, and loss of temporal information, leading to difficulties
in model convergence and limited recognition performance. To address these
issues, we propose a lightweight multi-stage temporal inference network
(LMSTIN) for video crowd counting. LMSTIN effectively models the spatio-
temporal dependencies in video sequences at a fine-grained level, enabling
real-time and accurate video crowd counting. Our proposed method achieves
significant performance improvements on three public crowd counting datasets.
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1 Introduction

Crowd counting technology has broad application prospects in fields such as video
surveillance, traffic control, and emergency management, and it has been widely applied
in urban public safety. In recent years, due to the great success of Convolutional Neural
Networks (CNNs) in image classification and object detection, many researchers have
introduced CNNs into the crowd counting task to learn the mapping from input images to
their corresponding density maps. CNNs are highly favored in the field of crowd counting
due to their strong feature learning capabilities, leading to the emergence of numerous
outstanding works. Although CNNs have significantly improved the performance of crowd
counting methods, most efforts focus on learning feature representations from a single
image. These image-based methods still face several challenges that need to be overcome.
This is mainly because crowd gatherings can occur in any scenario, such as indoors,
outdoors, or in the wild, and both individuals and crowds exhibit rich visual variations.
These complex variation factors pose challenges to crowd counting methods, such as
occlusion and scale variations, as illustrated in Figure 1.

Existing research has shown that the spatio-temporal information in video sequences
contains a wealth of valuable deep semantic information. Modeling the temporal sequence
of videos can significantly enhance the feature learning capabilities and discrimination
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FIGURE 1
Examples of existing challenges in crowd counting. (A) Occlusion. (B) Complex backround. (C) Scale change.

performance of deep networks. Motion information not only
helps produce higher-quality density maps by combining feature
representations of adjacent frames, but also improves pedestrian
discrimination in occluded scenes. Even if pedestrians are occluded
in specific frames, the missing information can still be captured
from adjacent frames. Recently, some researchers have attempted
to use variants of Long Short-Term Memory (LSTM) networks and
3DConvolutional Neural Networks (3DCNNs) tomodel the spatio-
temporal dependencies in videos, implicitly combining spatial and
temporal features [1–6]. Although these methods have achieved
some promising results, they suffer from high computational
complexity, difficulty in training the related parameters, and
the inability to effectively extract long-range temporal context
information. These problems lead to low training efficiency
and excessive redundant parameters, which limit the model’s
performance. The Temporal Convolutional Network (TCN) is a
neural network model specifically designed for processing time
series data. Compared to traditional recurrent neural networks
(such as LSTM and GRU), TCN offers the advantages of parallel
computation, efficient long-term dependency capture, stable
gradients, and flexibility in handling time series of varying lengths.
Additionally, the crowd density maps produced by existing methods
only offer a rough estimate of crowd distribution and fail to
accurately capture individual pedestrian positions or detailed crowd
patterns.This limitation significantly hinders further crowd analysis
and reduces their practical applicability.

To address these problems, we propose a lightweight multi-stage
temporal inference network (LMSTIN) for video crowd counting,
which consists of three components: a density map generation
module, a lightweight feature extraction module, and a refined
temporal inference module. The input to LMSTIN is a sequence
of consecutive video frames, and the output is the corresponding
crowd density maps. The number of people in each frame is
obtained by integrating the density map. Specifically, the density
map generation module first uses a focal inverse distance transform
to convert the input video frames into crowd density maps with
accurate pedestrian positions, which are used as ground truth
labels for network training. Then, a lightweight feature extraction
module is designed to reduce computational cost while maintaining
effective spatial feature extraction, thereby improving the overall
efficiency of the network. Finally, a refined temporal inference

module is constructed to focus on modeling the dependencies
along the temporal dimension. It repeatedly refines the important
temporal context information through multiple stages of refined
temporal inference to learn better video-level semantic features,
further improving crowd counting accuracy. Compared to existing
video-based crowd counting methods, LMSTIN achieves promising
results on three public video crowd counting datasets. Testing shows
that our proposed method demonstrates outstanding performance,
meeting the requirements of practical applications in terms of both
speed and accuracy.

2 Related work

In recent years, with the rapid development of deep learning,
there have been significant improvements in the performance
of crowd counting methods. Both the accuracy and speed of
counting in crowded scenes have notably increased. Fu et al. [7]
proposed the first crowd counting model based on Convolutional
Neural Networks (CNNs). This model removed some similar
network connections in the feature maps and cascaded two CNN
classifiers, effectively enhancing the speed and accuracy of crowd
counting. Wang et al. [8] introduced a deep network based on
the AlexNet structure [9] for extremely dense crowd counting.
This network added extra negative samples during training, setting
their true values to zero, to reduce the interference from complex
backgrounds. Zhang et al. [10] proposed a cross-scene counting
network called CrowdCNN based on the AlexNet structure. This
network alternately trains on two related tasks (crowd density
and crowd counting) to achieve locally optimal results and then
fine-tunes the model using pre-training. The multi-column CNN
network includesmultiple columns of convolutions to extract multi-
scale features, thus generating high-quality crowd density maps.
Zhang et al. [11] were the first to use a multi-column structure
for crowd counting, addressing the problem of scale variation in
crowd counting. They proposed the Multi-Column Convolutional
Neural Network (MCNN), which consists of different columns,
each using filters with varying receptive fields to extract multi-
scale features adapted to scene changes. Zhang et al. [12] utilized
Local Self-attention (LSA) and Global Self-attention (GSA) to
capture short-term and long-term dependencies between pixels
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and introduced a relation module to fuse LSA and GSA for
richer feature representation. Compared to multi-column CNN
methods, single-column CNNmethods use a deeper single network
structure for feature representation, resulting in a simpler network
architecture and easier training convergence. Hu et al. [13] proposed
a refinement distance compensation method based on a quantum
scale perception learning framework to address crowd counting
and localization tasks. This method uses a classic CNN architecture
and calculates crowd features through qubit rotation and Pauli
operators to generate the final density map. Liu et al. [14] proposed
a deformable convolutional network with attention, ADCrowdNet,
which consists of an AttentionMapGenerator (AMG) and aDensity
Map Estimator (DME). AMG estimates the crowd region and
its density in the image, while DME uses multi-scale deformable
convolutional layers to generate the crowd density map. Given the
great success of Vision Transformers (ViT) in image processing,
methods based onViThave also begun to appear in the field of crowd
counting. Liang et al. [15] proposed a crowd counting model called
TransCrowd, which was the first to introduce ViT into the crowd
counting task, redefining the weakly supervised crowd counting
problem from the perspective of image patch sequences based on
ViT. TransCrowd effectively utilizes ViT’s self-attention mechanism
to extract semantic information about crowds, achieving significant
crowd counting results. Li et al. [16] improved the ViT model by
proposing a new network called CCTrans. This network first uses
a pyramid vision transformer backbone to capture global crowd
information, then merges low-level and high-level features through
a pyramid feature aggregation module, and finally predicts the
crowd density map with an efficient multi-scale dilated convolution.
Bai et al. [17] proposed an end-to-end crowd counting method
called CounTr, which consists of a ViT-based hierarchical encoder-
decoder architecture. The encoder inputs image patch sequences
to obtain multi-scale features, while the decoder merges features
from different layers and aggregates both local and global contextual
feature representations.

Deep learning-based crowd counting methods have
demonstrated significant capabilities in feature learning for image-
level tasks due to the powerful feature learning capabilities of deep
neural networks. However, their performance still faces bottlenecks.
Recently, many researchers have suggested thatmodeling the spatio-
temporal information contained in video sequences could further
overcome these performance limitations. However, research on this
approach for crowd counting tasks remains relatively scarce.

3 Method

When addressing challenges such as significant scale variation
and frequent occlusions in crowd counting, a key issue is how to
extract contextual information across video frames and effectively
model spatio-temporal dependencies, all while maintaining real-
time algorithmic performance. To tackle this, we propose a novel
framework, LMSTIN, which achieves fast and accurate video
crowd counting by constructing finer-grained spatio-temporal
dependencies. Figure 2 presents the overall structure of LMSTIN.
LMSTIN consists of three components: a density map generation
module, a lightweight feature extraction module, and a refined
temporal inference module. Specifically, LMSTIN first employs

a density map generation module (DMGM) to produce density
maps with precise pedestrian locations, which serve as ground
truth for network training. Following this, a lightweight feature
extraction module (LFEM) is designed to reduce computational
complexity and improve the network’s overall efficiency. Lastly, a
refined temporal inference module (RTIM) is developed to capture
video-level semantic features, ultimately delivering accurate crowd
counting results.

3.1 Density map generation module

Suppose the position of a person’s head annotation is xi, which
can be represented by a shock pulse function δ(x− xi). If there are
N head annotations in a crowd image, it can be represented by the
following Formula 1:

H(x) =
N

∑
i=1

δ(x− xi) (1)

After annotating the crowd image, by performing convolution
with a two-dimensional Gaussian kernel function Gσ, the
corresponding crowd density map F(x) of the image can be
represented by the following Formula 2:

F(x) =
N

∑
i=1

δ(x− xi) ·Gσ(x) (2)

Due to the “size varies with distance” problem of head scales in
the image scene, which results in significant differences in head sizes
at different positions, Zhang et al. [11] proposed using a geometric
adaptive Gaussian kernelGσi instead of a fixed-size two-dimensional
Gaussian kernel function Gσ to generate the crowd density map. In
crowded scenes, the size of a head is often related to the distance
between it and the centers of adjacent heads. Therefore, in such
scenes, the standard deviation σi of the geometric adaptive Gaussian
kernel can be determined by the average distance di between a given
head position xi and its neighboring k heads. The generated crowd
density map F(x) is defined as following Formula 3:

F(x) =
N

∑
i=1

δ(x− xi) ·Gσi(x) (3)

Here, σi = β ∙ di and β represent weight coefficients.
Zhang et al. [11] demonstrated through extensive experiments that
the results are optimal when β = 0.3 is used.

In the crowddensitymaps using the two types ofGaussian kernel
functions described above, the spatial distribution information
is represented by a series of blurred Gaussian spots, which
cannot provide the precise locations of each person. This limits
subsequent crowd analysis and practical applications. Therefore,
we introduce the focal inverse distance transform (FIDT) to
generate crowd density maps with accurate pedestrian locations
[18]. Next, we first introduce the Euclidean Distance Transform
mapping, which generates density map annotations by calculating
the Euclidean distance between each pixel and its nearest annotation
point. The Formula 4 is defined as follows:

D(x,y) =
min

(x′,y′) ∈ S
√(x− x′)2 + (y− y′)2 (4)
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FIGURE 2
Overall structure of LMSTIN.

Here, S represents the set of all head annotations, and D(x,y)
denotes the Euclidean distance between the head annotation
position (x,y) and the nearest head annotation position (x′,y′).
Due to the significant variation in distances between different
heads, directly regressing the crowd density map can result in
it approaching zero overall. To address this issue, the Inverse
Distance Transform (IDT) can be applied to smooth out the distance
variation. The Formula 5 is defined as follows:

I′(x,y) = 1
D(x,y) +C

(5)

Here, I′(x,y) represents the density map generated using IDT,
and C is a constant. To prevent the denominator from being zero,
C = 1 is usually set. However, while the pixel values generated
by IDT decay rapidly at locations far from the head annotation
centers, the decay in the background is not sufficiently pronounced.
Building upon this, FIDT is further proposed to make the decay
near the heads slower while accelerating the decay to zero at farther
locations. The Formula 6 is defined as follows:

I(x,y) = 1
D(x,y)(α·D(x,y)+β) +C

(6)

Here, I(x,y) represents the density map generated using FIDT,
and α and β are set to 0.02 and 0.75, respectively.

3.2 Lightweight feature extraction module

The VGG-16 network, due to its excellent performance in
image feature extraction, has been favored by many researchers in
the field of crowd counting [19, 20]. This network consists of 13
convolutional layers with 3 × 3 kernels, 5 pooling layers with 2 ×
2 kernels, and 3 fully connected layers. When applied to different
tasks, the fully connected layers are usually removed, retaining only
the convolutional and pooling layers to extract features from crowd
images. Unlike ResNet, VGG-16 has a relativelymoderate number of
network layers and consumes fewer computational resources, which
allows it to improve convergence speed while ensuring effective
feature extraction.Nevertheless, VGG-16 still does notmeet the high
real-time requirements of video crowd counting tasks effectively.

Therefore, this section designs a Lightweight Feature Extraction
Module (LFEM) that replaces traditional convolutions with
depthwise separable convolutions to reduce network parameters,
thus improving operational efficiency while achieving feature
extraction results comparable to VGG-16. Depthwise separable
convolution, proposed by Chollet et al. [21], is an efficient
convolution operation that consists of two main steps: Depthwise
Convolution and Pointwise Convolution, as shown in Figure 3.
Specifically, Depthwise Convolution performs convolution
operations across channels, where each channel has its own kernel,
and the kernel size is the same as the traditional convolution kernel
being replaced. Thus, the number of input and output channels
remains consistent throughout the process. Pointwise Convolution,
composed of 1 × 1 kernels, is used to weight the output features
from the previous step and adjust the number of output feature
channels. The number of kernels depends on the required number
of output feature channels, so this process does not change the
feature map size. Figure 3 illustrates the specific operation process
of depthwise separable convolution. Finally, an additional fully
connected layer is added to LFEM to generate a feature vector that
meets the input dimensions of the nextmodule. Experimental results
indicate that, despite having significantly fewer parameters than
VGG-16, LFEMcan still achieve results comparable toVGG-16.This
provides a solid foundation for achieving real-time performance
with our method.

3.3 Refined temporal inference module

Modeling spatio-temporal information in video sequences has
shown good performance in addressing problems such as person
occlusion, background interference, and scale variation in crowd
counting problems. To address these problems, we construct
a refined temporal inference module (RTIM), which includes
multiple stages of temporal inference modules. The output of
the previous stage module serves as the input for the next stage
module. Each stage’s temporal inference module is composed
of multiple smooth dilated 1D convolutions stacked together,
with a loss layer at the end of each stage to adjust the output
features. The final stage outputs the counting results. Since smooth
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FIGURE 3
The operation process of depthwise separable convolution.

dilated 1D convolution can learn temporal information with a
larger receptive field using fewer parameters [22], RTIM can
maintain a low computational complexity while focusing on useful
temporal information to achieve efficient and reliable temporal
video modeling. The following will provide a detailed description
of smooth dilated 1D convolution and the loss function.

3.3.1 Smooth dilated 1D convolution
Dilated convolution can effectively expand the receptive field

of the filter without increasing the number of parameters and
computational load, allowing it to process information over a larger
area. In recent years, dilated convolution has gained widespread
attention in the field of deep learning. However, it also has some
drawbacks, such as the loss of local spatial information, as noted by
Chen et al. [22]. Additionally, there is no dependency between input
units or output units in dilated convolution, leading to ineffective
acquisition of contextual information during network training [23].
For fine recognition tasks such as image segmentation and crowd
counting, dilated convolution can result in the loss of local spatial
information and lack of contextual information during training,
severely impacting the final recognition results.Since RTIM mainly
consists of a set of dilated 1D convolution layers, it also suffers from
problems of local temporal information loss and lack of relevance
in long-range temporal information. To address this, we introduce
smooth dilated 1D convolution. Next, we will briefly introduce
dilated 1D convolution and then provide a detailed description of
smooth dilated 1D convolution.

For a dilated 1D convolution with a filter of size k and dilation
rate w, the output Z at position i is defined as following Formula 7:

Z[i] =
k

∑
s=1

f[i+ r× s]w[i] (7)

Here, f represents the one-dimensional input, and r represents
the dilation rate. When r = 1, the dilated 1D convolution reduces
to a standard 1D convolution. To intuitively understand dilated 1D
convolution, it can be viewed as inserting r− 1 zeros between two
adjacent weights of w. Therefore, its receptive field becomes r×
(k− 1) + 1.

To address the issues related to dilated convolutions, we propose
a smooth dilated 1D convolution method. This approach uses

“separable” and “shared” operations to smooth the dilated 1D
convolution before applying the dilated 1D convolution operation.
This enables the network to enhance the dependencies between
local temporal features in advance, allowing it to capture a broader
range of temporal context without increasing computational
complexity, effectively reducing the loss of local temporal
information. “Separable” refers to the separable convolution
mentioned in existing literature [21], while “shared” means that
the convolution weights are shared across all channels [23].
Specifically, a separable and shared convolution with a kernel size
of (2r− 1) is inserted before the dilated 1D convolution to capture
the temporal dependencies between feature maps generated by
periodic subsampling. During the smoothing operation (including
“separable” and “shared”), there is only one constant parameter that
is independent of the number of channels, with a size of (2r− 1).
Therefore, the additional computational cost is negligible. Figure 4
shows a schematic of a smooth dilated 1D convolution. As illustrated
in the figure, it depicts a smooth dilated 1D convolution with a
kernel size of 3 and a dilation rate of 2.The gray circles represent the
feature maps after the smoothing operation, while the brown circles
represent the original feature maps. Smooth dilated 1D convolution
increases the dependencies between input units by adding separable
and shared convolutions before the dilated 1D convolution. In short,
when using smooth dilated 1D convolution, the features at non-zero
positions can incorporate local temporal information from their
adjacent zero-value positions. This effectively mitigates the loss
of local temporal information and enhances long-range temporal
dependencies.

3.3.2 Loss function
In crowd counting algorithms based on density maps, the

Euclidean distance (denoted as LE) is primarily used to measure the
error between the actual and predicted crowd counts. The Formula
8 is defined as follows:

LE =
1
N

N

∑
i=1
(Cp

i −C
gt
i )

2 (8)

Here, N represents the number of frames in the video, Cp
i

denotes the estimated count for the image in frame i, and Cgt
i

denotes the actual count for the image in frame i. Although LE
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FIGURE 4
Schematic of smooth dilated 1D convolution.

loss has performed well in image crowd counting tasks, it does not
account for spatio-temporal consistency in video sequences. To
further improve the accuracy of video crowd counting, this section
introduces a smoothing loss (denoted as LS) by incorporating
the similarity between video frames to reduce prediction errors
between consecutive video frames. The Formulas 9–11 is
defined as follows:

LS =
1
N
∑
i
Δ̃2i (9)

Δ̃i =
{
{
{

Δi: Δi ≤ τ

τ: otherwise
(10)

Δi = |logC
p
i − logC

p
i−1| (11)

Here, τ represents the hyperparameter LS. Combining the
above loss functions, the final form of the loss function is as
following Formula 12:

L = LE + λLS (12)

Here, λ represents the hyperparameter that adjusts the weight
of LS. The values of all hyperparameters will be provided in the
subsequent experimental section.

4 Experimental setup

4.1 Implementation details

The experiments are implemented using PyTorch for LMSTIN.
The RTIM consists of four stages, each with 10 smooth dilated
1D convolutional layers, where the dilation rate of each layer is
twice that of the previous layer. After each convolutional layer, a
dropout with a rate of 0.5 is applied, with a kernel size of 3 and 64
convolutional filters. Additionally, the loss function of LMSTIN is
a combination of Euclidean distance loss and smoothing loss, with
the parameters set to τ = 10 and λ = 0.15. In all experiments, Adam
is used to optimize the network parameters, with a learning rate
of 0.0005 and no weight decay.

4.2 Datasets

In this paper, we evaluate the performance of the proposed
LMSTIN on three public video crowd counting datasets: Mall [24],
UCSD [25], and WorldExpo’10 [10]. The Mall dataset was collected
using surveillance cameras installed in a shoppingmall. It consists of
2000 frames of video with a resolution of 320 × 240 pixels per frame,
and a total of 62,325 pedestrians are labeled. The number of people
per frame ranges from a minimum of 11 to a maximum of 53, with
an average of approximately 31 people per frame. The Mall dataset
features high crowd density and diverse scenes, and it is divided into
a training set and a test set, with the first 800 frames used for training
and the remaining 1200 frames used for testing.The UCSD dataset
was collected using cameras installed in a pedestrian-only corridor
at the University of California, San Diego. The original videos were
collected at a resolution of 740 × 480 and a frame rate of 30 FPS,
then downsampled to 238 × 158 and 10 FPS. The UCSD dataset
contains 2000 frames with a total of 49,885 labeled pedestrians. To
exclude unnecessary objects (such as trees and cars), an interest
region is defined within which annotations are made manually
every 5 frames, with linear interpolation used for the remaining
frames. The UCSD dataset is collected from a fixed position, so
the scene perspective remains unchanged throughout the video.The
WorldExpo’10 dataset is a large-scale cross-scene crowd counting
dataset. It was collected from the 2010 Shanghai Expo, including
1132 video sequences with manual annotations captured by 108
surveillance cameras. The dataset consists of 3920 frames with a
resolution of 576 × 720 pixels, and a total of 199,923 people are
labeled, with an average of 50 people per frame.

4.3 Evaluation metrics

The experiments use two evaluation metrics, namely, Mean
Absolute Error (MAE) andMean Squared Error (MSE), to assess the
accuracy and robustness of the method.The specific formulas are as
following Formulas 13, 14:

MAE = 1
N

N

∑
i=1
|Cp

i −C
gt
i | (13)
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TABLE 1 Comparison of our method with existing methods on the
mall dataset.

Methods MAE MSE

Gaussian Process Regression [25] 3.72 20.10

Ridge Regression [24] 3.59 19.00

Kernel Ridge Regression [26] 3.51 18.10

Cumulative Attribute Regression [27] 3.43 17.70

Count Forest [28] 2.50 10.00

ConvLSTM [1] 2.24 8.50

Bidirectional ConvLSTM [1] 2.10 7.60

LSTN [2] 2.00 2.50

MLSTN [6] 1.80 2.42

E3D [4] 1.64 2.13

Monet [29] 1.54 2.02

STDNet [5] 1.47 1.88

Ours 1.40 1.76

MSE = √ 1
N

N

∑
i=1
(Cp

i −C
gt
i )

2 (14)

Here, N represents the number of frames in the video, and
Cp
i and Cgt

i denote the estimated count and the actual count for
the image in frame i, respectively. MAE measures the accuracy of
the counting method, while MSE evaluates the robustness of the
counting method. The smaller the values of MAE and MSE, the
better the accuracy and robustness of the method, and thus, the
better its performance.

5 Experimental results and analysis

5.1 Quantitative and qualitative analysis

We compared the crowd counting results of our proposed
method with several state-of-the-art video crowd counting methods
on the Mall, UCSD, and WorldExpo’10 datasets. The comparison
results are shown in Tables 1–3.

Comparing with 12 advanced video crowd counting methods,
our proposed LMSTIN achieved the best results across all metrics,
as detailed in Table 1. From Table 1, it can be observed that
LMSTIN shows a further improvement over the current state-of-
the-art method (STDNet), reducing the MAE by 0.07 and the
MSE by 0.12. Additionally, the Mall dataset presents more complex
scenarios compared to the UCSD dataset, such as higher levels of
perspective distortion and occlusion, which can lead to inaccuracies
or imprecisions in annotations. In this context, LMSTIN addresses
this problem by modeling spatio-temporal consistency between

TABLE 2 Comparison of our method with existing methods on the
UCSD dataset.

Methods MAE MSE

Ridge Regression [24] 2.25 7.82

Gaussian Process Regression [25] 2.24 7.97

Kernel Ridge Regression [26] 2.16 7.45

Cumulative Attribute Regression [27] 2.07 6.86

Switch-CNN [30] 1.62 2.10

Cross-Scene [10] 1.60 3.31

FCN-rLSTM [31] 1.54 3.02

ConvLSTM [1] 1.30 1.79

Monet [29] 1.17 1.45

Bidirectional ConvLSTM [1] 1.13 1.43

LSTN [2] 1.07 1.39

MLSTN [6] 1.02 1.32

E3D [4] 0.93 1.17

STDNet [5] 0.76 1.01

Ours 0.71 0.94

Bold font indicates the best value of the evaluation Metrics.

video frames. Experimental results demonstrate that LMSTIN
effectively models temporal dependencies between video frames,
thereby extracting more robust spatio-temporal features to enhance
the network’s capability for crowd counting tasks.

Table 2 presents a comparison of LMSTIN with 14 state-of-the-
art video crowd counting methods. The experimental results show
that LMSTIN outperforms all previous methods in both MAE and
MSE metrics, achieving reductions of 0.05 in MAE and 0.07 in
MSE compared to STDNet.Notably, the improvements on theUCSD
dataset have two important implications. First, with a frame rate of
10 FPS, the UCSD dataset allows the network to learn multi-scale
temporal features due to the high correlation between consecutive
frames. For instance, in a video segment with 20 frames, if a person
appears continuously from frame 1 to frame 20, LMSTIN can extract
both short-term information (e.g., from frame 1 to frame 2) and
long-term information (e.g., from frame 1 to frame 20) from the
video frames. Second, since individuals typically move at varying
speeds, multi-scale temporal information helps account for people
moving at different velocities, which is beneficial for density map
estimation in crowded scenes. The experimental results indicate
that effectively modeling both short-term and long-term temporal
information provides robust performance against crowd occlusion
and scale variations in complex environments, leading to improved
crowd counting results.

Table 3 summarizes the experimental results of LMSTIN
compared with 9 state-of-the-art video crowd counting methods.
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TABLE 3 Comparison of our method with existing methods on the WorldExpo’10 dataset.

Methods S1 S2 S3 S4 S5 Avg

Cross-Scene [10] 9.8 14.1 14.3 22.2 3.7 12.9

ConvLSTM-nt [1] 8.6 16.9 14.6 15.4 4.0 11.9

Switch-CNN [30] 4.4 15.7 10 11 5.9 9.4

ConvLSTM [1] 7.1 15.2 15.2 13.9 3.5 10.9

Bidirectional ConvLSTM [1] 6.8 14.5 14.9 13.5 3.1 10.6

ST-CNN [32] 5.2 16.5 9.9 8.4 6.2 9.3

E3D [4] 2.8 12.5 12.9 10.2 3.2 8.3

TAN [33] 2.8 18.1 9.6 7.5 3.6 8.3

STDNet [5] 1.8 12.8 10.3 7.9 2.5 7.1

Ours 1.6 14.3 8.2 7.0 2.8 6.8

Bold font indicates the best value of the evaluation Metrics.

In this experiment, 16 consecutive frames were used as input, and
MAE and average MAE (Avg) across 5 scenes (S1, S2, S3, S4, S5)
were used as evaluation metrics. The results show that, compared
to the current best method STDNet, LMSTIN has achieved an
overall improvement in accuracy, reducing the average MAE by
0.3. However, its performance varies across different scenes: it
decreased by 0.2, 2.1, and 0.9 in scenes S1, S3, and S4, respectively,
but increased by 1.5 and 0.3 in scenes S2 and S5. This discrepancy
is because the temporal correlation between consecutive frames
in scenes S2 and S5 is not strong, and these scenes are relatively
sparse, which conflicts with our design objectives. Nevertheless,
LMSTIN still achieved the best accuracy in 3 out of 5 scenes
and provided the lowest average MAE (Avg). This indicates
that LMSTIN not only effectively models both short-term and
long-term video temporal information but also demonstrates
good robustness across datasets with varying scales and
scene differences.

In order to facilitate observation and comparative analysis, the
final crowd density maps generated by LMSTIN and STDNet are
visualized respectively, because this method is one of the most
advanced methods in the field of video crowd counting. The
visualization results are shown in Figure 5. In Figure 5, the first
row is the visualization result of the Mall dataset, the second row
is the visualization result of the UCSD dataset, and the third row
is the visualization result of the WorldExpo’10 dataset. The first
column is the input original image, the second column is the FIDT
real density map, and the third and fourth columns represent the
corresponding output density maps of STDNet and the method in
this chapter, respectively. The numbers in the figure represent the
real annotation (GT) and the predicted number of people (Pred). As
can be seen from Figure 5, the density map generated by themethod
in this chapter is closer to the real density map than the density
map generated by STDNet, so the counting results and pedestrian
locations are also more accurate.The visualization results intuitively
demonstrate the effectiveness and robustness of the method in this

chapter on the video crowd counting task, and the output crowd
density map can provide accurate pedestrian location information,
which provides the necessary prerequisite for subsequent crowd
analysis tasks.

5.2 Structural analysis and efficiency
comparison

To validate the effectiveness of eachmodule in LMSTIN, we first
analyze the impact of different structures on video crowd counting
results by examining LFEM and RTIM.Then, we compare LMSTIN
with current state-of-the-art video crowd counting methods from
multiple aspects to demonstrate LMSTIN’s real-time performance
and effectiveness.

First, we evaluate the performance of LFEM. The VGG-16
network, known for its excellent feature extraction capabilities,
has become a mainstream feature extraction method in the field
of crowd counting. Specifically, the VGG-16 network consists of
16 layers, including 13 convolutional layers with 3 × 3 kernels,
5 pooling layers with 2 × 2 kernels, and 3 fully connected
layers. In crowd counting tasks, the fully connected layers of
VGG-16 are typically discarded, retaining only the convolutional
and pooling layers to extract features from crowd images. Our
proposed LFEM is an improvement based on the VGG-16 network,
aiming to reduce the computational load of the network while
maintaining its feature extraction capabilities, thus enhancing
the overall operational efficiency of the network. Therefore, in
the ablation experiments evaluating LFEM’s performance, in
addition to using MAE, MSE, and Avg as evaluation metrics,
we also introduce the number of module parameters (Params)
as an important indicator of computational complexity. Table 4
presents the experimental results of LFEM and VGG-16 on the
three datasets.
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FIGURE 5
Qualitative results.

TABLE 4 Comparison of Experimental Results between LFEM and VGG-16 on three Datasets.

Methods Datasets MAE MSE Avg Params

VGG-16

Mall 1.38 1.72 —

0.16MUCSD 0.71 0.93 —

WorldExpo’10 — — 6.6

LFEM

Mall 1.40 1.76 —

0.03MUCSD 0.71 0.93 —

WorldExpo’10 — — 6.8

To visually compare the performance differences between
LFEM and VGG-16, the experiment involved replacing only the
feature extraction module in the entire method while keeping the
other modules unchanged. From Table 4, it is evident that LFEM
performs similarly to VGG-16 across all datasets, achieving the
same accuracy on the UCSD dataset. However, LFEM’s parameter
count is only about one-fifth of that of VGG-16. The experimental
results demonstrate that LFEM is an effective feature extraction
module for video crowd counting tasks, significantly reducing the
network’s computational complexity and thereby enhancing the
overall efficiency of the method.

Next, we evaluate the performance of RTIM. In crowd
counting tasks, the current methods for modeling spatio-temporal
relationships between video framesmainly use LSTM,Bi-directional
LSTM (BI-LSTM), and 3DCNN as the foundational frameworks.
To intuitively compare the performance differences between
RTIM and other temporal modeling networks, we replace only
the temporal inference part in the entire method, keeping the
other modules unchanged. Since the ablation experiments yield
consistent conclusions across the three datasets, we present the

results using the Mall dataset as an example. The results are
shown in Table 5.

Table 5 lists the MAE, MSE, and Params for different temporal
modeling networks tested on the Mall dataset. From Table 5, it is
evident that RTIM significantly improves accuracy compared to
LSTM, BI-LSTM, and 3DCNN, while also substantially reducing
the network parameter count. RTIM achieves the best results
in both MAE and MSE and has less than one-seventh of the
network parameters compared to 3DCNN. The experimental
results demonstrate that RTIM can effectively model the temporal
relationships between video frames with minimal parameters, thus
further enhancing the overall efficiency of the method. This is
critically important for the practical application of video crowd
counting methods.

Finally, the overall operating efficiency of LMSTIN is evaluated.
Taking the Mall dataset as an example, the differences in operating
efficiency of the method in this chapter are illustrated by comparing
it with four state-of-the-art video crowd counting methods,
STDNet, Monet, E3D, and MLSTN. Table 6 lists the parameter
amount (Params), computation amount (FLOPs), and training time
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TABLE 5 Comparison of RTIM with other temporal modeling networks on the Mall Dataset.

Methods MAE MSE Params

LSTM [34] 2.25 6.50 2.31M

BI-LSTM [35] 2.02 4.65 4.65M

3DCNN [36] 1.68 2.20 5.70M

RTIM 1.40 1.76 0.82M

Bold font indicates the best value of the evaluation Metrics.

TABLE 6 Comparison of parameters, computation and training time of different methods on the Mall dataset.

Methods Params FLOPs Training time

MLSTN [6] 12.25M 56.50M 53Mins

Monet [29] 11.58M 41.65M 47Mins

E3D [4] 6.42M 23.20M 30Mins

STDNet [5] 2.80M 5.76M 18Mins

Ours 0.85M 2.74M 12Mins

Bold font indicates the best value of the evaluation Metrics.

(Training Time) of different networks. As can be seen from Table 6,
LMSTIN is significantly more efficient than networks such as
STDNet, Monet, E3D, and MLSTN. For example, in terms of
computation amount, the value of STDNet is about 2.5 times that
of the method in this chapter, the value of E3D is about 11 times
that of E3D, the value of Monet is about 20 times that of E3D, and
the value of MLSTN is about 23 times that of E3D. In terms of
parameter amount, the value of STDNet is about 3 times that of
the method in this chapter, the value of E3D is about 8 times that
of E3D, the value of Monet is about 13 times that of E3D, and the
value of MLSTN is about 14 times that of E3D. The training time
in Table 3.6 is the running time for training the Mall dataset for 50
cycles (Epoch) on a single GTXTitanXpGPU. It can be seen that the
training time of this chapter’s method is shorter than that of all other
networks. The experimental results show that this chapter’s method
is significantly better than the existing methods in terms of network
parameters, computational complexity and running time, and the
overall network operation efficiency has been significantly improved
compared with other methods. It is worth noting that for videos
with a resolution of 320 × 240 pixels, this chapter’s method only
occupies less than 500 MB of GPU memory on the Nvidia TitanXp
GPU to achieve a detection speed of 120FPS, and also achieves a real-
time crowd counting speed of 25FPS on the daily home Intel Core
i5-8400 CPU.

Overall, extensive experiments demonstrate that each module
within LMSTIN, performs exceptionally well, significantly
surpassing existing advanced methods in both speed and accuracy.
This advancement has substantial implications for the practical

application of crowd counting methods in real-world monitoring
scenarios.

6 Conclusion

We propose a lightweight multi-stage temporal inference
network for video crowd counting, named LMSTIN. Specifically,
LMSTIN first utilizes the focal inverse distance transformation
to convert input video frames into crowd density maps with
accurate pedestrian locations, which serve as the ground truth labels
for network training. Secondly, we design a lightweight feature
extraction module to reduce the computational load of the model,
enhancing overall efficiency while maintaining effective spatial
feature extraction. Finally, we build amulti-stage temporal inference
module with minimal parameters that performs well, focusing
on modeling temporal relationships to efficiently extract spatio-
temporal information from video frames. Experimental results
demonstrate that ourmethod achieves excellent performance across
various datasets and is capable of real-time crowd counting at 25
frames per second on an Intel Core i5-8400 CPU. LMSTIN have
great potential for future development, especially in handling more
complex video scenes, different crowd movement patterns, and
integrating other functionalities. By combining with features like
behavior recognition, they can achieve comprehensive monitoring
and analysis of crowd behavior, providing stronger technical
support for public safety, traffic management, and business
decision-making.
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