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Total reaction, interaction, and charge-changing cross sections, which are kinds
of cross sections standing for total nuclear collision probability in medium-to
high-energy region from a few to several hundred MeV, have been extensively
utilized to probe nuclear sizes especially for unstable nuclei. In this mini review,
experimental techniques and recent findings from these cross sections are
briefly overviewed. Additionally, two new methods to extract neutron skin
thickness solely from the above cross sections are explained: One is utilizing
the energy and isospin dependence of the total reaction cross sections, and the
other is the combination of the total reaction and charge-changing cross section
measurements.
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1 Introduction

In neutron-rich nuclei, a thick neutron skin forms, reflecting both the nuclear structure
and the bulk properties of nuclear matter.The neutron skin thickness Δrnp, which is defined
as the difference between the root-mean-square (RMS) radii of the point-neutron and point-
proton density distributions, rn and rp:

Δrnp = rn − rp. (1)

This quantity is particularly anticipated as a promising observable to determine the slope
parameter, L, of the symmetry energy csym(ρ) at the saturation density ρ0 in the equation
of state (EoS) of nuclear matter [1], where ρ is the density. This parameter is defined as
L ≡ 3ρ0 ×

dcsym
dρ
|
ρ0

playing a crucial role in extrapolating the EOS for symmetric nuclear

matter to that for asymmetric nuclear matter. Although significant efforts have been made
to determine the neutron skin thickness, Δrnp, in neutron-rich stable nuclei using various
experimental techniques [2–16], a consistent value forLhas not yet been determined. Recent
compilations report the range of L values as 58.9± 16.5MeV [17], 58.7± 28.1MeV [18], and
40–60 MeV [19].

Determining Δrnp of neutron-rich unstable nuclei has the advantage of constraining
the parameter L, as a thicker neutron skin is expected [20–23]. There are some Δrnp
measurements in neutron-rich unstable nuclei using the low-lying dipole resonance [24]
and electric dipole polarizability [25–27]. Compared to the above experimental methods,
the total reaction (σR), interaction (σI), and charge-changing cross sections (σCC), which
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will be focused in this paper are powerful tools for determining the
size properties and Δrnp of neutron-rich unstable nuclei far from
the stability line. The σR and σI are sensitive to the matter radius
(rm), which is the RMS radius of the nucleon density distribution,
ρm(r). Therefore, if rm is precisely obtained via σR or σI, one can
determine Δrnp by combining with rp from another method, such
as isotope shift measurements [28, 29], using Equation 1 together
with the relation ofAr2m = Zr2p +Nr2n, whereA, Z, andN are themass,
atomic, and neutron numbers of the nucleus of interest.

Furthermore, recent developments using σR and/or σCC,
mentioned in Section 5, offer new ways to determine Δrnp solely
from these total cross sections. Compared to other major nuclear
reaction measurement techniques using RI beams [30], these total
cross sections can bemeasured evenwith extremely low radioactive-
isotope (RI) beam intensities of, e.g., around 0.1 particles/sec,
making it possible to extract Δrnp of very neutron-rich nuclei. In
this paper, we briefly review recent studies regarding these total
cross sections, with a particular focus on advances related to the
neutron skin.

2 Overview of experimental
techniques

The σR and σI are defined as the total cross sections for
all inelastic reactions and all reactions that change the nuclides,
respectively. At energies above approximately 200 MeV/nucleon,
σI ≈ σR is generally assumed in Glauber-model analyses (Section 3)
because the inelastic scattering where the projectile nucleus
remains in the ground state hardly occurs. Theoretical studies have
indicated that the ratio of this inelastic scatteing cross section
(σinel) to σR, σinel/σR, is typically 2%–3% at energies above 200
MeV/nucleon, increasing to around 5% as energy decreases to
several tens MeV/nucleon [31, 32]. The σinel/σR values for Mg
isotopes on 12C at 240 MeV/nucleon were experimentally estimated
to be around 2% [33].

The σR(I) is often measured using the transmission method [34]
represented by

σR(I) = −
1
Nt

ln(
γ
γ0
), (2)

where Nt is the number of target nuclei per unit area, γ and γ0
are the nonreaction rates for measurements with and without the
target. The γ and γ0 in Equation 2 are obtained by counting the
number of incident particles and that of outgoing nonreaction
ones, respectively. This method has lower experimental uncertainty
compared to the associate-γ method [35], which assumes that all
inelastic scatterings necessarily emit γ rays.

At energies above 200 MeV/nucleon, σI is often measured
instead of σR. This is because the “nonreaction particle” for σI
represents the particle that has not changed nuclide species, which
is easier to identify experimentally. Conversely, at energies below
around 100 MeV/nucleon, where σinel cannot be ignored, σR are
often measured. The definition of “nonreaction particle” of σR
includes the “elastically scattered particle.” Therefore, in addition
to the identification of nuclide species, energy or momentum
measurements are required downstream of the target. The σinel are
practically estimated from the tail of the energy or momentum

distribution [33, 36], while that peculiarly from the inelastic
excitations to bound states is sometimes estimated from counting
de-exciting γ rays [37, 38].

The charge-changing cross section, σCC, mentioned in
Section 5.2, is also measured by the transmission method. This is
the total cross section of atomic-number-changing reactions of the
projectile nucleus, so that particles with the same Z number as the
projectile ones downstreamof the target are counted as “nonreaction
particles.” Note that some studies treated products with a larger Z
than projectile nuclei as nonreaction particles because an increase
in Z is not considered to result from the fragmentation reaction
[39–41]. For example, in C isotopes [39, 42], that contribution
was comparable or less to the experimental uncertainty of σCC
(around 1%).

3 Glauber model

There are several approaches to theoretically describe the
relationship between σR (or σI) and the RMS radii of colliding nuclei,
such as the black sphere model [31, 43–45] and the folding model
with optical potentials [46–55]. Among these, the Glauber theory
[56] has frequently been used. In the Glauber formalism, σR is
expressed as

σR = ∫db(1− |eiχ(b)|
2) , (3)

where b is the impact parameter vector, χ(b) is the phase-shift
function for the elastic scattering between the projectile and target
nuclei. The χ(b) in Equation 3 is given by the ground-state wave
functions of the projectile and target nuclei, ΨP

0 andΨ
T
0 , respectively:

eiχ(b) =⟨ΨP
0Ψ

T
0 |∏

i∈p,n
∏
j∈p,n
∏
k∈P
∏
l∈T
[1− Γij (E, sPk − s

T
l + b)]|Ψ

P
0Ψ

T
0⟩,

(4)

where the subscripts “i” and “j” denote the isospin of nucleons of
the projectile and target nuclei, the superscripts “P” and “T” the
projectile and target nuclei, respectively, E is the incident energy per
nucleon, and sPk (s

T
l ) are the two-dimensional vectors of the k(l)-

th nucleon’s cordinates (r) in the plane perpendicular to the beam
axis.The nucleon-nucleon profile function Γij, obtained by a Fourier
transform of the nucleon-nucleon scattering amplitude, is typically
parameterized as [57].

Γij (E,b) =
1− iαij (E)
4πβij (E)

σij (E)exp(−
b2

2βij (E)
), (5)

where σij is the nucleon-nucleon total cross section [58] (Figure 1A),
αij the ratio of the real to the imaginary part of the nucleon-nucleon
scattering amplitude, and βij the slope parameter of the nucleon-
nucleon elastic differential cross section representing the range of
nucleon-nucleon interaction.

To calculate χ(b) in Equation 4, multiple integrals of the
wave functions of the projectile and target nuclei are required,
which can be performed using the Monte Carlo integration
technique [59, 60]. However, approximations are generally
applied to avoid the complexity of the calculations. One of
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FIGURE 1
Properties regarding total-reaction cross sections σR or interaction cross sections σI (A) Energy dependence of proton–proton and proton–neutron (or
neutron–proton) total cross sections, σpp (closed circles) and σpn (np) (open circles), which are fundamental inputs of the Glauber-model calculations.
The experimental values are taken from Ref. [58]. (B) Energy dependence of reaction cross section σR(E). Crosses [78], closed circles [64], and closed
triangles [72] show experimental data, and the dotted black, dashed blue, and solid red lines represent the Glauber-model calculations under the
zero-range OLA, NTG [63], and MOL [64] formalisms. (C) Comparison between experimental data [70] and theoretical calculations of σI for Ca isotopes
on 12C at 280 MeV/nucleon. Open blue squares connected by a dotted line represent the Glauber-model calculation under the NTG approximation
with density distributions of Ca isotopes obtained from the Hartree–Fock calculation using the SLy4 interaction [71], dot-dashed green lines with the
shaded band the Glauber-model calculations considering several effects with the density distributions obtained from the Hartree–Fock–Bogoliubov
(HFB) or relativistic mean field calculations using 31 different interactions [69], respectively. For comparison, the double-folding-model calculation with
the Gogny-D1S HFB with the angular momentum projection (GHFB + AMP) is also shown by open red triangles connected by a dashed line [50].

the simplest and most frequently used approximations is the
optical-limit approximation (OLA):

eiχOLA(b) = ∏
i∈p,n
∏
j∈p,n

exp[−∬drPdrTρPi (r
P)ρTj (r

T)Γij (E, sP − sT + b)] ,

(6)

Here, ρP (ρT) represents the density distribution of the projectile
(target) nucleus. Using the OLA, σR can be calculated given the
density distributions of projectile and target nuclei and Γij. However,
this approximation does not account for various possible multiple-
scattering effects. To incorporate them effectively, Γij is extended to
the nucleon-target profile function, ΓNT [61, 62], which is called the
“nucleon-target formalism in the Glauber model” (NTG) [63] or
“modified OLA” (MOL) [64]:

eiχNTG(b) = exp[−∫drPρP (rP) × {1− exp[−∫drTρT (rT)Γ(E, sP − sT + b)]}] .

(7)

Here, although Equation 7 also incorporate the isospin dependence
i and j similar to those in Equation 6, these isospin notations are
omitted for the sake of simplicity. Note that amodified version of this
equation that satisfies symmetry regarding the exchange between
projectile and target components is usually used [61, 62]. Other
various effects have been also considered: the energy dependendent
parameters of αij and βij in Γij [63, 65–68], Fermi-motion effect
[64], and Pauli blocking [69]. Although these frameworks have
minor differences, each is constructed to effectively reproduce the

benchmark dataset (e.g., the energy dependence of σR for 12C on
12C shown in Figure 1B). Then, measured σR(I) results are analyzed
based on these evaluated theoretical framework. As an example,
Figure 1C shows σI for Ca isotopes on

12C at 280 MeV/nucleon [70]
together with the calculations using the Glauber model [69, 71] as
well as the double-folding model [50] employing theoretical density
distributions. To improve the Glauber formalism much more, there
are recent experimental contributions, such as high-precision σI data
for 12C on 12C at energies of 400–1,000 MeV/nucleon [72] and σR(I)
for 17F and 17Neon a solid hydrogen target [73] at energies of 50–450
MeV/nucleon [74, 75].

4 Progress of total-reaction and
interaction cross section studies

4.1 Progress in recent 20 years

After the pioneering work of σI measurements by Tanihata et al.
[76, 77], σR and σI have been extensively measured at the RI-beam
facilities. Here, the progress of studies related to σR and σI achieved
after the 2001 review paper [78] is outlined.

Regarding nuclei near the neutron dripline, 22C [38, 79]
and 29F [80] were newly identified as halo nuclei through σR(I)
measurements, and the structure of these nuclei and neighboring
31F were also investigated theoretically [60, 81–84]. The σI
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measurements for 22,23O found that the structure of 23O can be
understood within the model consisting of a 22O core and a 2s1/2
valence neutron [85]. Systematic σI(R) measurements for F [86], Ne
[87], Na [88], and Mg [33] isotopes at RIBF, which accessed more
neutron-rich ones compared to previous measurements at GSI [89,
90], have significantly contributed to revealing the area consisting
of islands of inversion around N = 20 and 28. Additionally, these
systematic data showed that 29,31Ne and 37Mg were found to have
the halo structure induced by the strong deformation [91, 92].
The mechanisms of these phenomena were further investigated by
various theoretical studies [46–48, 93–95]. The σR measurements,
especially below100MeV/nucleon, have been extensively conducted
to probe the details of density profiles near the nuclear surface [74,
96–109] because σR at lower energy than 200MeV/nucleon aremore
sensitive to the dilute density of nuclei due to the large σij values [36,
110–113] (Figure 1A).

In the heavier region, other halo nuclei and islands of
inversion have been predicted theoretically [114–116]. Regarding
experimental progress in this region, σI measurements for Cl and Ar
[37], Ca [70], and Kr isotopes [117] have been conducted mainly to
discuss the evolution of neutron (proton) skins, which are reviewed
separately below.

4.2 Studies on neutron skins

After revealing thick neutron skins in 6,8He from σI and neutron-
removal cross sections [118], the first direct observation of neutron-
skin growth along a long chain including unstable nuclei was
conducted in Na isotopes by combining σI results [119] with the
rp from the isotope-shift measurements [120]. The deduced Δrnp
of Na isotopes, as well as those of Cl and Ar isotopes [37], show a
monotonic dependence on the difference between one-neutron and
one-proton separation energies, Sn − Sp [119]. In contrast to these
isotopes, the trend of Δrnp in Kr isotopes was different, implying that
only the valence nucleons are responsible for the trend [117].

Recent σI measurements revealed a substantial growth of
neutron skin in Ca isotopes across the neutron magic number N =
28 [70], which is different from the isotopes mentioned above. It has
been known that the trend of rp (charge radii) shows a sudden slope
change against N globally at the neutron magic numbers, which is
called a “kink” [28, 29].The experimental rm values determined from
σI for 42–51Ca [70] (Figure 1C) also show a kink structure at N = 28
similar to that of rp [121]. Interestingly, the magnitude of the kink
in rm is much larger than that in rp, resulting in the emergence of
the kink also in the Δrnp evolution. Various mechanisms have been
proposed for the possible origins behind the kink structure in rp
(e.g., see Ref. [122]).

The evolution of neutron skin in Ca isotopes provides new
insight also into the bulk properties of nuclear matter. The
Hartree–Fock calculations have pointed out that the kink structure
occurs depending on the properties of the occupying valence single-
neutron states to minimize the energy loss resulting from the
saturation of the densities in the internal region of the nucleus [71,
116]. Evaluating the contribution of Δrnp caused by the surface
difference between ρn(r) and ρp(r) is also important for determining
the EOS parameter L. Decomposing Δrnp into the bulk part (Δrbulknp ),
which is sensitive to L, and the surface part (Δrsurfacenp ) within the

incompressible droplet model has clarified that the neutron-skin
kink appearswhen the trend of Δrsurfacenp changes [23, 123–126].Thus,
while the neutron skin is sensitive to the parameter L as mentioned
in the introduction, the neutron-skin kink itself plays a different role
in identifying the effect of Δrsurfacenp on determining L.

In addition to the approach with the total collision cross sections
described above and below, methods only using nucleon removal
cross sections have been proposed [127].

5 Extraction of neutron skin thickness
solely from collision cross sections

Recently, two novelmethods have been developed to derive Δrnp
solely from nuclear collision cross sections. One method utilizes
the energy and target dependence of σR (Section 5.1), and the other
combines σCC and σR (Section 5.2) [128–131].

5.1 Total reaction cross sections utilizing its
energy and isospin dependence

This method [126, 132] utilizes the isospin and energy
dependence of nucleon-nucleon total cross sections, σij(E) [58].
As shown in Equation 5, the σij(E) shown in Figure 1A is a
fundamental input for Glauber model calculations, leading to the
energy dependence of σR. The ratio of the proton-neutron (σpn) to
proton-proton (or neutron-neutron) total cross sections (σpp(nn)) is
σpn/σpp ∼ 3 at E ≤ ∼100 MeV/nucleon, and σpn/σpp decreases as the
energy increases, then reaches unity at around 600 MeV/nucleon.
At higher incident energies, although σpp becomes slightly larger
than σpn, σpn/σpp remains around unity. Therefore, proton targets
and nuclear targets such as 12C, which contain equal numbers of
protons and neutrons, are expected to have a different sensitivity to
Δrnp.

Horiuchi et al. analyzed the correlation between σR(E) and
Δrnp through the Glauber-model calculation using the density
distributions obtained from Skyrme-Hartree-Fock (SHF) theory
[126]. In this analysis, the “reaction radius” aR was introduced in
regard to σR, namely, aR(N,Z,E,T) ≡ √σR(N,Z,E,T)/π, whereN and
Z are the neutron and atomic numbers of the projectile nucleus, E
is the reaction energy, and T is the label of the target species. The
correlation between Δrnp and the difference in aR obtained from
σR at different energies, ΔaR(E,E′) = aR(N,Z,E′,T) − aR(N,Z,E,T),
shows global consistency over all isotopes of O, Ne, Mg, Si, S, Ca,
and Ni isotopes examined here. For carbon targets, ΔaR(E,E′) is
almost independent of Δrnp, whereas for proton targets, the plot of
Δrnp versus ΔaR(E,E′) shows a clear non-zero slope. Especially, the
ΔaR(E,E

′) trends including 100 MeV/nucleon data have a higher
sensitivity to Δrnp. To further investigate the effectiveness of σR(E)
on Δrnp, aR was parameterized as the empirical formula of

aR (N,Z,E,T) ≡ α (E,T) rm (N,Z) + β (E,T)Δrnp (N,Z) + γ (E,T) ,

where α(E,T), β(E,T), and γ(E,T) are energy- and target-dependent
parameters. The parameter β(E,T), representing the effect of Δrnp,
shows prominent energy and target (isospin) dependence: β(E,T)
is independent of energy for carbon targets, whereas strongly
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FIGURE 2
(A)Energy dependence of σCC for 28Si on a carbon target [135]. The dashed and dotted lines represent the ZROLA calculations of ̃σCC (Equation 8) and
σR, respectively. The solid line shows the ZROLA calculation of σCC with the empirical correction factor ε(E). (B) A dependence of σCC for Ca isotopes on
a carbon target at around 280 MeV/nucleon (bottom figure), and the corresponding Pevap values (top figure). The black solid and green dashed lines
represent ̃σCC calculations using Equation 8 with and without the empirical correction factor ε(E), respectively. The thin-dashed lines, red-solid lines
with shaded bands, and dotted lines show σCC calculations from Equation 9 with different Emax values of 20, 45±8, and 70 MeV, respectively. Figures in
(A, B) were reprinted from Ref. [135] and Ref. [144], respectively.

dependent for proton targets. Therefore, it is possible to extract
Δrnp by measuring σR at multiple energies and/or targets having
different β(E,T). Furthermore, to enhance sensitivity to Δrnp, it is
desirable to use a combination of proton and neutron targets that
are completely isospin asymmetric pair. The use of deuteron targets
has been proposed as an alternative to a neutron target [133].

The sensitivity of σR(E) for separating density distributions of
proton and neutron, ρp(r) and ρn(r), using these properties was
demonstrated experimentally in halo nuclei. The experimental σR
values for 11Be and 8B on proton targets at 50–120 MeV/nucleon
were consistent only with calculations assuming neutron and proton
tails, respectively [134]. The ρp(r) and ρn(r) of

11Li were determined
solely from the energy dependence of the experimental σR values on
proton and carbon targets [103].

5.2 Charge-changing cross sections

The σCC measurements aiming to derive rp have been conducted
for isotopes up to Fe, particularly since 2010 [39, 40, 65, 135–147].
By analogy with the relationship between σR and rm, σCC is expected
to be sensitive to rp. The relationship between σCC and rp is usually
treated in the following Glauber-model-like formalism [65, 135,
136]:

̃σCC = ∫[1− |e
iχp(b)|2]db, (8)

where χp(b) is obtained from Equation 6 by omitting ρn(r) of the
projectile nucleus, that is, only i = p is adopted for Equation 6

[148]. In the case of σCC, the situation appears to be less
straightforward than that of σR(I) due to the potential influence of
neutrons in the incident nucleus. Here, for the sake of subsequent
expressions, the calculated value from this equation is denoted
as ̃σCC. There are several treatments to depict σCC based on
Equation 8. First, Yamaguchi et al. introduced an energy-dependent
phenomenological correction factor ε(E) into Equation 8 with the
zero-range optical-limit approximation (ZROLA) to reproduce σCC
data for 28Si on 12C at energies of 100–600 MeV/nucleon [135], as
shown in Figure 2A. It has been shown that this calculation with
ε(E) explains the experimental values for Be to O isotopes on 12C
at 300 MeV/nucleon with 3% standard deviation [136]. Second, the
experimental σCC of stable B, C, N, and O isotopes on 12C at around
900 MeV/nucleon were well reproduced by the finite-range optical-
limit approximation (FROLA) calculations without ε(E) [39–41,
141]. For 10,11B, the ratio of the experimental values to the calculated
ones is 1.01(2) [141]. Third, Tran et al. determined profile-function
parameters with the FROLA calculation common to reproduce
both σR(E) and σCC(E) for 12C on 12C over the range of 10–2,100
MeV/nucleon [65]. However, this calculation still underestimates
at around 300 MeV/nucleon. Thus, although the consistency over
respective treatments is not necessarily guaranteed, the reliability is
ensured by locally normalizing with well-known σCC data.

Contrary to the description by Equation 8, it has been suggested
that considering the contribution of ρn(r) of the projectile nucleus
is crucial to describe σCC [148–151]. Tanaka et al. demonstrated
that the trend of the experimental σCC data can be explained by
explicitly incorporating the contribution of ρn(r) of the projectile
nucleus [144] based on the abrasion-ablation model [152, 153]. In
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this framework, the contribution of the cross section σevap, which
accounts for the charge-changing process of the projectile nucleus
caused by the evaporation of charged particles following neutron
removal reactions, was introduced in addition to the ZROLA
calculation of Equation 8:

σCC = ̃σCC + σevap. (9)

The σevap is calculated using the contribution probability of the
neutron-removal reaction to σCC, Pevap. The Pevap depends on
the applied value of the parameter Emax, which represents the
maximum excitation energy of the prefragment produced after a
one-nucleon removal reaction (Figure 2B). Using Emax = 45 MeV,
this calculation consistently explains existing σCC data on 12C at
around 300 MeV/nucleon over a wide mass region from C to Fe
isotopes, with 1.6% standard deviation [144]. Figure 2B represents
measured σCC results for Ca isotopes on 12C together with several
caluculated cross sections explained in this subsection (see caption).
This framework also reproduces new experimental results for C,
N, and O isotopes on 12C at 300 MeV/nucleon [146] as well
as one of two datasets of σCC for N isotopes on 12C at around
900 MeV/nucleon [40]. The framework of Equation 9; Figure 2B
indicates that the majority of σCC provides information on ρp(r) of
the projectile nucleus and the contribution of σevap decreases asN of
the projectile nucleus increases. Thus, in very neutron-rich region,
the assumption of Equation 8 works well.The sensitivity of σCC to rp
becomes much larger.

A proton target has been adopted in σCC measurements, as in
the cases of 30Ne, 32,33Na [139], and 34–36Ar [142]. Suzuki et al.
emphasized the necessity of considering the contribution of ρn(r) of
the projectile nucleus peculiarly in σCC on a proton target [154].The
FROLA calculation of Equation 8 underestimates the experimental
σCC values by 10%–20% for C isotopes on a proton target at
around 900 MeV/nucleon. They found that this discrepancy can be
explained by introducing the “p-n exchange” effect, in which a part
of the proton flux of the target is converted to the neutron flux by
neutrons of the projectile, contributing to σCC.

To derive the EOS parameter L, the difference in the charge
radii of mirror nuclei, Δrmirr

p , has been used [155–160]. Similarly, the
relationship between L and the difference in σCC of mirror nuclei,
Δσmirr

CC , was demonstrated to show a good linear correlation [161].
Thedegree of this linear correlation is equivalent to the ones between
L and Δrnp or Δr

mirr
p .

6 Summary

This paper has reviewed recent advancements in the total
reaction (σR), interaction (σI), and charge-changing cross
sections (σCC), with a special emphasis on the neutron skin
and corresponding nuclear radii. The framework describing the
relationship between these cross sections and the size properties of
atomic nuclei has been well investigated, providing the advantage to
probe nuclear sizes of neutron-rich unstable nuclei, where a thick
neutron skin is expected. The review has also highlighted two novel
methods for extracting Δrnp from the total collision cross sections:
one utilizing the energy and isospin dependence of σR, and the other
combining σCC with σR. These advancements lead to more accurate
constraining the slope parameter (L) in the symmetry energy term
of the EoS of nuclear matter through Δrnp of unstable nuclei in very
neutron-rich region.
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