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Spin-glass thin films exhibit many features different from the bulk. The freezing
temperatures of spin-glass films are suppressed for reduced thickness and follow
the Kenning relation. The dynamics are altered near the vacuum interface. These
phenomena are closely related to the lower critical dimension of spin glasses, the
spin-glass correlation length, and the dimensional crossover from d = 3 to d = 2. In
this article, we review the experimental facts and theoretical perspectives for spin-
glass thin films. We focus on canonical spin-glass systems with the
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction between magnetic
impurities in a nonmagnetic host. Open questions to be addressed are emphasized.
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1 Introduction

Spin glasses [1] with random spin orientations yet strong correlations have motivated
theoretical developments [2] to understand their emergent complexities and continue to
spur new findings in complex systems [3]. After more than half a century of intensive efforts
to uncover the physics of spin-glass dynamics, controversies remain. A consensus regarding
the density of ground states and the stability of the spin-glass phase [4, 5] in an external field
is still lacking.

Finite-size effects of spin glasses, first reported by the pioneering work of Kenning,
Slaughter, and Cowen [6], offer a new route to uncover some of their mysteries. A surge of
research interest in spin-glass thin films focuses on the dimensional crossover from d � 3 to
d � 2 [7–14]. In this work, we review the experimental discoveries and theoretical
developments for metallic canonical spin-glass thin films. The freezing temperature, Tf ,
one of the most studied quantities of thin films, is first introduced. The correlation length
offers a unique lens through which to understand dimensional crossover. Simulations to
extract the growth laws governing correlation lengths are introduced. We also examine the
impact of the interface on the spin-freezing process. We conclude the paper with open
questions and remarks.

2 The freezing temperature and dimensional
crossover: experiments

The freezing temperature Tf [6, 7] of spin glasses is different from the critical
temperature Tc. Approaching Tc from above in a bulk sample, a continuous symmetry
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breaking in the phase space commences and signifies a phase
transition. In thin film magnetometry measurements, Tf is
defined as the temperature below which the zero-field-cooled
(ZFC) magnetization, MZFC(T, t), differs from the reference field-
cooled magnetizationMFC(T, t) (in some literature, Tf is defined as
the peak of MZFC(T, t); the difference between the two is small in a
small enough magnetic field).

The time dependence ofMZFC(T, t) naturally leads to the time
dependence of Tf(t). When cooled from the paramagnetic phase to
the working temperature T, MZFC(T, t) exhibits a sudden jump
after the field is switched on, and gradually increases toward
MFC(T, t). Tf(t) is, therefore, the highest temperature below
which nonequilibrium dynamics set in for a fixed observation
time t. In a domain growth model, the length scale sets the
relaxation time. Consequently, the equality of relaxation time
and observation time gives rise to the observed freezing
temperature.

The technical difficulty of extracting Tf is the very weak
magnetic signal of a thin film with dilute magnetic spins
dispersed in a nonmagnetic host. To circumvent this issue,
Kenning et al. [6] have used multilayers of CuMn thin films,
separated by layers of either pure Cu or Si, to decouple the direct
contact between the CuMn thin films. They found that Tf

decreases monotonically as the CuMn film thickness is reduced.
The data were originally fitted to the finite-size scaling form of
Equation 1

Tc − Tf L( ) ~ L−1/]3 , (1)
as proposed in the real-space droplet (domain) model, where L is the
film thickness. The droplet model assumes the existence of two
ground states of the spin-glass phase, related by time-reversal
symmetry. The finite-temperature properties are governed by
low-lying excitations of droplets of typical size ℓ. In response to
Kenning’s results, a new scaling ansatz for the free energy of the
droplet in d � 2 was proposed, Equation 2,

Fℓ ~ γℓθ2 . (2)

Because θ2 < 0, the spin-glass phase is unstable in d � 2, and
long-range order is destroyed. Fisher and Huse [15] predicted that in
the critical region,

Tc − Tf L, t( )
Tc

~ L−1/]3 ln t/Lz3( )[ ] ψ3+]2ψ2θ3( )]3[ ]−1 . (3)

Equation 3 is difficult to test experimentally, as an accurate
estimation of Tc is difficult. In addition, the error bars of the
many exponents in Equation 3 contribute to the uncertainty
of Tc.

An alternative interpretation of the freezing temperature was
given in [12]:

Tf L, t( )
Tg

ln t( )∝ ln L/a0( ), (4)

where a0 is the average spacing between the magnetic impurities, t is
the experimental time scale, and Tg is the freezing temperature for
the bulk sample. Equation 4 is referred to as the Kenning relation.

Figure 1 exhibits data for Tf /Tg plotted against film thickness
from [12,16], and [17]. It is assumed that the equilibrium

correlation length perpendicular to the film plane, ξ⊥, has
saturated at the film thickness L at the time t, indicative of a
dimensional crossover.

Because the lower critical dimension dl of spin glass is between
2 and 3 (exactly 2.5 for Edwards–Anderson spin glass [18]), the
critical temperature is zero after a dimensional crossover from d � 3
to d � 2. The energy barrier height that governs the relaxation time
was found to only depend on L in a temperature range of 1 K at
T ≈ 0.9Tf up to film thickness of 20 nm [12]. Equation 4 indicates
that Tf shifts to lower T with slower cooling rates, or longer t, which
is qualitatively consistent with experimental observations
(e.g., Figure 1).

Additional support for the dimensional crossover of spin-glass
thin films was obtained through polarized neutron reflectometry
(PNR) [19, 20]. An asymmetry parameter A, defined as

A � R+ − R−( )/ R+ + R−( ), (5)
was measured for AuFe thin films, where R+ and R− are the
reflectivities for the spin-up neutrons and spin-down neutrons,
respectively. By fitting Equation 5 with a Parratt recursion
formalism, the average magnetic moment for Fe atoms was
obtained, as reproduced in Figure 2. In the high-temperature
regime, μFe can be described by the Brillouin function, B(J, x),
where J is the angular momentum, and x � μB/kBT with μ being the
magnetic moment of impurities.

Below 50 K, μFe deviates from B(J, x), in a range of 0.5–1.3 μB
for L≥ 5 nm. Exceptions are for L � 2 nm and L � 1 nm, which
follow a paramagnetic line down to 2 K. In particular, for the 1 nm
film, the measured magnetic moment 4.2 μB is very close to the value
for non-interacting Fe atoms.

These measurements were performed in a very high magnetic
field of 6 T. In large fields, the measured moment should correspond
to a quasi-equilibrium spin-glass phase. Therefore, at large
observation times and for ultra-thin film, Equation 4 implies a
Tf ≈ 0, consistent with the measurements. In addition, the freezing
of the magnetic moment for the thicker films implies the existence of
a spin-glass phase up to 6 T.

According to calculations based on an Ising model, an A-T
line [21] exists for the H − T phase diagram of spin glasses, while
the droplet picture predicts that the spin-glass phase vanishes in a
magnetic field. However, equilibrium states are difficult to access
in laboratory experiments, leaving a lack of consensus on the
nature of the spin-glass phase in the presence of a magnetic
field [21, 22].

3 Correlation length growth and
dimensional crossover: simulations

It has been shown through Monte Carlo (MC) simulations
and finite-size scaling [23–27] that the correlation length ξ

diverges at a finite temperature for a 3D-Ising
Edwards–Anderson (EA) model with either Gaussian or
bimodal interactions. Similar conclusions were reached for the
3D-Heisenberg spin glass [28, 29] with the aid of a much larger
sample size. The 2D-Ising (Heisenberg) spin glass only exhibits a
phase transition at T � 0, as shown by free energy calculations
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[30] and MC simulations [31]. These findings imply that there
must be a crossover of the spin-glass dynamics when the size of
the system is reduced gradually by one dimension. Simulations
are usually limited by sample size and time scales, but compared
to experiments, they enjoy enhanced spatial resolutions and gain
immediate access to spin configurations. They thus provide a

unique route to understand dimensional crossover. In particular,
they have been able to directly extract ξ.

Of particular interest is the aging dynamics of ξ when the
spin-glass phase evolves from nonequilibrium towards
equilibrium. In practice, simulations suddenly quench the
sample from the paramagnetic state (infinite temperature) to a
temperature comparable to experiments. Rieger et al. [32, 33]
performed MC simulations on an Ising EA model with Gaussian
interactions. In order to understand the aging phenomena
observed in experiments, the autocorrelation function is
introduced, defined by

C t, tw( ) � 1
N

〈∑
i

Si t + tw( )Si tw( )〉, (6)

where tw is the duration in which the sample remains at T after
quench, and the averages are taken over thermal fluctuation and
quenched disorder. For tw ≫ τeq, C(t, tw) is stationary and only
depends on t in Equation 6. For tw ≪ τeq and t> tw, a power law of
Equation 7 is found,

C t, tw( )∝ t−ζ T( ). (7)
C(t, tw) for different tw obeys the simple scaling form,

�c t/τ tw( )( ), (8)
where τ(tw) � tw if tw ≪ τeq. This is not consistent with
activated dynamics,

ξ tw( )∝ logtw( )1/ψ , (9)

FIGURE 1
Tf collapses using Equation 4 for L/a0 ≤ 100. (A) Measurements of Tf for CuMn/Cu multilayer samples. The circle symbols represent data from [16],
squares represent data taken from [12], and triangles indicate data taken from [17]. (B) Tf of CuMn multilayer films with a 7-nm Si interlayer.

FIGURE 2
Averaged magnetic moment per Fe atom for AuFe films of
different thickness L. A paramagnetic behavior is exhibited when L is
reduced below 2 nm. Figure created based on the data of [19, 20].
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which leads to a logarithmic scaling. The spatial correlation is
calculated through Equation 10,

G r, tw( ) � 1
tw

∑2tw
t�tw+1

〈S0 t( )Sr t( )〉2, (10)

and the correlation length at tw is given by Equation 11,

ξ tw( ) � 2∫∞

0
drG r, tw( ). (11)

The growth of ξ can be fitted with the activated dynamics of
Equation 9 or a power-law dynamics,

ξ tw( )∝ tα T( )
w . (12)

However, Equation 12 naturally leads to the scaling form of
Equation 8 when assuming C(t, tw)∝ [ξ(tw)/ξ(t)]λ, where
λ � ζ(T)/α(T). The power-law growth of ξ was later verified by
Joh et al. [34].

A twelve-time-decade MC simulation of the Ising EAmodel was
carried out by Fernandez et al. [13]. They clarified growth dynamics
for ξ and reinforced the evidence for the scaling function of Equation
8. They found that, Equation 13,

ξ tw( )
ξeq

� G tw/τ T( )( ) +O ξ tw( )( )−ω, ξeq( )−ω[ ], (13)

where ω is the corrections-to-scaling exponent,
τ(T)∝ exp(B/T1+ϵ), and ϵ is a small number. This verified that
the energy barrier height inferred from aging dynamics is
physical [12].

The first MC simulation for dimensional crossover in a thin film
geometry, comparable to experiments, was carried out by Victor
Martin-Mayor and his coworkers [14]. The protocol used in this
simulation closely resembled that of experiments: The sample was
quenched to a working temperature, and the complete growth
process (from nonequilibrium to equilibrium) of the correlation
length was monitored. The correlation length is related to the
autocorrelation function of Equation 14,

C4 T, r, t( ) � 〈q a,b( ) x, t( )q a,b( ) x + r, t( )〉T, (14)
where q(a,b)(x, t) is the overlap between spin configuration σ(a)(x, t)
and σ(b)(x, t) in replicas (a) and (b).

The estimator for the correlation length is given by Equation 15

ξ‖ T, t( ) � ∫∞
0
drr2C4 T, r, t( )/∫∞

0
drrC4 T, r, t( ),

ξ⊥ T, t( ) � ∫∞
0
drr2C⊥

4 T, r, t( )/∫∞

0
drrC⊥

4 T, r, t( ).
(15)

Again, they found a power-law growth of the correlation length
ξ∝ t1/z.

Four time regimes were identified, with different z for
ξ‖(T, t). In the first, ξ‖(T, t) grows with the aging rate zd�3.
Upon saturation of ξ⊥ close to the film thickness h, the
growth of ξ‖ gradually speeds up in the second time regime.
The aging rate of ξ‖ in the third regime finally matches zd�2,
smaller than zd�3 (faster dynamics). Finally, in the fourth regime,
ξ‖ reaches to its equilibrium value ξeq‖ .

Further analysis leads to a scaling function,

ξ‖ t, T, L( )
ξd�3 t( ) � F ξd�3 t, T( )/L[ ], (16)

where ξd�3(t) is the correlation length of a 3D sample. The
invariance of Equation 16 allows a Kananoff–Wilson block spin
transformation of the simulation results. These, in turn, lead to the
mapping of the temperature of the film T to an effective temperature
in d � 2 (a true monolayer film),

ξeq‖ T, L( ) � L ξeqd�2 Teff
d�2( ). (17)

The mapping given by Equation 17 is remarkable in that an
effective temperature can allow for treating the 3D spin-glass
problem exactly in 2D. For example, for T ≈ 0.9Tc, Teff

d�2 ≈ 1.04T.
As the correction is negligible, the analyses of CuMn thin films in
[12–14] are adequate.

4 Interfacial effects on spin freezing

Much of our understanding of dimensional crossover in thin
films arises from multilayers of spin-glass films separated by non-
magnetic metallic or insulating layers. It is natural to ask whether the
interface between the spin-glass layers and the decoupling layers
leads to artificial or unwanted effects. For example, as illustrated in
Figure 1, the Tf of the same CuMn film decoupled by Si is lower than
films decoupled by Cu [16]. The RKKY interaction, responsible for
spin-glass behavior in metallic spin glasses, is mediated by the
conduction electrons. This long-range interaction is sharply cut
off at the CuMn/Si boundary but falls off slowly at the CuMn/Cu
boundary [35], perhaps accounting for the difference. A quantitative
analysis is lacking.

The first systematic study to address the effects of the decoupling
layers was conducted by Granberg et al. [9]. They varied the
thickness of Cu layers, Li, to explore the freezing process of
CuMn/Cu multilayers. We identify the Tf from Figure 1 of [9] in
order to display the time dependence of Tf in Figure 3. The
reduction of Tf follows a logarithmic time dependence given by
Equation 4. The rates of reduction, dTf /d log(t) for different Li are
displayed in Figure 4. The rate decreases with decreasing thickness of
the decoupling layer until it reaches its d � 3 value.

An explanation for the behaviors exhibited in Figures 3, 4 was
given in [12]. For a given observation time, the inequality of
Equation 18,

c1a0
t

τ0
( )c2T/Tg

≤ ξeq T( ), (18)

holds for T≤Tf in d � 3, where ξeq(T) is the equilibrium correlation
length obtained in the FC state. The growth of the correlation length
for the ZFC protocol obeys the growth law on the left of Equation 18.
For spin-glass films fully decoupled from one another, ξ⊥(t) is
bounded by L regardless of T. ξ‖(t) grows faster than ξ⊥(t) [14].
Then, any films with L≤ ξeqd�3(T) should be much more sensitive to
the variation of the observation time scale. Between the d � 3 and
the fully decoupled layer limit, crosstalk occurs among the
neighboring layers, leading to an intermediate sensitivity to the
variation of observation time t.
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A direct probe of the surface dynamics has been carried out by
depth-dependent muon-spin-relaxation (μSR) studies [36]. The μSR
is a powerful technique to probe local spin orientations [37–39]. In
the experimental setup, the polarized μ+ beam is stopped by the
sample, and the decay positron emitted from μ+ is counted. The
backward (EB) and forward (EF) counting rates are given by
Equation 19,

NEF t( ) � NF exp −t/τu( ) 1 + Gz t( )[ ],
NEB t( ) � NF exp −t/τu( ) 1 − Gz t( )[ ], (19)

where τμ is the lifetime of μ+, and Gz(t) is the muon-spin-relaxation
function. Gz(t) � 1 for completely polarized spins, and Gz(t) � 0
for completely depolarized spins. The depolarization process can be
inferred from the asymmetric time evolution ofNEF(t) andNEB(t).

The muons are assumed to take random interstitial sites in the
sample and do not diffuse in the lattice. For a CuMn (1 at%) sample,
the atomic dipolar field (~100 G) from the Mn impurity dominates
compared to the average RKKY field (~10 G) and the Cu nuclear
dipolar field (~4 G). For an ordered translational invariant magnetic
phase (e.g., a ferromagnet), the muon spin will precess with a single
frequency in the local dipolar field. In the case of spin glasses, the
randomness of the local dipolar field leads to a rapid depolarization
of the polarized muons.

Taking into account the static random local fields and their
fluctuation, a stochastic theory of muon-spin-relaxation for Gz(t)
was formulated by Uemura et al. [39]:

Gz t( ) � 1
3
exp − 4a2dt/]( )1/2[ ]

+ 2
3

1 − a2s t
2

4a2dt/] + a2s t
2( )1/2⎡⎣ ⎤⎦exp − 4a2dt/] + a2s t

2( )1/2[ ],
(20)

where as � ���
qEA

√
a and ad � ������

1 − qEA
√

a with a are the average
amplitude of random fields. It was assumed that, Equation 21,

FIGURE 3
The freezing temperature decreases logarithmically with observation time t for CuMn/Cu multilayer thin films with interlayer thickness of (A) Li � 1
nm, (B) Li � 7 nm, (C) Li � 15 nm, and (D) Li � 120 nm.

FIGURE 4
Changing rate of freezing temperature Tf versus the interlayer
thickness Li.
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〈S t( )S 0( )〉 � 1 − qEA( )exp −]t( ) + qEA, (21)
where the brackets represent thermal averages, and the bar indicates
spatial averages. Each spin S has a preferred static component

���
qEA

√
S

belowTg, and a dynamic component (1 − ���
qEA

√ )Swith a fluctuating
rate ].

Therefore, the order parameter qEA [40] can be obtained by
fitting Equation 20 to the experimental data. Figure 5 reproduced the
extracted values of qEA at different depth z of a 220-nm-thick AuFe
film by [36]. At the low-temperature regime, qEA attains a finite
value, signifying the onset of spin freezing. The dynamical
fluctuations of spins are significantly reduced with increasing
distance from the surface. This suggests an inhomogeneous
freezing gradient along the direction of the film thickness
because of the vacuum interface. It is likely that the RKKY
interaction between magnetic impurities is modified by the
vacuum interface. However, again, a treatment to quantify this
effect is lacking.

Recent 1/f noise measurements [41, 42], covering a much
larger temperature window (inaccessible in magnetometry
measurements) for a larger collection of film thicknesses,
suggest that the maximum barrier height is temperature
dependent for thicker films. Although this appears to conflict
with the magnetometry measurements [12] at first glance, the 1/f
noise is sensitive to the length scales associated with the
electronic mean free path, which are much shorter than the
range of the RKKY interaction. This may be the reason behind
the discrepancy between the two experimental processes.

5 Conclusion

We have examined the evidence for dimensional crossover from
d � 3 to d � 2 of spin-glass thin films. The results from the

magnetometry and the PNR measurements are consistent with
the Kenning relation, Equation 4. The correlation length serves
as a caliber to quantify Tf . The log(t) dependence of Tf originates
from the power-law growth of the correlation length, as detailed in
large-scale simulations.

Although much has been understood concerning the dynamics
of thin film spin-glasses, in our opinion, a few questions remain to
be addressed:

(1) In the low-temperature regime of the spin-glass phase, the
dynamics become too slow to be probed by magnetometry
and simulations. The validity of the Kenning relation remains
to be tested with novel experimental protocols or
data analyses.

(2) Both the vacuum and Si interfaces alter the spin-freezing
process. It remains unknown how the interface affects the
spin correlations. A theoretical treatment of the interfacial
effects would not only contribute to a deeper understanding
of spin-glass physics but also would benefit devices utilizing
junctions between spin-glasses and other magnetic ordering
materials [43, 44].
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