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Satellite navigation interference monitoring is an important means to effectively
evaluate interference and ensure the normal operation of global navigation
satellite system (GNSS). Once interference is detected, this monitoring can
identify the type of it, perform direction-finding and localization, evaluate its
impact on GNSS, and guide the implementation of effective countermeasures.
With the continuous progress of interference technology, the power required
to cause the same jamming effect to the navigation system is getting smaller
and smaller. Traditional radio monitoring system has been unable to meet the
needs of the current satellite navigation monitoring in terms of sensitivity and
accuracy. It is of great significance to develop and improve the dedicated satellite
navigation monitoring system. This paper introduces the basic concept of
satellite navigation interference monitoring and the composition of the system,
analyzes the key technologies and finally gives an outlook on the development
trends in this field.
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1 Introduction

The Global Navigation Satellite System (GNSS) is a generic term for satellite navigation
systems that provide all-weather, continuous, global coverage for positioning, navigation,
and timing services. Currently, the world has seen the formation of four major global
satellite navigation systems: the United States’ Global Positioning System (GPS) [1–3],
the European Union’s Galileo Satellite Navigation System (Galileo) [1–3], Russia’s Global
Navigation Satellite System (GLONASS) [1, 3], and China’s BeiDou Navigation Satellite
System (BDS) [3, 4]. In addition, India and Japan have respectively constructed the Indian
Regional Navigation Satellite System (IRNSS) [1, 3, 5] and the Quasi-Zenith Satellite System
(QZSS) [1, 3, 6].

Satellite navigation systems have become fundamental spatiotemporal reference
infrastructures. The development of navigation technology profoundly impacts
various sectors of society including economy, surveying, power, transportation, and
military affairs. An increasing number of infrastructures have developed a strong
reliance on satellite navigation systems. Should these systems suffer a breakdown,
it could lead to severe consequences, thereby making the enhancement of GNSS
system stability increasingly critical.
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TABLE 1 Some malicious interference incidents [10].

Time Location Interference incidents

1990 Persian Gulf In the Gulf War, the US, Iraq and other adversaries
electronic countermeasure

1999 Yugoslavia In the Kosovo War, the two sides send out
jamming signals to reduce navigation accuracy or
to mislead the enemy

2011 Iran Iranian forces have beamed a decoy signal to
capture a US RQ-170 Sentinel drone

2017 The Black Sea The GPS systems of ships operating in the Black
Sea were attacked with spoofing and jamming, and
the ship was located at an airport several miles
away

2020 Point Reyes GPS crop circles in Point Reyes are deliberately
GPS spoofed

However, the GNSS system is inherently vulnerable [7] and is
highly susceptible to various types of interference [8]. Interference
can be broadly categorized into natural and anthropogenic
types. Anthropogenic interference can be further subdivided
into unintentional and intentional categories. Given the finite
nature of the electromagnetic spectrum, GNSS systems are
particularly susceptible to out-of-band interference from harmonics
and inter-modulation products, as well as in-band interference
from co-channel operations [9]. A notable example occurred
at a U.S. port where GPS receivers were disrupted for several
hours each evening following the workday, eventually traced
back to unintentional interference from active TV antennas
atop nearby residents’ homes after months of investigation
[3].Satellite navigation signals, originating from satellites orbiting
approximately 20,000 km above the Earth’s surface, arrive
at ground level with powers as low as −130 dBm which is
over a billion times weaker than typical broadcast television
signals. Civilian signal formats used in navigation systems
are publicly known, with information modulated onto fixed
frequencies, rendering GNSS highly vulnerable to intentional
malicious interference. Table 1 gives a brief description of some
of the interference events that have occurred globally over the
past period.

From the past to the present, interference and anti-
interference in satellite navigation systems have been focal
points of electronic warfare worldwide, particularly evident
in military confrontations. Therefore, the necessity of anti-
interference and interference monitoring is self-evident. This
review primarily addresses malicious jamming interference. As
long as the emitted interference targets the GNSS frequency
bands or covers the entire system frequency spectrum with
sufficient power, it can achieve significant disruptive effects,
posing the greatest threat to user-end navigation receivers.
The principle of interference is that as the interference power
increases, the equivalent carrier-to-noise ratio (C/N0) at the
receiver output degrades, leading to prolonged acquisition times
or even loss of lock during signal capture, and reduced pseudo-
range accuracy during tracking [11]. This results in a decline

in the reliability of the GNSS system, manifesting as significant
positioning errors.

Anti-interference refers to the adoption of various technologies
and measures [12–17] to reduce or eliminate the impact of
interference on system performance. Interference monitoring,
on the other hand, involves the detection, identification, and
analysis of interference signals in the electromagnetic environment.
Specifically, it encompasses the localization of interference sources,
the identification of interference signal types and characteristics, and
the assessment of their impact. Anti-interference and interference
monitoring are complementary; interference monitoring provides
detailed information about the interference [18], which is the
foundation for implementing anti-interference techniques. Only
through effective interference monitoring can the sources and
characteristics of interference be accurately identified, enabling
targeted anti-interference measures to be taken. For instance, if
the interference is identified as frequency sweeping or continuous
wave interference, Infinite Impulse Response (IIR) adaptive
notch filters can be directly employed to suppress it [19]. When
interference is detected in the transform domain, adaptive
filters can be directly designed in that domain to suppress the
interference, after which the signal can be transformed back to
the time domain to accurately recover the original GNSS signal
[20–23].

In response to the challenges currently faced in interference
monitoring, this paper reviews the development process of GNSS
interference monitoring, focusing on the recent advancements
in key monitoring technologies. It summarizes and analyzes
the existing issues and identifies future research directions in
this field.

2 Interference monitoring system

2.1 General situation

The development of GPS by the United States in the 1970s was
primarily for military purposes, with early satellite interference
monitoring relying on military electronic equipment to ensure the
precision of weapon strikes.TheGulfWar and theKosovoWar in the
1990s highlighted the importance of satellite navigation interference
monitoring in electronic warfare environments, prompting
researchers to design specialized equipment for this purpose. As
GPS expanded into civilian use and became more globalized, fixed
ground-based satellite navigation interference monitoring systems
began to emerge. The development of digital signal processing
(DSP) technology and software-defined radio (SDR) enabled these
systems to identify various types of interference in complex signal
environments. In the 21st century, as satellite navigation systems
diversified into a quadripartite structure, there arose a need for
compatibility in interference monitoring systems. Monitoring
platforms have evolved from fixed ground-based systems towards
mobile air- and space-based systems, with nations working to
establish comprehensive, three-dimensional maritime, land, air, and
space interference monitoring systems. Table 2 provides an analysis
and comparison of the three types of interference monitoring
platforms.

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2024.1487384
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


He et al. 10.3389/fphy.2024.1487384

TABLE 2 Comparison of interference monitoring platforms.

Type of platform Function Characterization Typical monitoring system

Ground-based Establishing fixed or mobile radio
monitoring stations on the ground to
achieve surveillance of various signals
in the electromagnetic spectrum

Low cost, strong opera ability, easy
maintenance, high data quality, and
flexible equipment configuration
Limited coverage range, susceptible to
obstructions, poor mobility, and strong
dependence on ground infrastructure

The U.S. National RF monitoring
Network and the European Space
Agency’s ground-based GNSS receiver
network

Air-based Radio monitoring systems installed on
aircraft such as airplanes, drones, and
airships

Strong mobility, wide coverage range,
high efficiency, strong adaptability, and
high positioning accuracy
High cost, poor continuous surveillance
capability, low survive ability, complex
deployment and retrieval, and strict
limitations on the weight and size of
monitoring equipment

The U.S. EP-3E ARIES II electronic
reconnaissance aircraft, the Russian
Tu-214R reconnaissance aircraft, and
the Russian Luch/Blits series of satellites

Space-based Relying on artificial Earth satellites to
conduct global electromagnetic
spectrum monitoring activities from
orbit

Global coverage, high real-time
performance, sustainable and stable
operation, and high strategic value
High cost, complex technology, limited
resources, and weak survive ability

The U.S. Space-Based Space
Surveillance (SBSS) system, the Russian
Luch/Blits series of satellites, and the
U.S. HawkEye 360

FIGURE 1
Interference monitoring system.

2.2 The development status

2.2.1 General interference monitoring System
Before the advent of satellite navigation systems, many

non-navigation systems experienced disruptions due to radio
interference that prevented them from operating normally. This
was particularly evident in civil aviation systems, where radio
interference posed a significant threat to air traffic systems, causing
flight delays and even endangering personal safety. To effectively
address incidents of electromagnetic interference, the U.S. Federal
Aviation Administration (FAA) began constructing a nationwide
radio interference monitoring system at the end of the 20th century.
This system consists of multiple airborne, mobile, portable, and
fixed interference monitoring systems, ensuring the takeoff and
landing of flights at key airports and minimizing the impact of
radio interference [24]. The primary hardware for this system is
manufactured by Cubic Corporation in the United States and has
been adopted by many countries, playing a significant role in civil
aviation radio interference monitoring. The main modules included
in the FAA’s interference monitoring system are shown in Figure 1.

After years of development, in addition to the United States
and other countries have also been mature radio monitoring

technology. For instance, most provinces can now achieve
comprehensive monitoring of critical areas such as airports within
their jurisdictions. A large number of fixed monitoring stations,
mobile monitoring stations, and portable interference detection
devices have been established, forming a relatively complete radio
interference monitoring network [25]. Figure 2 [26] shows some of
the interference monitoring equipment in our country.

2.2.2 Dedicated GNSS interference monitoring
system

General-purpose radio interference monitoring networks
monitor the electromagnetic environment across the entire
frequency spectrum. In contrast, the frequency bands used by
GNSS systems are fixed, and the navigation signals reaching the
ground are extremely weak, often buried below the noise floor.
With the evolution of interference technology, the variety of
interference methods has increased, and different interference
techniques can produce varying effects [27]. Consequently, the
power required to achieve the same level of interference on
GNSS systems is decreasing. Traditional general-purpose radio
interferencemonitoring networks are no longer sufficient in terms of
sensitivity, accuracy, and speed tomeet themonitoring requirements
of GNSS systems. Recognizing the challenges faced by GNSS
interference monitoring, countries led by the United States began
constructing dedicated monitoring networks from the last century.

In 1994, the U.S. National Geodetic Survey began establishing
a national network of continuously operating reference stations
(CORS) for GPS, which later expanded globally. These CORS
receive GPS signals and provide high-precision positioning data for
applications such as geodesy and meteorological observations.any
GPS CORS are equipped with anti-interference devices and
can also assess the quality of received GPS signals. They utilize
various techniques, including radio monitoring and noise level
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FIGURE 2
Interference monitoring equipment. (A) Radio monitoring vehicle. (B) Radio monitoring direction finding system. (C) Radio monitoring direction finding
receiver. (D) Radio monitoring direction finding system.

measurements, to monitor and locate interference near the
base stations.

In 1997, the U.S. Congress directed a project involving Spawar
and Falon companies, which developed and demonstrated a
prototype system called “LOCO GPSI.” The demonstration results
showed that the system was effective and practical, with the
ability to locate interference sources. The entire system utilized a
short baseline interferometry approach, determining the source of
interference through triangulation methods [28].

The JLOC system (Joint Landaster Oriented Coordinate System)
is a system commissioned by the Joint Space Operations Center
under the U.S. Department of Defense and developed by NAVSYS
Corporation. The system was established in 2002 and primarily
provides precise geographical location information and time
standards. It can monitor abnormal changes in satellite navigation
signals and quickly locate the position of interference sources,
conducting comprehensive performance testing and evaluation of
satellite navigation systems to ensure their normal operation.

In 2009, CHRONO Technologies in the UK developed a
handheld interference monitoring device capable of monitoring
GPS signals and interference signals in the L1 frequency band
[29]. In addition, the U.S. FAA established a GPS interference
source monitoring and localization experimental system, which
includes a large number of interference sources and localization
systems, employing almost all interference source localization
technologies [30].

Currently, the American company HawkEye 360 is building
the world’s first commercial radio frequency (RF) signal mapping
system based on a low-orbit satellite constellation, with plans
to launch a total of 60 small satellites into low-earth orbit by
2025. Its products include RFGeo, RFIQ, and SEAker. RFGeo
is used to detect and locate RF signals on the Earth’s surface,
with Figure 3 [31] showing a precisely mapped image of Earth’s

FIGURE 3
Radio-frequency signal pattern.

RF signals. RFIQ is dedicated to space-based radio frequency
spectrum data collection, providing visualization of the spectrum
data gathered by the HawkEye 360 RF sensor satellite constellation,
as depicted in Figure 4 [31]. SEAker leverages sophisticated
algorithms to integrate automatic identification systems with
HawkEye 360 sensors, enhancing maritime awareness capabilities.
The entire systemprimarily focuses on spectrummapping and signal
source localization, offering comprehensive and timely interference
detection and early warning services [32].

2.3 Summary

Currently, the development of interference monitoring
systems faces numerous challenges: 1) Technical challenges. The
electromagnetic environment is becoming increasingly complex,
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FIGURE 4
Visual spectral data.

and the accuracy, sensitivity, and speed of traditional radio
interference monitoring systems are no longer sufficient for satellite
navigation system interference monitoring. Efforts to overcome key
technical bottlenecks within the system and promote technological
innovation and advancement are essential trends. 2) Construction
challenges. There are few dedicated satellite navigation interference
monitoring networks, and the coverage areas of these networks
are limited. Developing new systems and equipment for GNSS
interference monitoring, increasing the number of monitoring
stations, and expanding coverage areas are crucial for ensuring
reliable GNSS services globally. 3) International Cooperation
challenges. Satellite navigation monitoring involves the interests
of multiple countries. Strengthening international cooperation
and exchange, encouraging active participation in international
organizations and activities, and promoting the establishment of
multilateral cooperation mechanisms to jointly maintain space
security and stability remain challenging.

3 Key technologies for interference
monitoring

Interference monitoring refers to the process of detecting,
identifying, direction-finding, locating, and assessing interference
in the electromagnetic environment. Its purpose is to promptly
discover and identify interference sources, evaluate the nature
and intensity of the interference, and assess its impact on
communication and navigation systems, thereby enabling the
implementation of appropriate measures to mitigate or eliminate
these interference. Figure 5 illustrates the complete interference
monitoring process. Initially, specialized equipment and techniques
are used to continuously collect signal data from the electromagnetic
environment to detect the presence of interference. Subsequently,
the detected interference is analyzed to identify its type and
characteristics. Next, the impact of the interference on the system is
evaluated, and direction-finding is performed to locate the position
of the interference source. A monitoring report is then generated
and submitted to relevant departments to assist them in making
decisions regarding interference suppression [33].

Considering the importance of interference monitoring
technology in interference monitoring systems, this section

will detail three key technologies for suppression interference
monitoring: interference detection technology, interference
identification technology, and interference direction finding
technology. Simulations will be used to verify the implementation
of some of the algorithms involved, and the issues associated with
each technology will be pointed out. Based on recent technological
trends, the section will also summarize the research directions that
warrant further investigation.

3.1 Interference detection technology

3.1.1 Time-domain detection algorithms
The time-domain energy detection algorithm is suitable for

detecting high-power blanket interference. It does not require prior
information about the signal; it only needs to compare the energy of
the signal with a preset energy threshold to determine the presence
or absence of interference, regardless of the type of interference.
However, it cannot determine the specific frequency points of the
interference. The time-domain energy detection method is simple
to implement and uses the binary hypothesis testing theory from the
field of mathematical statistics.

The signal received by a satellite navigation receiver can be
modeled as Equation 1 [34]:

r(t) = s(t) + j(t) + n(t) (1)

In the model, s(t) denotes the true satellite navigation signal;
j(t) represents the interference in the GNSS; and n(t) is the additive
white Gaussian noise with power σ2.

The energy of the received signal can be expressed as
Equation 2 [35]:

e(n) =
K−1

∑
k=0

r(n− k)r∗(n− k) (2)

In the equation, r(n) represents the digital signal obtained
after analog-to-digital conversion, and (⋅)

∗
denotes the conjugation

operation applied to the signal.
The hypothesis testing problem can be simply

expressed as Equation 3:

{
{
{

H0:e(n) < λ, j(n) = 0

H1:e(n) ≥ λ, j(n) ≠ 0
(3)

In the equation, λ is the threshold value for energy detection;
H0 is the null hypothesis, indicating that the useful signal is not
interfered with, and at this point, the signal energy value is less
than the threshold value;H1 is the alternative hypothesis, indicating
that the useful signal is being interfered with, and at this point, the
signal energy is greater than the threshold value. According to the
above analysis, the key to the energy detection algorithm is how
to determine an appropriate detection threshold λ in a constantly
changing noise environment.

The energy detection algorithm is significantly affected by noise
uncertainty and has a low probability of detecting interference in low
SNR conditions. In practical environments, noise is time-varying,
and to improve detection probability, multi-node cooperative
detection algorithms have been developed. Reference [29] proposes
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FIGURE 5
Interference monitoring flow chart.

an adaptive multi-threshold energy detection method under time-
varying conditions by estimating the noise range.Thismethod offers
better detection performance compared to single-threshold energy
detection algorithms. Reference [10] suggests using a hard decision
strategy for dual-threshold energy detection at individual nodes.The
credibility weights are assigned based on the quality of the channel
environment at each node, and the final decision is made at the
fusion center. This approach achieves good detection performance
even under low interference-to-noise ratio (INR) conditions. Wu
Jin [36] derived the expression for the error probability in energy
detection algorithms and determined the optimal threshold value to
minimize this probability, thereby improving detection performance
to some extent. Wang Jing [37] adopted a segmented detection
method for interference detection in Beidou civilian signals. This
method is highly efficient and effective because it focuses on the
noise within each sub-band during detection, thereby reducing the
influence of noise from other bands and effectively improving the
INR during detection.

3.1.2 Frequency-domain detection algorithms
The principle of frequency-domain interference detection is

similar, although it may be slightly more complex in terms of
computation compared to the time-domain energy detection
method. However, it can not only detect the presence of
interference but also determine the specific frequency points of
the interference [38].

Frequency-domain interference detection often uses the
Consecutiveean Excision (CME) algorithm proposed by P. Henttu
and S. Aromaa [39]. This algorithm assumes that the initial
signal samples do not contain interference signals, and thus the
signal spectrum envelope follows a Rayleigh distribution with an
expected value as Equation 4:

E(A) = √2σ2Γ(1.5) (4)

In the equation, σ2 is the power of the Gaussian noise; and
Γ(x) is the Gamma function, which is also known as Euler’s second
integral. The distribution function of a Rayleigh random variable
F(A) is given by:

F(A) = 1− exp(− A
2

2σ2) (5)

Based on Equation 5, we can get Equation 6:

Ath = √2σ2 − ln (√1− F(Ath) (6)

Ath is the detection threshold for interference frequency points
under the false alarm probability Pfa (the probability of erroneously
detecting interference frequency points when no interference signal
exists) which is defined as Equation 7.

The threshold factor is defined as Equation 8:

P fa = 1− F(Ath) (7)

T =
Ath

E(A)
=
√− ln(1− F(Ath))

Γ(1.5)
= 2
√π
√− ln(P fa) (8)

The CME (Consecutiveean Excision) algorithm sets the size of
the false alarm probability in advance and obtains the corresponding
threshold factor. In each iteration, it calculates the spectral power of
the signal set for frequency points that do not contain interference,
multiplies this by the threshold factor to update the detection
threshold, and then compares the spectral envelope at each
frequency point with the detection threshold to classify them into
frequency points with and without interference.

Subsequently, P. Henttu et al. [40] proposed the forward
sequential mean excision algorithm, also known as the forward
consecutive mean excision (FCME) method, to address the problem
of impulse interference detection in radio systems. The algorithm
first reorders the signal spectra in ascending order according to
their energy values, selects a portion of the spectra to form a set of
interference-free signals, calculates their energy, and sets a threshold
value. If the energy value of the next frequency line is less than the
threshold value, this spectrum line is added to the initial signal set
to form a new signal set, and its energy is recalculated and a new
threshold value is set.Otherwise, the algorithmends, and the process
continues iteratively. Yang Chao et al. [41] proposed an improved
CME interference detection algorithm, which sorts the spectrum
lines in descending order and considers the mean of the latter half
of the spectrum lines as the mean in the absence of interference.
This mean is used to initialize the detection threshold, reducing the
number of iterations and accelerating the convergence rate of the
CME algorithm without decreasing the probability of interference
detection. Setting a single threshold has certain issues, such as the
possibility of an interference signal with a certain bandwidth having
energy below the threshold at a particular frequency point, leading
to themisidentification of a single interference signal as two separate
ones. Vartiainen et al. [42] addressed this issue by proposing
a dual-threshold-based interference frequency point localization
algorithm.Themain principle of the algorithm is to set high and low
detection thresholds. First, the adjacent frequency points of signal
samples exceeding the low threshold are clustered, and then the
maximum value of the signal spectra in each cluster is compared
with the high threshold. If it is greater than the high threshold
value, the frequency points belonging to that cluster are determined
to correspond to the same interference signal. Otherwise, they are
not. Based on this, the algorithm can estimate the bandwidth of the
interference.

In frequency-domain interference detection algorithms,
traditional Fourier transforms are used. Essentially, these transforms
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convert one-dimensional time functions into one-dimensional
frequency functions, which is a relatively simple transformation
method. Its disadvantages are quite apparent: it can only analyze the
time-domain characteristics and frequency-domain characteristics
of signals independently as a whole, and it cannot analyze the
frequency characteristics of signals at specific moments or the time
characteristics of signals at specific frequencies. Therefore, it is only
suitable for analyzing stationary signals.

3.1.3 Time-frequency detection algorithms
Indeed, whenGNSS signalsmixedwith interference are received

by the receiver, they become non-stationary signals. Therefore,
time-frequency analysis methods are more suitable for interference
detection and analysis. The purpose of time-frequency analysis
is to transform one-dimensional time signal functions into two-
dimensional joint distribution functions of time and frequency,
which can reflect the time-varying characteristics of non-stationary
signals [43]. Linear time-frequency analysis is typified by the
Short-Time Fourier Transform (STFT), proposed by Dennis Gabor
in 1946. The STFT is obtained by multiplying the signal by a
sliding time window and then performing a Fourier transform.
Due to its linearity and low complexity, the STFT has been
used in the development of interference mitigation algorithms,
such as those developed by Daniele Borio et al. [44], to estimate
the instantaneous frequency of interference. Wang Pai et al. [45]
have combined the time-frequency characteristics and statistical
properties of received GNSS signals to propose an interference
detection algorithm based on the STFT, improving the detection
performance of broadband and narrowband interference in low
signal-to-noise ratio environments. However, the STFT also has
limitations. Because of the windowing process, it is constrained
by the Heisenberg uncertainty principle, meaning that the time
resolution and frequency resolution cannot be simultaneously
optimized.

Comparing different time-frequency analysis methods,
quadratic time-frequency analysis based on the Fourier transform
of the instantaneous autocorrelation function provides almost
the best resolution [8]. Among these, the most commonly used
is the Wigner-Ville distribution (WVD), introduced to signal
processing in 1948. The WVD can achieve the lower bound of
the Heisenberg uncertainty principle and can address some of the
issues present in the STFT. However, when analyzing signals with
multiple components, the WVD produces cross-term interference,
causing the signal energy to spread over areas of the time-
frequency plane where there should be no energy, making it difficult
to accurately capture the signal features. Choosing appropriate
time-frequency analysis methods, such as adaptive kernel time-
frequency distributions or linear time-frequency distributions,
can suppress cross-terms, but this leads to a degradation in the
clustering property of the signal’s time-frequency distribution
and increases computational complexity [46]. To address these
issues, Sun Kewen et al. [47] analyzed the principles and problems
of STFT and WVD, proposing a new time-frequency analysis
method based on a reassigned spectrogram for detecting frequency-
sweeping interference. This method strikes a good balance
between suppressing cross-terms and maintaining time-frequency
resolution. Later, he [48] proposed using the Fractional Fourier
Transform (FRFT) for detecting satellite navigation interference.

The FRFT has excellent detection capabilities for linear frequency
modulation (LFM) interference. Xu Huifa [49] and colleagues
similarly proposed a new method based on the FRFT to solve the
detection and estimation problems of strong and weak LFM signals,
improving detection efficiency.

For the common frequency-sweeping interference in satellite
navigation systems, many scholars in Professor Sun Kewen’s
team have conducted extensive and in-depth research on its
detection [22, 50–52]. Their main work involves combining
various time-frequency transformation methods to leverage the
strengths of each method while compensating for their respective
weaknesses. ChenYuanyuan [50] used theRadon-Wigner transform
to detect frequency-sweeping interference and estimate interference
parameters. By combining the smoothed pseudo Wigner-Ville
distribution based on time-frequency reassignment with the Radon
transform, she validated the effectiveness of combining the Radon
transform with time-frequency analysis methods for interference
detection. Zhao Huizi [51] combined reassignment techniques and
wavelet transforms to effectively address issues related to energy
concentration, cross-terms, and resolution, thereby improving the
accuracy of interference detection. Sun Kewen [52] combined the
Hough transform with the Wigner-Ville distribution (WVD) to
eliminate cross-term interference and enhance detection sensitivity.
The detection performance remains excellent even at an INR of
−10 dB.

The FrFT uses a set of orthogonal chirp signals as basis
functions. By selecting an appropriate order, the FrFT transforms
the chirp signal into the transform domain, where the energy
of the chirp signal becomes concentrated, forming a peak. This
allows for accurate estimation of interference parameters. Zhang
Jun [22] improved the traditional method for determining the
optimal order of the FrFT by proposing a combination of
the bisection method and discrete polynomial algorithms. This
approach reduces the computational complexity of searching for
the optimal order while improving search accuracy, enabling the
detection of multi-component chirp signals. Zheng Yifei [23]
combined the FrFT with traditional time-frequency methods such
as the short-time Fourier transform (STFT) and WVD. Compared
to these traditionalmethods, the energy concentration of frequency-
sweeping interference is enhanced in the transform domain. At an
INR of −8 dB, the accuracy of parameter estimation for frequency-
sweeping interference is improved by two orders of magnitude.

In interference detection, time-domain energy detection,
frequency-domain energy detection, and time-frequency domain
detection primarily utilize the energy distribution characteristics
of interference signals in the time domain, frequency domain,
and time-frequency domain, respectively. Table 3 summarizes the
advantages and disadvantages of these three detection algorithms.

3.1.4 Full blind detection algorithms
In practical interference detection scenarios, the problem is

often non-cooperative, making it difficult to obtain sufficient
prior information. Therefore, researching fully blind interference
detection algorithms holds greater practical significance.

Blind interference detection algorithms based on random
matrix theory have been proposed. Two typical algorithms are
the Covarianceatrix-based All-Blind Detection (CAV) [53] and
the Eigenvalue-based All-Blind Detection (BDA) [54]. The CAV
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TABLE 3 Comparison of advantages and disadvantages of interference detection algorithms.

Interference detection algorithms Advantages Disadvantages

Time-domain Detection Simple implementation, intuitive principle, good
real-time performance, sensitive to impulsive signals,
no prior information required

Lack of frequency information, inability to handle
non-stationary interference, susceptibility to noise

Frequency-domain Detection Determination of interference frequency points, strong
noise suppression capability, suitable for analyzing
simple non-stationary interference signals

High computational complexity, transient response
lag, and high requirements for synchronization

Time-Frequency Detection Suitable for detecting complex non-stationary
interferences, capable of analyzing the local
time-frequency characteristics of interferences

High computational load, cross-term issues with some
methods, difficulty in interpreting time-frequency
graphs, and high sensitivity to parameters

algorithm constructs a test statistic as the ratio of the sum of the
absolute values of all elements in the covariance matrix of the
received signal to the sum of the absolute values of the diagonal
elements. The BDA algorithm constructs a test statistic as the
ratio of the maximum eigenvalue to the minimum eigenvalue.
These algorithms have detection thresholds that are independent
of noise information, thus completely overcoming the limitation of
energy detection algorithms being sensitive to noise uncertainty.
They also exhibit good detection performance even at low SNR.
Based on these foundations, many researchers have conductedmore
in-depth studies on all-blind detection algorithms [55–61]. Their
work includes developing new covariance-based decision statistics
to address the computational complexity of decision metrics and
thresholds, or combining these algorithms with cooperative sensing
to further improve detection performance and optimize network
overhead.GNSS interference detection can benefit from spectrum
sensing techniques. Wu Jin [36] has introduced all-blind detection
algorithms into the interference detection of the Beidou system
and proposed a weighted fusion detection (WFD) algorithm, which
enhances detection performance.

In recent years, with the rise of artificial intelligence,
machine learning has been increasingly applied in various
fields due to its excellent classification performance. In the
context of all-blind detection algorithms, interference detection
is essentially a binary classification problem, which aligns
well with machine learning algorithms. Based on this, many
scholars have introduced machine learning into full-blind
detection. Reference [62] combines the traditional K-Nearest
Neighbors (KNN) algorithm to achieve the detection task.
Yao Di [63] combines the Support Vectorachine (SVM) to
perform binary classification tasks for spectrum sensing.
These algorithms effectively address the issue of low detection
probability under low signal-to-noise ratio (SNR) conditions
and offer high detection efficiency. However, they require
manual construction of feature vectors, which can significantly
impact the classification results. Shi Haodong [64] uses a
Convolutional Neural Network (CNN) to achieve collaborative
spectrum sensing. Lu Huachao [65] directly inputs the normalized
covariance matrices of the combined I and Q signals from
each node into the neural network, allowing the network to
automatically extract useful features for detection. This approach
yields good detection performance.

3.1.5 Summary
Time-domain energy detection algorithms fall into the

category of semi-blind detection algorithms, as they require
prior information related to the noise. Due to this requirement,
their detection performance is poor at low INR and they are
highly susceptible to noise uncertainty. However, they are easy to
implement and do not require sophisticated detection equipment.
Improvements through multi-node cooperative energy detection
can somewhat alleviate these issues, but the enhancement is limited
and increases the overhead of the detection network.

Full-blind detection algorithms do not require any prior
information about the received signals and are independent of the
noise environment. They maintain good detection performance
even at low SNR.However, these algorithms are based on covariance
matrix decomposition, which involves significant computational
complexity. As a result, theymay not meet the real-time interference
detection requirements in practical applications.

The limitations of the aforementioned methods are evident;
they can only detect the presence of interference but provide
no information about the interference parameters, making
interference suppression challenging. Time-frequency detection
methods and frequency-domain detection methods, on the
other hand, can not only detect the presence of interference but
also estimate the interference parameters, thereby facilitating
interference suppression. Time-frequency detection methods are
particularly suitable for detecting non-stationary interference.
Combining various time-frequency transformation methods can
reduce parameter estimation errors. However, these methods
are computationally complex and the interpretation of the
transformation results is challenging.

3.2 Interference identification technology

Blanket interference can be classified in various ways. Based
on the time-domain characteristics of the interference, it can be
divided into pulse interference and continuous wave interference.
According to the stationarity of the interference, it can be categorized
into stationary interference and non-stationary interference.
Furthermore, it can be classified into broadband interference
and narrowband interference according to the spectral width.
Narrowband interference has a bandwidth narrower than the
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FIGURE 6
Pattern identification method flow chart.

GNSS signal, while broadband interference has a bandwidth wider
than the GNSS signal [66]. Taking the GPS L1 frequency band
with a spread spectrum code of CA as an example, common
interferences include matched spectrum interference [67], Gaussian
noise interference, linear frequency modulation (LFM) interference
[68], pulse interference [69], continuous wave interference [70], etc.

3.2.1 Traditional pattern recognition methods
Radio communication has a relatively long history, with

initial reliance on manual methods for identifying modulation
schemes of radio signals. However, these manual identifications
were significantly influenced by subjective factors and were
both time-consuming and labor-intensive. As communication
technology advanced, the advantages of automatic modulation
recognition became increasingly apparent, eventually evolving
into the mainstream approach for identification. Traditional
modulation recognition methods can be broadly categorized
into two types: decision-theoretic methods and statistical pattern
recognition methods [71]. While decision-theoretic methods
require substantial computational power and extensive prior
information, the relevant parameters associated with the signals
to be identified are often unknown. As a result, statistical pattern
recognition methods have gained wider acceptance and are more
commonly applied.

The pattern identification method includes three modules:
signal preprocessing, signal feature parameter extraction, and signal
identification classifier design, as shown in Figure 6. Firstly, the
received signal is preprocessed, including noise removal, data
normalization, unknown parameter estimation, etc.Then, the signal
set to be classified is analyzed in different signal domains such as
time domain and frequency domain, and the features that can clearly
distinguish the signal types in the set are extracted to form feature
vectors. This module mainly relies on machine learning methods
[72] and pattern identification theory [73], and finally the signal
samples to be tested are input into the classifier to realize signal
identification.

A good feature parameter should easily highlight the differences
between signals, significantly reducing the burden on subsequent
classifiers and facilitating the identification of different signals.
Azzouz, EE, and Nandi, Ak [74–76] published several papers
between 1995 and 1998 on extracting time-domain feature
parameters for analog and digital signals. Their work included
various typical algorithms for extracting signal instantaneous
features. Later scholars built upon this foundation to conduct
more research on automatic modulation identification. A good
identification classifier should achieve high signal identification
rates. Commonly used identification classifiers are based on
machine learning and include: decision tree (DT) classifier [77],
support vector machine (SVM) classifier [78] and neural network
(NN) classifier.

Some scholars in the field of satellite navigation interference
identification have drawn on the method of automatic signal
modulation identification to identify typical interference types
in satellite navigation systems. Huang Ting [30] analyzed
the characteristics of pulse interference and continuous wave
interference, and provided the results of typical suppression
interference characteristic analysis, which provided ideas for
selecting appropriate characteristic parameters. Lei Liang [79]
did similar work, and Li Jian et al. [80] extracted pulse width
estimates, bandwidth ratios, and frequency modulation slopes
to conduct identification simulation experiments on six typical
interferences. When the signal to noise ratio (SNR) is 3dB, the
identification rate reaches 90%. Zhu Pengcheng [10] analyzed the
typical interference of GPS and Beidou systems from the time
domain, frequency domain, time-frequency domain, and high-
order cumulants, extracted feature values composed of high-order
cumulants, normalized spectral bandwidth, and other parameters,
and used decision tree classifiers for identification. The simulation
results show that the identification effect is very good when the
INR is large. Some of the selected features are greatly affected by
noise, and when selecting a decision tree classifier, the classification
threshold is generally not changed once selected, which is not
adaptive. Therefore, when the INR is small, the identification effect
is not ideal.

Ye Rui [81] also did interference identification work, but he used
the KNN (K Nearest Neighbors) algorithm based on the traditional
decision tree to calculate the distance between the test samples and
the training sample eigenvalues for classification, eliminating the
subjective factors brought about by manually setting thresholds,
and the identification rate has been improved to a certain extent.
However, when the number of samples is large, the calculation of
this method is very large. Combining DTs and SVMs and directly
bringing test sample data into the maximum classification interval
function trained by the support vector machine can solve this
problem. The amount of computation and identification effect are
the best among these three methods.

The use of neural network classifiers is becoming more and
more common. Lu Dongsheng et al. [82] analyzed six types
of interference, extracted 13 characteristic parameters to obtain
feature vectors, and constructed a CNN (Convolutional Neural
Network) + LSTM (Long Short Termemory) double-layer network
model for training. Compared with the LSTM network in two
scenarios of strong signal interference and interference with
similar power, the accuracy, mean square error, and truthfulness
are all better.

Based on the research of previous scholars, the characteristics
of three commonly used identification classifiers are
summarized in Table 4.

In statistical pattern identification methods, the selection
of feature parameters and classifiers lacks a theoretical basis.
Generally, for a specific identification task to be completed, the
selection can only be made based on existing experience and
through multiple trials and errors. This leads to the method being
exceptionally sensitive to the selection of feature parameters, where
choosing different feature parameters may ultimately result in
different identification effects. This lack of flexibility results in poor
identification rates for interference signals.
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TABLE 4 Comparison of identification classifiers.

Identification Classifiers Advantages Disadvantages

DT Simple idea, easy to understand, small amount of calculation,
low complexity, real-time identification

Fixed threshold value, greatly influenced by human factors,
cascade structure, with more levels leading to poorer
identification accuracy

SVM Small sample size required, easy to handle nonlinear and
high-dimensional problems, can avoid local minimum problems

Reduced identification efficiency when the sample size is large,
supports binary classification but is not good at solving
multi-class classification problems.

NN Can solve any complex high-dimensional nonlinear problems,
good identification performance

Requires a large number of training samples; high
computational complexity, and poor real-time performance.

3.2.2 Interference recognition method based on
deep learning

In 2006, the concept of deep learning was officially proposed
[83]. Deep learning networks are composed of multiple layers
of neurons, each layer serving different functions and purposes.
Common types of layers include convolutional layers, pooling
layers, and fully connected layers. Convolutional layers are used
to extract local information features from the input data. Pooling
layers are used to down-sample the input feature maps, retaining
the most important features while reducing the computational load.
Fully connected layers learn high-level abstract features from the
input data and are typically used as the output layer to perform
classification tasks. During the training process of a deep learning
network, forward propagation and back-propagation algorithms are
utilized. Non-linear activation functions are used in each layer to
introduce non-linearity, enabling the network to learn complex
patterns and features. The trained model ultimately achieves
excellent performance in various tasks. Since then, Deep Neural
Networks (DNNs) have been increasingly used by scholars as end-
to-end systems for identification tasks. These networks can receive
raw data, automatically learn from it, and optimize themselves to
ultimately complete the identification task [84], thereby avoiding the
complex feature parameter extraction issues present in traditional
pattern identification methods.

In the field of recognition, converting one-dimensional
interference data into two-dimensional image data and combining
it with deep learning for classification has become a mainstream
approach in recent years. Li Xiangjun et al. [85] proposed an
interference type identification method relying on the SqueezeNet
CNNmodel and the smoothedWVT, aiming to address the problem
of low interference identification rates. Iman Ebrahimiehr et al.
[86] used the WVT and spectrogram to perform time-frequency
analysis on different types of chirp signals, utilizing the analysis
results to create an image dataset, part of which was used for
training the model and part for identification testing. Chen Xin
et al. [87] proposed an interference fingerprint spectrum (FPS)
consisting of time-frequency and time-power characteristics of
signals, and selected the GoogLeNet DNN architecture as the
training model to design the FPS-DNN interference classifier. This
classifier significantly improves the identification rate under low
interference power conditions and can be extended to solve more
complex interference classification problems. Reference [88] uses
the power spectral density (PSD) of the received signal as the input

feature for the network. Compared to algorithms such as Random
Forest and SVM, this approach improves recognition accuracy.

To improve recognition performance, new deep neural network
models have been continuously proposed [89]. established two
CNN networks that can share parameters, adding the Kullback-
Leibler (KL) divergence and Euclidean distance of extracted features
as new loss functions. This enables the network to learn the
relationships between interference signal categories, enhancing
generalization capability and recognition performance at low
interference-to-noise ratios (INRs) without increasing network
complexity [90]. constructed images from one-dimensional signals
and used residual networks to extract multi-semantic features,
followed by multi-semantic feature fusion. This approach helps
the deep learning network extract more distinctive signal features,
thereby improving interference recognition performance [91]. used
spectrograms as the training dataset and introduced multi-head
attention modules and residual convolutional modules to address
the different effects of varying window lengths on Short-Time
Fourier Transform (STFT) results. This resulted in improved
recognition performance [92]. proposed a new method based on
graph models, introducing graph signals and graph neural networks
to identify the modulation categories of unknown interference
signals. Their method enhances channel information interaction
and extracts both local and global features, significantly improving
recognition performance.

Deep learning-based recognition methods have several
advantages. They can automatically learn features from data,
reducing the dependence on expert knowledge. As the amount
of training data increases, the performance of the model
often improves significantly, demonstrating good generalization
capabilities and the ability to identify interference signals in
different environments and conditions. However, deep neural
network models are often very complex, requiring long training
times and consuming substantial network resources during
recognition tasks, which can sometimes lead to resource wastage.
To address these issues [93]: focused on the challenges of
GNSS interference recognition in low-resource environments,
emphasizing preprocessing. They proposed a method that combines
traditional statistical signal processing with machine learning,
effectively reducing model complexity and resource consumption
[94]. Introduced a time-frequency component-aware convolutional
neural network (TFC-CNN) that can determine the positions of
time-frequency components in time-frequency images and perform
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convolution operations at these positions. During network training,
an adaptive forward propagation algorithm is used to dynamically
decide the depth of forward propagation based on the samples,
improving the computational efficiency of interference classification
and reducing resource wastage [95]. Proposed a neural network
classification method that combines federated learning and transfer
learning. Federated learning is used to distribute data, enhancing
resource efficiency and privacy protection, while transfer learning
accelerates the model learning process. Compared to traditional
CNN models, this method improves classification accuracy by 8%.

3.2.3 Summary
Traditional pattern recognition methods have advantages

in computational efficiency and interpretability, but they have
limitations in feature engineering and data adaptability. In contrast,
deep learning-based recognition methods excel in automatic feature
extraction, generalization capabilities, and handling complex data,
but they face challenges in computational resource requirements
and interpretability.

Deep learning-based recognition adopts an end-to-end learning
approach, where raw data is fed into the network model to
directly obtain classification results. However, there is a wide variety
of deep learning network models, and no theoretical method
has been provided to guide the selection of models based on
specific recognition problems. Additionally, there is no quantitative
explanation for why the output results of a model are good or
bad. Instead, people rely on their experience to try different
network models iteratively to achieve better results. Improving the
interpretability of models to make the decision-making process
more transparent, understandable, and trustworthy is an area
worthy of further research in deep learning models.

Currently, most classifiers use supervised learning, which can
only recognize a few specific types of interference. When new types
of interference appear, the overall recognition performance may
deteriorate. This is a drawback of feature learning with labeled data.
Research on feature learning from unlabeled data and techniques
for automatically adding classification labels to unlabeled data [79]
is necessary.

3.3 Interference direction finding
technology

Accurately determining the direction of interference sources in
satellite navigation systems can help people quickly locate them.
Although the construction of satellite navigation systems started
relatively late and has had a shorter development time compared to
the advancement of radio technology, there are numerous methods
for radio direction finding. The principles of satellite navigation
interference direction finding and ordinary radio direction finding
techniques are consistent, with the difference lying in the specific
application scenarios. To address the issue of interference direction
finding in satellite navigation systems, inspiration can be drawn
from radio direction finding techniques.

3.3.1 Traditional direction finding algorithms
The main interference direction finding methods include

amplitude comparison direction finding, phase comparison

direction finding, and spatial spectrum estimation. The specific
algorithms are shown in Figure 7. Among them, the first two are
traditional direction finding methods, which are based on the
amplitude information or phase information of the interference
received by the antenna, respectively. These are the direction
finding methods adopted by scalar direction finding systems.
The latter benefits from the development of spatial spectrum
estimation technology, which is based on both the phase and
amplitude information of the interference received by the antenna.
It is the direction finding method adopted by vector direction
finding systems [96].

Interference direction finding can be performed using either
a single antenna or an antenna array. Figure 8 showcases three
commonly utilized antenna array models: linear arrays, circular
arrays, and planar arrays.

Amplitude comparison direction finding relies on differences
in signal amplitude, making it susceptible to noise and resulting in
suboptimal direction finding outcomes. Phase comparison direction
finding, also known as interferometer direction finding, relies on
phase variations that contain more precise directional information.
Due to its high accuracy and speed, it is widely used, including
in phase interferometer methods and correlative interferometer
methods. Phase interferometer-based direction finding utilizes the
phase difference of interference signals received by antenna elements
on a baseline. Taking single-baseline interferometer direction
finding as an example, its schematic diagram is shown in Figure 9.

Assuming there are two antennas with a baseline length of d,
they receive a far-field electromagnetic wave signal with an angle of
θ with respect to the line of sight, and the wavelength of the wave
is λ. The true phase difference of the signals received by the two
antennas is:

φ = 2π
λ
d sin θ (10)

When the signals received by the two receivers from the
antennas are fed as inputs to the phase discriminator, the output
of the phase discriminator is the phase difference ϕ between the
two signals. Since the phase discrimination range of the phase
discriminator is limited to [‐π,π], it follows that:

φ = ϕ+ 2kπ,k = 0,±1,±2, ... (11)

After undergoing an angle transformation, we can obtain
Equation 12:

θ = sin−1( λ
2πd

φ) = sin−1( λ
2πd
(ϕ+ 2kπ)) (12)

Upon observing Equations 10, 11, if we want to ensure
that for any angle θ, the true phase difference and the phase
difference measured by the phase discriminator are equal, the signal
wavelength λ and baseline length d must satisfy the following
condition as Equation 13:

d ≤ λ
2

(13)

Otherwise, there will be an integer multiple difference between
the two, which is known as the phase ambiguity problem in phase-
based direction finding methods. To obtain the correct angle of
arrival (AOA) of the signal, it is necessary to solve for the ambiguity
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FIGURE 7
Classification of direction finding algorithms.

FIGURE 8
Antenna array model. (A) Linear array. (B) Circular array. (C) Planar array.

FIGURE 9
Single baseline interferometer.

number. There are already many methods to resolve this ambiguity,
such as the long-short baseline method, the Chinese Remainder
Theorem method [97], and so on.

It is evident that the direction finding performance is influenced
by the baseline length. A longer baseline results in higher direction
finding accuracy but also introduces the issue of phase ambiguity.
On the other hand, a shorter baseline eliminates the phase ambiguity
problem, but it can lead to mutual coupling between antenna
elements, which reduces the direction finding accuracy and limits
the signal bandwidth.

The correlative interferometer direction finding method can
overcome the phase ambiguity problem. Its principle involves
selecting several antenna pairs to obtain the phase differences of
known incoming wave signals from all directions and frequencies
as the original phase samples. For an unknown incoming wave
signal to be measured, only the phase difference measured by the
antenna pair is required, and this is then correlated and interpolated
with the phase samples. The angle corresponding to the maximum
correlation value is determined as the angle of arrival [98].

3.3.2 Direction finding algorithms based on
spatial spectrum estimation

Although traditional direction finding technologies are mature,
they are constrained by factors such as array size, beamwidth, and
the direction finding environment. In practical applications, their
direction finding accuracy and spatial resolution sometimes fail
to meet requirements, especially in multipath environments where
direction finding performance is poor. Spatial spectrum estimation
techniques, developed in the 1960s and 1970s based on minimum
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variance spectral estimation, can address some of the issues with
traditional direction finding methods to a certain extent.

Spatial spectrum estimation can be categorized into subspace
fitting algorithms and subspace decomposition algorithms. The
former category is typically represented by the maximum likelihood
(ML) method, which constructs a logarithmic likelihood function
based on the signal model and solves for unknown parameters
to obtain the direction of arrival (DOA) of signals. This method
remains effective for coherent signal direction finding and performs
well even at low SNR, but its processing efficiency needs to be
improved [99]. The latter category is predominantly represented by
the MUSIC (Multiple Signal Classification) algorithm [100], which
works by performing an eigen decomposition on the array output
signals. The resulting noise eigenvectors and signal eigenvectors
span the noise subspace and signal subspace, respectively.The spatial
spectrum is estimated by utilizing the orthogonality between these
subspaces, and the DOA is estimated by searching for spectral
peaks. The MUSIC algorithm offers relatively lower complexity
and computational requirements while achieving high direction
finding accuracy. However, the actual electromagnetic environment
is much more complex than the theoretical assumptions, leading
to suboptimal direction finding results in some electromagnetic
conditions. For example, under the influence of multipath effects,
the presence of coherent signals can cause the array manifold
matrix to become rank-deficient, resulting in poor direction finding
performance. In such cases, decorrelation algorithms such as
spatial smoothing algorithms are first applied to restore the array
manifold matrix to a full-rank state [101]. The ESPRIT (Estimating
Signal Parameter via Rotational Invariance Techniques) algorithm,
proposed by Roy and Kailath [102], does not require spectral peak
searching and has a lower computational burden but may exhibit
reduced measurement accuracy compared to MUSIC.

We select an 8-element linear array and set up 3 incoming
wave signals with different DOA. These signals have similar
powers, and the INR is set to 10 dB for all of them. Among
these signals, two are coherent. We conduct simulations using the
MUSIC algorithm directly and after applying spatial smoothing
to the signals, respectively. The purpose of these simulations is
to verify the correctness of the analysis on the direction finding
performance of the MUSIC algorithm. The simulation results are
presented in Figure 10.

Table 5 summarizes the characteristics of the aforementioned
radio direction-finding techniques, which are currently being
applied in interference direction-finding for satellite navigation
systems. Interferometer-based direction finding methods offer fast
speed and high accuracy, and some researchers have specifically
designed GNSS interference direction finding antennas to address
issues such as phase ambiguity and reduce mutual coupling
effects between array elements [103]. A significant number of
satellite navigation interference direction finding and localization
equipment employ correlative interferometer direction finding
methods to achieve precise direction finding of interference signals
[104]. Scholars from Beijing Jiaotong University have conducted
simulations under ideal conditions, using a four-element rectangular
array and MUSIC and its improved algorithms to estimate the
DOA of typical incoherent narrowband interference, coherent
narrowband interference, and broadband interference signals in

BDS. Their results show good direction finding performance [29,
104, 105].

In practical engineering applications, however, direction finding
of interference signals must take into account the impact of
adverse factors such as mutual coupling between array elements
and boundary effects, which can lead to amplitude and phase
errors in the array elements that affect the accuracy of spatial
spectrum estimation-based direction finding. To achieve direction
finding results comparable to those under ideal conditions, active
calibration methods can be employed, where the gain patterns
of the antenna array elements are calibrated using specialized
equipment to estimate the amplitude-phase errormatrix andmutual
impedance matrix, which are then used to correct the obtained
spatial spectrum [105]. Alternatively, an error cost function can be
constructed to estimate the amplitude-phase error matrix, which is
then incorporated into a DOA error estimation model to achieve
real-time correction [106]. With the popularity of neural network
models, methods have gradually emerged that use CNN to perform
phase correction on direction-finding channels [107].

As the electromagnetic environment becomes increasingly
complex, it is essential to select the appropriate direction finding
algorithm for different scenarios. To fully leverage the advantages
of various direction finding methods and improve the results, a
trend is emerging towards combining multiple direction finding
techniques for interference direction finding. For instance, the
maximum signal method employs high-gain directional antennas,
offering high sensitivity but relatively low accuracy. In contrast, the
correlative interferometer uses omnidirectional antennas, providing
low sensitivity but high accuracy. By combining these two
methods, it is possible to simultaneously achieve high accuracy and
sensitivity in direction finding [108]. Additionally, the correlative
interferometer boasts fast direction finding speeds, while the
MUSIC algorithm excels in accuracy. By first using the correlative
interferometer to quickly determine the direction of the interference
signal, the search range of the MUSIC spatial spectrum can
be narrowed, significantly reducing the computational load. The
combination of these two techniques enables fast and high-precision
direction finding [109, 110].

3.3.3 Direction finding algorithms based on
timeodulated array

Although traditional direction-finding techniques have
demonstrated good performance in relatively simple scenarios,
they are increasingly showing limitations as the electromagnetic
environment becomes more complex. For example, traditional
methods struggle to address direction-finding issues in complex
situations such as weak signal strength, wide bandwidth, high
frequency bands, and the simultaneous presence of multiple
interference sources. As a result, their application scope in modern
complex electromagnetic environments is limited. Consequently,
researchers have begun exploring new direction-finding techniques
to overcome these challenges. In recent years, direction-finding
methods based on Time modulated Arrays (TMAs) have emerged,
offering new approaches to solving these problems.

A TMA is a novel type of antenna array that introduces
switches at the RF front-end of a traditional antenna array to
periodically time-modulate the incoming wave signals received by
each antenna element. The modulated signals are then processed
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FIGURE 10
Simulation of Direction Finding by MUSIC Algorithm. (A) Direct MUSIC Direction Finding. (B) MUSIC Direction Finding after Spatial Smoothing.

TABLE 5 Performance comparison of direction finding algorithms.

Direction finding
algorithms

Direction finding
sensitivity

Direction finding
accuracy

Direction finding
speed

Equipment
complexity

Amplitude comparisonethod Low Low Fast Low

Phase comparisonethod Relatively high Relatively high Relatively fast Relatively high

Spatial spectrum
estimationethod

High High Slow High

through a single channel by the signal processingmodule, extracting
harmonic components that contain DOA information. By analyzing
the relationships between these harmonic components, DOA
estimation can be achieved. Because it introduces the time variable
into the antenna array, TMA is also referred to as a four-dimensional
antenna array [111]. He Chong [112] used a binary TMA to
calculate the fundamental and first harmonic components of the
TMA output signals. The incident angle of the incoming wave
was estimated using the ratio of the harmonic component to the
fundamental component. Chen Jingfeng [113] proposed a direction-
finding technique based on multi-harmonic analysis, fully utilizing
the angle information contained in each harmonic component. The
generalized least squares estimationmethodwas used to estimate the
direction of the incoming wave signal, and selecting an appropriate
number of harmonics significantly improved direction-finding
performance even at low SNR. Compared to traditional algorithms
that rely on multiple channels to complete direction-finding tasks,
TMA uses a single channel, avoiding direction-finding errors
caused by inconsistencies between channels [114]. By integrating
techniques such asmulti-beam arrays and spectrum feature analysis,
TMA can achieve precise DOA estimation while reducing system
complexity and cost [115–117]. To address direction-finding for
broadband signals and potential phase ambiguity issues during
the direction-finding process [118], proposed applying different
periodic time modulation to different array elements. This approach
independentlymaps the amplitude information of each antenna unit
to different harmonic frequencies, avoiding phase ambiguity caused
by carrier frequency variations over a wide band, thus extending

the direction-finding bandwidth [119]. used channelization to
divide broadband signals into multiple sub-bands, converting the
broadband direction-finding problem into multiple narrowband
direction-finding problems. The DOA of the broadband signal
was then estimated through weighted integration [120]. introduced
virtual baseline technology into TMA, further enhancing its
direction-finding capabilities.

3.4 Summary

After years of development, traditional direction-finding
methods have been extensively studied and applied in various
fields such as communications, radar, and navigation. They have
a solid theoretical foundation and technical accumulation, and
for most conventional direction-finding tasks, their accuracy and
stability meet the requirements. However, their performance in
complex electromagnetic environments is not ideal. Direction-
finding algorithms based on TMA offer several advantages
through time modulation and spatial synthesis, including high
angular resolution, strong interference resistance, low hardware
complexity, and robustness. These features make TMA-based
methods particularly suitable for direction-finding in complex
electromagnetic environments.

Currently, TMA-based direction-finding methods, as a
new technology, are still not fully mature and are primarily
focused on theoretical research. Translating these methods into
practical applications requires overcoming many technical barriers,
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such as high-precision clock sources, complex control circuits,
and high-performance digital signal processing units. With
advancements in technology and cost reductions, TMA-based
methods are expected to see widespread application in complex
electromagnetic environments, representing an important direction
for the development of direction-finding technology. Meanwhile,
traditional direction-finding methods will continue to play an
irreplaceable role in mature fields.

4 Future development trends in
interference monitoring

Currently, the transmission of information is generally achieved
through the propagation of electromagnetic waves, where various
useful signals overlap with useless interference and noise present in
the space, posing significant challenges for interference monitoring.
Through theanalysis of key technologies for satellitenavigation system
interference monitoring, it can be anticipated that future interference
monitoring will face even more severe challenges, with a focus on the
development of interference monitoring technologies that offer high
precision, high sensitivity, and high real-time performance.

4.1 Highly sensitive real-time interference
detection

As interference technology advances, the power required
to generate the same interference effect on GNSS receivers is
decreasing.Moreover, whenmultiple interferenceswith significantly
different power levels coexist, the lower-power interference can be
overwhelmed by the higher-power interference, leading to a high
probability ofmissed detections during interferencemonitoring and
posing potential assessment risks. Detection equipment monitors
interference within its vicinity. Enhancing the sensitivity of
interference detection equipment can effectively detect low-power
interferences, expand the range of interference detection, reduce the
number of devices required for full-area monitoring, and lower the
cost of the monitoring system.

Furthermore, if interference detection equipment can quickly
identify interference, people can promptly take interference
suppression measures to reduce its harmful effects. This requires the
detection equipment to adopt low-complexity detection algorithms
while ensuring sensitivity. This requires the detection equipment to
ensure sensitivity while also maintaining real-time performance.

4.2 Intelligent automatic interference
identification

GNSS receivers are sometimes subjected to more than one
type of interference simultaneously, and the impacts of different
types of interference on them are generally different. Separating
and identifying these mixed interferences individually allows for an
analysis of the effects of each on the terminal equipment, facilitating
more informed decision-making. To achieve better interference
effects, new types of interference continue to emerge. For previously
identified interference types, rapid identification of their types

should be possible upon re-interference, which can be achieved by
establishing an interference library. For new types of interference
that have never been identified before, the monitoring system’s
identification should also possess a certain degree of generalization
ability, correctly identifying the new type of interference and adding
it to the interference library.

With technological advancements, satellite navigation
interferencemonitoring can integrate artificial intelligence,machine
learning, and other technologies. Through self-learning and
evolution, intelligent algorithms can continuously adapt to changing
interference characteristics, achieving automatic identification
and classification of interference signals with high accuracy.
Furthermore, they can even predict the occurrence of interference.
This deep integration of technologies can save significant human
resources and greatly enhance efficiency and accuracy.

4.3 High-precision interference direction
finding under complex conditions

Typically, the interference monitoring equipment and the
interfered terminals are not located at the same geographical
position, making the direction of interference arbitrary for the
monitoring equipment. In complex terrain conditions such as
“urban canyons,” mountainous regions, jungles, or in the presence
of moving obstructions or drastic meteorological changes, the
interference signals are prone to various physical phenomena during
propagation, including reflection and refraction, which can lead
to multipath effects. These effects can reduce the accuracy of
direction finding, cause ambiguity in direction finding, and result in
unstable direction finding outcomes. The precision of interference
direction finding directly impacts the results of interference source
localization. If the interference source is located far from the
monitoring equipment, even a slight deviation in the direction
finding angle can result in a significant discrepancy between the
localized position of the interference source and its actual location.

The premise of direction finding for multipath signals is to
extract the direct interference from the detected interference signals.
Improvements and optimizations to multipath resolution algorithms
can be made in terms of real-time performance, implementation
difficulty, and complexity. By integrating direction finding with
generative AI (Artificial Intelligence) technologies, an adaptable
direction finding model can be constructed that automatically adapts
to complex and dynamic propagation environments, enhancing the
intelligence level of the direction finding system. Furthermore, the
direction finding system can introduce multi-modality and perform
data fusion to address multipath interference issues.

4.4 Comprehensive and large-scale
interference monitoring

Currently, the development of the GNSS interference
monitoring network in China is still incomplete, and the capability
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for comprehensive interference monitoring across the entire region
remains inadequate. The evolution of the monitoring network
should target intelligence and automation, fully leveraging artificial
intelligence, big data, and cloud computing technologies to enable
real-time analysis of vast amounts of monitoring data.

Joint monitoring is a necessary means for interference
monitoring. On one hand, emphasizing multinational joint
monitoring on a global scale and strategically deploying interference
monitoring stations worldwide can ensure comprehensive coverage.
On the other hand, it is crucial to develop and integrate various
interference monitoring platforms, including ground-based, air-
based, space-based, and sea-based systems, to effectively tackle
complex monitoring environments.

5 Conclusion

Interference monitoring serves as an indispensable cornerstone
for maintaining the robust operation of various systems, playing
a crucial role in ensuring their performance. Focusing on
the domain of GNSS interference monitoring, the current
system faces unprecedented challenges in multiple aspects,
including technological iteration, infrastructure construction, and
international collaboration. To gain a profound understanding of the
essence of these challenges and explore effective strategies to address
them, this paper systematically traces the developmental history of
interference monitoring systems since their inception. It provides a
comprehensive and in-depth analysis of the intrinsic mechanisms
and unique characteristics of several core interference monitoring
technologies. Building on this foundation, the paper reviews the
breakthrough advancements in these key technologies over recent
years. It delves deeply into the enhanced understanding of technical
principles and broadly explores the continuous expansion and
innovation in application domains. Through detailed examination
and analysis, we gain insights into the significant potential of these
technologies in improving monitoring accuracy, enhancing system
robustness, and driving technological innovation. Through the
review and analysis presented in this paper, we aim to provide
scholars in the relevant fields with a comprehensive and in-depth
report on interference monitoring technologies. We hope to inspire

their innovative thinking and research enthusiasm, contributing
valuable wisdom and strength to the continuous advancement and
widespread application of interference monitoring technologies.
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