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An overview of neutron skin predictions obtained using an empirical nonlocal
dispersive optical model (DOM) is presented. The DOM links both scattering and
bound-state experimental data through a subtracted dispersion relation which
allows for fully consistent, data-informed predictions for nuclei where such data
exist. Large skins were predicted for both 48Ca (R48

skin � 0.25 ± 0.023 fm in 2017)
and 208Pb (R208

skin � 0.25 ± 0.05 fm in 2020). Whereas the DOM prediction in 208Pb
is within 1σ of the subsequent PREX-2 measurement, the DOM prediction in 48Ca
is over 2σ larger than the thin neutron skin resulting from CREX. From the
moment it was revealed, the thin skin in 48Ca has puzzled the nuclear-physics
community as no adequate theories simultaneously predict both a large skin in
208Pb and a small skin in 48Ca. The DOM is unique in its ability to treat both
structure and reaction data on the same footing, providing a unique perspective
on this Rskin puzzle. It appears vital that more neutron data be measured in both
the scattering and bound-state domain for 48Ca to clarify the situation.
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1 Introduction

A fundamental question in nuclear physics is how the constituent neutrons and protons are
distributed in the nucleus. In particular, for a nucleus which has a substantial excess of neutrons
over protons, are the extra neutrons distributed evenly over the nuclear volume or are these
excess neutrons localized in the periphery of the nucleus forming a neutron skin? A quantitative
measure is provided by the neutron-skin thickness, Rskin, defined as the difference between the
point neutron and proton root-mean-squared (RMS) radii, that is, Rskin � Rn − Rp.

The nuclear symmetry energy, which characterizes the variation of the binding energy
as a function of neutron–proton asymmetry, opposes the creation of nuclear matter with
excesses of either type of nucleon. The extent of the neutron skin is determined by the
relative strengths of the symmetry energy between the central near-saturation and
peripheral less-dense regions. Therefore, Rskin is a measure of the density dependence
of the symmetry energy around saturation [1–4]. This dependence is very important for
determining many nuclear properties, including masses, radii, and the location of drip lines
in the chart of nuclides. Its importance extends to astrophysics for understanding
supernovae and neutron stars [5, 6], and to heavy-ion reactions [7].

Given the rich physics packed in this observable, a large number of studies (both
experimental and theoretical) have been devoted to determining neutron skins [8, 9].
Whereas Rp is extracted quite accurately from elastic electron scattering cross sections
(through the charge form factor, Fch) [10] or laser spectroscopy [11], most experimental
determinations of Rn are model dependent [8]. The neutron skin can be determined with
essentially the same degree of model independence as Fch through parity-violating electron
scattering [9, 12]. The parity-violating asymmetries are governed by the weak form factor,
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FW, which is the Fourier transform of the weak distribution. The
weak distribution is predominantly determined by the neutron
distribution, owing to the weak charge of the neutron being of
order 1 and that of the proton being nearly 0. The first parity-
violating experiment performed by the PREX collaboration at
Jefferson Lab yielded a thick neutron skin of 208Pb with a rather
large uncertainty [13]. A second experiment, dubbed PREX-2, was
later performed, resulting in a 208Pb skin of R208

skin � 0.283 ± 0.071 fm
[14]. The following year, the CREX experiment extracted a much
smaller skin in 48Ca of R48

skin � 0.121 ± 0.026(exp) ± 0.024(model)
fm [15]. The large difference between the measured neutron skins in
48Ca and 208Pb has puzzled the nuclear-physics community since the
CREX result was published.

There currently exists no theory that predicts a thick skin in 208Pb
and a thin skin in 48Ca. All theoretical studies of these nuclei based on
a mean-field approach predict a strong, positive correlation between
the neutron skins of 208Pb and 48Ca; however, it has been argued that
the large error bars for PREX-2may not provide a stringent constraint
on the isovector part of energy density functionals [16]. Separate ab
initio approaches exist for both nuclei. In Ref. [17], a neutron skin for
48Ca that is consistent with the CREX experiment was predicted,
whereas the results of Refs. [18, 19] exhibit mild tension with the
PREX-2 results. Furthermore, studies of the relation between neutron
skins and the nuclear equation of state (EOS) conclude that these skins
are tightly correlated with the slope of the symmetry energy, L,
meaning that the EOS derived from the thin Rskin measured in
48Ca is incompatible with the EOS derived from the thick Rskin

measured in 208Pb. Through this relation to the nuclear EOS, these
differing neutron skin measurements even lead to tensions in exotic
astrophysical systems such as neutron stars [20]. More specifically,
mass–radius curves predicted from the two different Rskin-derived
EOS are incompatible with each other and even with observations.

In this article, we review an alternative theoretical method to
predict Rskin in 48Ca and 208Pb. We employed a dispersive optical
model (DOM) analysis of bound and scattering data to constrain the
nucleon self-energies, Σℓj, of 48Ca and 208Pb. The self-energy acts as a
complex and phenomenological nonlocal potential that unites the
nuclear structure and reaction domains [21–23] by leveraging
Green’s function theory. The DOM was originally developed by
Mahaux and Sartor [21], employing local real and imaginary
potentials connected through dispersion relations. However, only
with the introduction of nonlocality can realistic self-energies be
obtained [22, 23]. The Dyson equation then determines the single-
particle propagator, or Green’s function, Gℓj(r, r′;E), from which
bound-state and scattering observables can be deduced. In
particular, the particle number and density distributions of the
nucleons can be inferred, thus enabling the investigation of
neutron skins. The DOM treats both structure and reaction data
on the same footing, unlike mean-field or ab initio approaches
applied to these systems, providing a unique perspective on the Rskin

puzzle revealed by experiments at Jefferson Lab.
The underlying Green’s function ingredients of the single-

particle propagator are presented in Section 2.1, whereas the
DOM framework is introduced in Section 2.2. The DOM
description of relevant experimental data for 48Ca and 208Pb is
presented in Section 2.3. A discussion of the neutron skin results
for these nuclei is given in Section 3. Conclusions and some outlook
are presented in Section 4.

2 Theory

This section is organized to provide brief introductions into the
underlying theory of the DOM.

2.1 Single-particle propagator

The single-particle propagator describes the probability
amplitude for adding (removing) a particle in state α at one
time to the ground state and propagating on top of that state
until a later time when it is removed (added) in state β [24]. In
addition to the conserved orbital and total angular momentum (ℓ
and j, respectively), the labels α and β in Equation 1 refer to a
suitably chosen single-particle basis. We employed a coordinate-
space basis in our original 48Ca calculation in Ref. [25] but have
since updated to using a Lagrange basis [26] in all subsequent
calculations (including that of 208Pb from Ref. [27]). It is
convenient to work with the Fourier-transformed propagator in
the energy domain,

Gℓj α, β;E( ) � 〈ΨA
0 |aαℓj

1

E − Ĥ − EA
0( ) + iη

a†βℓj|ΨA
0 〉

+ 〈ΨA
0 |a†βℓj

1

E − EA
0 − Ĥ( ) − iη

aαℓj|ΨA
0 〉,

(1)
with EA

0 representing the energy of the non-degenerate ground state
|ΨA

0 〉. Many interactions can occur between the addition and
removal of the particle (or vice versa), all of which need to be
considered to calculate the propagator. No assumptions about the
detailed form of the Hamiltonian Ĥ need be made for the present
discussion, but it will be assumed that a meaningful Hamiltonian
exists that contains two-body and three-body contributions. The
application of the perturbation theory then leads to the Dyson
equation [24], which is given by

Gℓj α, β;E( ) � G 0( )
ℓ

α, β;E( )
+∑

γ,δ

G 0( )
ℓ

α, γ;E( )Σℓj* γ, δ;E( )Gℓj δ, β;E( ), (2)

where G(0)
ℓ
(α, β;E) corresponds to the unperturbed propagator (the

propagator derived from the unperturbed Hamiltonian, H0, which
in the DOM corresponds to the kinetic energy) and Σℓj* (γ, δ;E) is
the irreducible self-energy [24]. The hole spectral density for
energies below εF is obtained from

Sh
ℓj α, β;E( ) � 1

π
Im Gℓj α, β;E( ), (3)

where the h superscript signifies it is the hole spectral amplitude. For
brevity, we drop this superscript for the rest of this review. The
diagonal element of Equation 3 is known as the (hole) spectral
function identifying the probability density for the removal of a
single-particle state with quantum numbers αℓj at energy E. The
single-particle density distribution can be calculated from the hole
spectral function in the following way,

ρ
p,n( )

ℓj r( ) � ∑
ℓj

2j + 1( )∫εF

−∞
dE S

p,n( )
ℓj r, r;E( ), (4)
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where the (p, n) superscript refers to protons or neutrons, and εF �
1
2 (EA+1

0 − EA−1
0 ) is the average Fermi energy which separates the

particle and hole domains [24]. The number of protons and
neutrons (Z,N) is calculated by integrating ρ(p,n)

ℓj (r) over all
space. In addition to the particle number, the total binding
energy can be calculated from the hole spectral function using
the Migdal–Galitski sum rule [24],

EN,Z
0 � 1

2
∑
αβ

∫εF

0
dE 〈α|T̂|β〉Sh α, β;E( ) + δαβES

h α, α;E( )[ ]. (5)

This expression assumes that the dominant contribution
involves the two-nucleon interaction [28, 29] and the ℓj labels
have been subsumed in α and β.

To visualize the spectral function of Equation 3, it is useful to
sum (or integrate) over the basis variables, α, so that only energy
dependence remains, Sℓj(E). The spectral strength Sℓj(E) is the
contribution at energy E to the occupation from all orbitals with
angular momentum ℓj. It reveals that the strength for a shell can be
fragmented, rather than being isolated at the independent particle
model (IPM) energy levels. Figure 1 shows the spectral strength for
a representative set of neutron shells in 208Pb that would be
considered bound and fully occupied in the IPM. The location
of the peaks in Figure 1 corresponds to the energies of discrete
bound states with one nucleon removed. For example, the s1/2
spectral function in Figure 1 has four peaks, three below εF
corresponding to the 0s1/2, 1s1/2, and 2s1/2 quasihole states,
and one above εF corresponding to the 3s1/2 quasiparticle state.
The quasihole wave functions of these bound states can be
obtained by transforming the Dyson equation into a nonlocal
Schrödinger-like equation by disregarding the imaginary part
of Σ*(α, β;E),

∑
γ

〈α|Tℓ + Re Σℓj* εn
ℓj( )|γ〉ψn

ℓj γ( ) � εn
ℓjψ

n
ℓj α( ), (6)

where 〈α|Tℓ|γ〉 is the kinetic energy matrix element, including the
centrifugal term. The wave function, ψn

ℓj(α), is the overlap between
the A and A − 1 systems and the corresponding energy, εn

ℓj, is the

energy required to remove a nucleon with the particular quantum
numbers nℓj,

ψn
ℓj α( ) � 〈ΨA−1

n |aαℓj|ΨA
0 〉, εn

ℓj � EA
0 − EA−1

n . (7)

When solutions to Equation 6 are found near the Fermi energy
where there is naturally no imaginary part of the self-energy, the
normalization of the quasihole is well defined as the
spectroscopic factor,

Zn
ℓj � 1 − ∂Σℓj* αqh, αqh;E( )

∂E

∣∣∣∣∣∣∣∣∣∣
εn
ℓj

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠
−1

, (8)

where αqh corresponds to the quasihole state in Equation 7. The
quasihole peaks in Figure 1 get narrower as the levels approach εF,
which is a consequence of the imaginary part of the irreducible self-
energy decreasing when approaching εF. In fact, the last mostly
occupied neutron level in Figure 1 (2p1/2) has a spectral function
that is essentially a delta function peaked at its energy level, where
the imaginary part of the self-energy vanishes. For these orbitals, the
strength of the spectral function at the peak corresponds to the
spectroscopic factor in Equation 8. The spectroscopic factor can be
probed using the exclusive (e, e′p) reaction which will be discussed
in Section 2.4 (see also Refs. [31, 32]).

2.2 Dispersive optical model

The Dyson equation, Equation 2, simplifies the complicated task
of calculating G(α, β;E) from Equation 1 to finding and inverting a
suitable Σ*(α, β;E) (suppressing the ℓj labels). It was recognized
long ago that Σ*(α, β;E) represents the potential that describes
elastic-scattering observables [33]. The link with the potential at
negative energy is then provided by the Green’s function framework
as was realized by Mahaux and Sartor who introduced the DOM as
reviewed in Ref. [21]. The analytic structure of the nucleon self-
energy allows one to apply the dispersion relation, which relates the
real part of the self-energy at a given energy to a dispersion integral

FIGURE 1
Neutron spectral functions of a representative set of ℓj shells in 208Pb. The particle states are differentiated from the hole states by the vertical dashed
line which corresponds to the location of the Fermi energy. Figure adapted from Ref. [30].
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of its imaginary part over all energies. The energy-independent
correlated Hartree–Fock (HF) contribution [24] is removed by
employing a subtracted dispersion relation with the Fermi energy
used as the subtraction point [21]. The subtracted form has the
further advantage that the emphasis is placed on energies closer to
the Fermi energy for which more experimental data are available.
The real part of the self-energy at the Fermi energy is then still
referred to as the HF term and is sufficiently attractive to bind the
relevant levels at about the correct energies. In practice, the
imaginary part is assumed to extend to the Fermi energy on both
sides while being very small in its vicinity. The subtracted form of the
dispersion relation employed in this work is given by

Re Σ* α, β;E( )� Re Σ* α, β; εF( )
−P∫∞

εF

dE′
π

Im Σ* α, β;E′( ) 1
E − E′ −

1
εF − E′[ ]

+P∫εF

−∞
dE′
π

Im Σ* α, β;E′( ) 1
E − E′ −

1
εF − E′[ ],

(9)
where P is the principal value. The static term, ReΣ*(α, β; εF), is
denoted by ΣHF from here on. Equation 9 constrains the real part of
Σ*(α, β;E) by empirical information of its HF and imaginary parts
which are closely tied to experimental data. Initially, standard
functional forms for these terms were introduced by Mahaux and
Sartor who also cast the DOM potential in a local form by a standard
transformation which turns a nonlocal static HF potential into an
energy-dependent local potential [34]. Such an analysis was
extended in Refs. [35, 36] to a sequence of Ca isotopes and in
Ref. [37] to semi-closed-shell nuclei heavier than Ca. The
transformation to the exclusive use of local potentials precludes a
proper calculation of the nucleon particle number and expectation
values of the one-body operators, like the charge density in the
ground state (see Equation 4). This obstacle was eliminated in Ref.
[38], but it was shown that the introduction of nonlocality in the
imaginary part was still necessary in order to accurately account for
particle number and the charge density [22]. Theoretical work
provided further support for this introduction of a nonlocal
representation of the imaginary part of the self-energy [39, 40].
A review detailing these developments was published in Ref. [23].

2.2.1 Functional form of DOM self-energy
We employ a nonlocal representation of the self-energy

following Ref. [22] where ΣHF(r, r′) and Im Σ(r, r′;E) are
parametrized and the energy dependence of the real part,
Re Σ(r, r′;E), is generated from the dispersion relation in
Equation 9. The HF term consists of a volume term, spin-orbit
term, and a wine-bottle-shaped term [41],

ΣHF r, r′( ) � Vvol r, r′( ) + Vso r, r′( ) + Vwb r, r′( ) + δ r − r′( )VC r( ),
(10)

where the Coulomb potential, VC(r), is also included. The radial
part of our potentials takes the following form,

Vvol r, r′( ) � Vvol f ~r, rHF
p,n( ), aHF( )H s; βHF( ), (11)

where Vvol is a parameter that determines the depth of the potential,
and rHF

(p,n), a
HF, and βHF are parameters that control the shape of the

Woods-Saxon form factor f and Perey–Buck-shaped [34]
nonlocality H,

f r, ri, ai( ) � 1 + exp
r − riA1/3

ai
( )[ ]−1

H s; β( ) � exp −s2/β2( )/ π3/2β3( ), (12)

and

~r � r + r′
2

s � r − r′. (13)

Nonlocality is introduced in a similar way for Vwb(r, r′) and
Vso(r, r′); their explicit forms are similar to those in Equations
10–13 and can be found in Ref. [30]. The imaginary self-energy
consists of volume, surface, and spin-orbit terms,

ImΣ r, r′;E( ) � −Wvol
0± E( )f ~r; rvol± ; avol±( )H s; βvol( )

+ 4 asur± Wsur
± E( )H s; βsur( ) d

d~r
f ~r, rsur± , asur±( )

+ImΣso r, r′;E( ), (14)
where Wvol

0± (E) and Wsur
± (E) are energy-dependent depths of the

volume and surface potentials, respectively, and the ± subscript
indicates there are different forms used above and below the Fermi
energy (see Ref. [30] for exact forms). When considering
asymmetric nuclei, such as 48Ca and 208Pb, additional terms
proportional to the asymmetry, αasy � N−Z

A , are added to
ΣHF(r, r′) and ImΣ(r, r′;E) for a Lane-like representation [42].
These asymmetric terms introduce additional parameters describing
both their radial shape and energy-dependent depths [30] (see Refs.
[30, 32] for the full list of parameters used in 48Ca and 208Pb).

As mentioned previously, it was customary in the past to replace
nonlocal potentials by local, energy-dependent potentials [21, 24, 34,
43]. The introduction of an energy dependence alters the dispersive
correction from Equation (9) and distorts the normalization, leading
to incorrect spectral functions and related quantities [38]. Thus, a
nonlocal implementation permits the self-energy to accurately
reproduce important observables such as charge density, particle
number, and ground-state binding energy.

2.3 DOM fits of 208Pb and 48Ca

To use the DOM self-energy for predictions, the parameters of the
self-energy are constrained through weighted χ2 minimization (using
the Powell method [44]) by measurements of elastic differential cross
sections (dσ

dΩ), analyzing powers (Aθ), reaction cross sections (σreact),
total cross sections (σtot), charge density (ρch), energy levels (εnℓj),
particle number, and the root-mean-square charge radius (Rch). The
angular dependence of Σ(r, r′;E) is represented in a partial-wave
basis, and the radial component is represented in a Lagrange basis
using Legendre and Laguerre polynomials for scattering and bound
states, respectively. The bound states are found by diagonalizing the
Hamiltonian in Equation 6 and the propagator is found by inverting
the Dyson equation, Equation 2, whereas all scattering calculations are
performed in the framework of R-matrix theory [26]. Whereas it has
been suggested in Refs. [45–47] that charge-exchange reactions to
isobaric analog states could further constrain the isovector potential,
charge-exchange data were not included in the fits reviewed in this
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article. Reasonable cross sections are obtained with our DOM
potential, suggesting that these data, although important, are not
sufficient to alter the conclusions of our work significantly. This may
be due to the use of nonlocal potentials as opposed to the local ones
used in Refs. [45, 46] based on Ref. [48].

When constraining the 48Ca self-energy, the isoscalar part is
largely determined by the nearby N � Z 48Ca nucleus. Therefore,
using our 40Ca parametrization from Ref. [31] as a starting point, we
only needed to fit the asymmetric parameters of the 48Ca potential

[25, 30]. This resulted in a 48Ca self-energy that closely reproduced
all training data [25]. In the case of 208Pb, there is not a nearby
nucleus withN � Z; therefore, we started from the 48Ca parameters
of Ref. [32] and varied both the isoscalar and isovector parameters to
reproduce experimental data. To illustrate how well this method
works, we show the result of the 208Pb fit below.

Proton reaction cross sections together with the DOM result are
displayed in panel (a) of Figure 2. The neutron total cross section is
shown in panel (b) of Figure 2. Both aggregate cross sections play an

FIGURE 2
(A) Proton reaction cross section in 208Pb. The solid line is generated from the DOM self-energy, whereas the filled circles are from the experiment.
(B)Neutron total cross section in 208Pb. The solid line is generated from the DOM self-energy for 208Pb, whereas the filled circles are from the experiment
(see Ref. [37] for the experimental data. Figure adapted from Ref. [30]).

FIGURE 3
(A)Calculated and experimental proton and neutron elastic-scattering angular distributions of the differential cross section dσ

dΩ for 208Pb ranging from
10 MeV to 200 MeV. The data at each energy are offset by factors of ten to help visualize all of the data at once. (B) Results for proton and neutron
analyzing power generated from the DOM self-energy for 208Pb compared with experimental data ranging from 10 MeV to 200 MeV. References to the
data are given in Ref. [37]. Figure adapted from Ref. [30].
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important role in determining volume integrals of the imaginary
part of the self-energy, thereby providing strong constraints on the
depletion of IPM orbits. The elastic differential cross sections of
proton and neutrons up to 200 MeV are shown in panel (a) of
Figure 3. Panel (b) contains the analyzing powers for neutrons and
protons which strongly constrain the spin-orbit components of the
self-energy.

The charge density of 208Pb is shown in panel (a) of Figure 4. The
experimental band is extracted from elastic electron scattering

differential cross sections [49]. This dataset is well reproduced
after using the DOM charge density from Figure 4 as the
ingredient in a relativistic elastic electron scattering code [52].
The corresponding elastic electron scattering cross section is
shown in panel (b) of Figure 4 and compared to experiment with
all available data transformed to electron energy of 502 MeV in the
center-of-mass frame [51].

In Figure 5, single-particle levels calculated using Equation 6 are
compared to the experimental values for protons and neutrons in

FIGURE 4
(A) Experimental and fitted 208Pb charge density. The solid black line is calculated using Equation 4 and folding with the proton charge distribution,
whereas the experimental band represents the 1% error associated with the extracted charge density from elastic electron scattering experiments using
the sum of Gaussians parametrization [49, 50]. Also shown is the deduced weak charge distribution, ρw (red long-dashed line), and neutron matter
distribution, ρn (blue short-dashed line). (B) Experimental and fitted elastic electron scattering differential cross section in 208Pb. All available data
have been transformed to an electron energy of 502 MeV in the center-of-mass frame [51]. Figure adapted from Ref. [30].

FIGURE 5
(A) Proton and (B) neutron energy levels in 208Pb. The energies on the left are calculated using only the static part of the DOM self-energy,
corresponding to a Hartree–Fock calculation. The middle energies are those calculated using the full DOM self-energy. The energies on the right
correspond to the experimental values. The change from the left energies to the middle energies is the result of including the dynamic part of the self-
energy. Figure adapted from Ref. [30].
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panels (a) and (b), respectively. The middle column consists of levels
calculated using the full DOM and the right column contains the
experimental levels. The first column of the figures represents a
calculation using only the static part of the self-energy,
corresponding to the Hartree–Fock (mean-field) contribution. It
is clear from these level diagrams that the mean-field overestimates
the particle-hole gap (see also Ref. [53]). The inclusion of the
dynamic part of the self-energy is necessary to reduce this gap
and properly describe the energy levels [21]. Furthermore, the effect
of including the dynamic part of the self-energy on the proton levels
is stronger than the effect on the neutron levels. This suggests that
protons deviate more from the IPM than neutrons in 208Pb.

The number of neutrons and protons in the DOM fit of 208Pb,
calculated by integrating Equation 4 using shells up to ℓ ≤ 20, is
shown in Table 1. As there are 82 protons and 126 neutrons in 208Pb,
the reported values are accurate to within a fraction of a percent. The
binding energy of 208Pb was fit to the experimental value using
Equation 5. As there is no way at present to assess the contribution of
three-body interactions to the ground-state energy, we employ the
present approximation which applies when only two-body
interactions occur in the Hamiltonian, to ensure that enough
spectral strength occurs at negative energy which has
implications for the presence of high-momentum components.
Also shown in Table 1 is R208

ch calculated as the RMS radius of
the charge density displayed in Figure 4.

The reproduction of all available experimental data indicates
that we have realistic self-energies of 208Pb and similarly for 48Ca [25,
32] capable of describing both bound-state and scattering processes.
With these self-energies, we can therefore make predictions of
observables such as the neutron skin. Additionally, a parallel
DOM analysis of these and other nuclei was conducted using
Markov Chain Monte Carlo (MCMC) to optimize the potential
parameters employing the same experimental data and a very
similar functional form but with a reduced number of
parameters. All observables from this MCMC fit fell within one
standard deviation of those presented above [55, 56].

2.4 DOM predictions

Spectroscopic factors come directly from the self-energy through
Equation 8, making the DOM ideal for predicting (e, e′p) cross
sections (see the 40Ca(e, e′p)39K analysis in Ref. [31]). When we
tried to calculate 48Ca(e, e′p)47K using the fit fromRef. [25], we found
that the spectroscopic factors were too large to describe the data.
Unlike in 40Ca, there is a lack of high-energy (E> 100 MeV) proton
reaction cross-sectional data in 48Ca. This allowed the fit of Ref. [25] to
predict proton reaction cross sections which fell off for higher
energies. Consequentially, the 48Ca proton spectroscopic factors

were too large to describe 48Ca(e, e′p)47K data to the same degree
of accuracy achieved for 40Ca [31]. Observing forEc.m. > 150MeV that
σreact(E) is close to constant, we used the ratio of σreact(E)
measurements of 40Ca and 48Ca at 700 MeV [57] to scale the 40Ca
σreact(E) data such that it could be used as a constraint for 48Ca.
Thanks to the dispersion relation, Equation 9, the increased
ImΣ(r, r′;E) to accommodate higher reaction cross sections at
positive energies pulls strength from below εF. This reduced the
spectroscopic factors which then allowed for accurate descriptions
of 48Ca(e, e′p)47K cross sections [32]. This only altered the proton
parameters; thus, the neutron skin remained unchanged at Rskin �
0.25 fm. This demonstrates that once a sufficiently complete set of
data is used, the DOM is capable of making accurate predictions.

The valence spectroscopic factors in 208Pb are consistent with the
observations of Ref. [58] and the interpretation of Ref. [59]. The past
extraction of spectroscopic factors using the (e, e′p) reaction yielded
a value around 0.65 for the valence 2s1/2 orbit [60] based on the
results of Refs. [61, 62]. Although the use of nonlocal optical
potentials may slightly increase this value as shown in Ref. [31],
it may be concluded that the value of 0.69 obtained from the DOM
analysis is consistent with the past result. Nikhef data obtained in a
large missing energy and momentum domain [63] can now be
consistently analyzed employing the complete DOM
spectral functions.

Correlations can also be studied through the momentum
distribution, n(k), which represents the diagonal of the double
Fourier transform of the single-particle density matrix. The
calculated DOM momentum distributions of 48Ca and 208Pb are
shown in Figure 6. The high-momentum tail of n(k) arises from
short-range correlations (SRCs), which is another manifestation of
many-body correlations beyond the IPM description of the nucleus
[64]. This high-momentum content can be quantified by integrating
the momentum distribution above the Fermi momentum. Using
kF � 270 MeV/c, 13.4% of protons and 10.7% of neutrons have
momenta greater than kF in 208Pb, whereas 48Ca has 14.6% high-k
protons and 12.6% high-k neutrons. These numbers are in
qualitative agreement with what is observed in the high-
momentum knockout experiments conducted by the CLAS
collaboration at Jefferson Lab [65]. Furthermore, the fraction of
high-momentum protons is larger than the fraction of high-
momentum neutrons. These features were predicted by ab initio
calculations of asymmetric nuclear matter reported in Refs. [66–68]
which demonstrated unambiguously that the inclusion of the
nucleon–nucleon tensor force, when constrained by
nucleon–nucleon scattering data, is responsible for making
protons more correlated with increasing nucleon asymmetry at
normal density. This supports the np-dominance picture in
which the dominant contribution to SRC pairs comes from np
SRC pairs which arise from the tensor force in the nucleon–nucleon
interaction [69, 70]. Due to the neutron excess in 208Pb and 48Ca,
there are more neutrons available to make np SRC pairs which lead
to an increase in the fraction of high-momentum protons.

In the DOM, this high-momentum content is determined by
how much strength exists in the hole spectral function at large,
negative energies. The hole spectral function is constrained in the fit
by the particle number, binding energy, and charge density.Whereas
the particle number and charge density can only constrain the total
strength of the hole spectral function, the binding energy constrains

TABLE 1 Comparison of the calculated DOM particle numbers and binding
energy of 208Pb and the corresponding experimental values. The
experimental binding energy was taken from Ref. [54]. The experimental
charge radius is from Ref. [49].

N Z EA
0/A [MeV] Rch [fm]

DOM 126.2 82.08 −7.82 5.48

Expt 126 82 −7.87 5.50
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how the strength of the spectral function is distributed in energy.
This arises from the energy-weighted integral in Equation 5, which
will push strength of the spectral function to more negative energies
in order to achieve more binding. This, in turn, alters the
momentum distribution, thus partially constraining the high-
momentum content. It should be noted that the DOM does not
exhibit the characteristic energy dependence of high-momentum
strength distributions [71] as reported in Ref. [22]. Such a
dependence is more difficult to be implemented as it requires
abandoning the factorization of spatial and energy dependence of
the DOM self-energy (see Equation 14).

3 Neutron skin

As demonstrated in the previous section, our constrained self-
energies for 48Ca and 208Pb utilize both scattering and bound-state

data for a robust picture of nuclei. These fits resulted in thick skins in
both 48Ca, RDOM48

skin � 0.25 ± 0.023 fm, and 208Pb, RDOM208
skin �

0.25 ± 0.05 fm using the uncertainty quantification clarified in
Refs. [25, 30]. These results are represented by the shaded box
labeled DOM in Figure 7 which is north of the overlapping regions
of CREX and PREX-2 (see dashed rectangle). Also included in
Figure 7 is the coupled-cluster result for 48Ca from Ref. [17] as a
horizontal band, the ab initio results for 208Pb reported in Refs. [18,
19] as a vertical band, and both relativistic and non-relativistic
mean-field calculations represented by squares and circles,
respectively [72].

At the time of our calculations, CREX had not been reported and
only the first PREX experiment with large uncertainty had been
reported, meaning that there was not an easy metric to gauge the
accuracy of our predictions. Therefore, we took advantage of the
unique characteristic of the DOM to explore which measurements,
in either the bound or scattering domains, provide signatures of the
neutron skin. To accomplish this, additional 48Ca fits were
performed in which selected values of Rn are forced (i.e., heavily
weighted) in the corresponding χ2 minimization [23]. This is
achieved by varying the radius parameters of the main real
potential (rHF

n and rHFasy
n [25]) and refitting the other

asymmetry-dependent parameters. The weighted χ2 as a function
of the calculated Rn is plotted as the points (traced by the solid black
line) in Figure 8C and the absolute minimum at Rn = 3.67 fm
corresponds to the skin thickness of Rskin � 0.25 fm. There is some
fine-scale jitter in the variation of χ2 with Rn. To concentrate on the
larger-scale variation, the data points shown in Figure 8C are local
averages with the error bars giving the range of the jitter.

The location of the ab initio coupled-cluster result [17] is also
indicated at Rn ~3.56 fm as a blue square. The shown χ2 has been
subdivided into its contributions from its two most important
components (dashed curves): the elastic-scattering angular
distributions and the total neutron cross sections. The former has
a smaller sensitivity to Rn, and its χ2 is slightly lower for the smaller
values of Rn, which are more consistent with the ab initio and CREX
results as illustrated in Figure 8A where a fit with a forced value of
Rskin = 0.132 is compared to the best DOM fit and to the data.
Whereas this alternative calculation improves the reproduction of
these data, the deviations of both curves from the data are typical of
what one sees in global optical-model fits. In addition, the available

FIGURE 6
Comparison of calculated DOM momentum distributions of protons (solid blue line) and neutrons (dashed red line). The vertical dotted line marks
the location of kF . (A) Momentum distributions in 208Pb. (B) Momentum distributions in 48Ca. Figure adapted from Refs. [30, 32].

FIGURE 7
Dashed rectangle represents the CREX and PREX-2 analysis [73,
74]. The shaded rectangle labeled DOM represents the DOM results
for 208Pb and 48Ca [25, 30]. Smaller squares and circles refer to
relativistic and non-relativistic mean-field calculations,
respectively, cited in Ref. [72]. The ab initio predictions from Ref. [17]
for 48Ca and Refs. [18, 19] for 208Pb are represented by horizontal and
vertical bands labeled ab initio, respectively. All uncertainties are
reported at the 1σ level. Figure adapted from Refs. [30, 72].
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experimental angular distributions only cover a small range of
bombarding energies (7.97–16.8 MeV) and may not be typical of
other energies.

The total cross section exhibits larger sensitivity and the
experimental data cover a large range of neutron energies
(6–200 MeV). Two datasets are available (circles and diamonds
in Figure 8B) but are inconsistent by ~10% at Elab ~10 MeV, where
their ranges overlap. The high-energy dataset [77] (circles) was used
in the DOM fit as it was obtained with 48Ca metal, whereas the low-
energy set [76] (diamonds) employed 48CaCO3 and required a
subtraction of ~70% of the signal due to neutron absorption
from the CO3 component. Therefore, the χ2 contribution is
displayed only from the high-energy set. This χ2 exhibits a broad
minimum from Rn = 3.66 to 3.75 fm, allowing values of Rskin up
to 0.33 fm.

It appeared that the total cross section provided a strong
constraint on the neutron skin (as an example of a scattering
observable that can affect bound-state observables through the
dispersion relation). Faced with the thin skin reported by CREX,
it appears that we did not attribute enough uncertainty in the total
cross-sectional data to allow a wider range of skin values. This
concept will be explored in future DOM investigations of R48

skin in
which the CREX measurement is included in the fit. It is possible
that increasing the uncertainty in the high-energy σtot data would
allow for skin values consistent with CREX (i.e., the blue square in

Figure 8C) to have χ2 values comparable to those of the current
DOM fit. Furthermore, similar to the analysis that resulted in
Figure 8, it will be interesting to see how the CREX constraint
alters other aspects of the DOM self-energy, even non-observables
features such as the shape of the spectral functions (see Figure 1) and
the momentum distributions (see Figure 6).

Provided with a sufficiently complete set of data, which is the
case for protons in 48Ca, the DOM framework allows for accurate
predictions (see Sec. 2.4). The thin skin of CREX demonstrates that,
unlike protons, there are not sufficient experimental data for
neutrons in 48Ca to accurately predict the neutron skin. The
number of proton elastic-scattering datasets at different energies
shown for 208Pb in Figure 3 is representative of p+48Ca, whereas the
three datasets in Figure 8A display all available data for n+48Ca
elastic-scattering. Furthermore, there are only neutron total cross-
sectional data, and no reaction cross-sectional data exist at any
energy in 48Ca. Thus, even at positive energies, the DOM neutrons
are not constrained nearly as well as protons. With more neutron
scattering data in 48Ca, the DOM could provide a better prediction of
R48
skin. Furthermore, the inclusion of the CREX data point will

provide a much needed constraint below the Fermi energy,
bringing the neutron dataset closer to “completeness” (in the
sense of constraining the DOM).

To accommodate the thin skin extracted by CREX, one would
expect the distribution of neutrons to favor a configuration with

FIGURE 8
(A) Comparison of experimental n+48Ca elastic-scattering angular distributions [37, 75] to the best DOM fit of all data (solid curves) and to a
constrained fit with the skin thickness forced to Rskin = 0.132 fm (dashed curves) consistent with the ab initio and CREX values. (B) Comparison of the
experimental total neutron cross sections of 48Ca (diamonds [76], circles [77]) to DOM fits with constrained values of Rn . (C) χ2 from fitting all data (solid
curve) and its contribution from fitting the elastic-scattering angular distributions and total neutron cross section (dotted and dashed curves,
respectively). Each point corresponds to a fit around its value of Rn . Figure adapted from Ref. [25].
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more neutrons in the interior of 48Ca. This concentration of
neutrons near the origin implies an increase in the fraction of
high-momentum neutrons, thanks to the Heisenberg uncertainty
principle. This could lead to a larger percentage of high-momentum
neutrons than protons, which would be a departure from the current
DOM picture (see Figure 6) as well as from the evidence suggested
by the CLAS experiments on other asymmetric nuclei. It could turn
out that the size of 48Ca is inadequate to apply bulk nuclear
properties to. We observed this in Ref. [28], where we consider
the interiors of 48Ca and 208Pb as representing saturated nuclear
matter. We found that the smaller size of 48Ca than that of 208Pb is
harder to connect with saturated nuclear matter.

The neutron and proton point distributions in 208Pb and 48Ca,
weighted by r4 and normalized by particle number, are shown in
Figure 9 The difference between proton and neutron distributions
is highlighted by the r4 factor which is employed when integrating
the particle distributions to calculate the RMS radii. The DOM
predictions of the neutron skin of 40Ca, 48Ca, and 208Pb are shown
in Table 2, where it is evident that the DOM neutron skins of 48Ca
and 208Pb are very similar. As 208Pb and 48Ca are similar αasy (see
Table 2), it may seem reasonable that they have similar neutron

skins. However, the particle distributions of 208Pb and 48Ca in
Figure 9, even though normalized by particle number, are quite
distinct due to the size difference of the nuclei. In light of this, the
neutron skin of 208Pb is biased to be larger by the increase in the
RMS radii of the proton and neutron distributions. Thus, an
interesting comparison can be made by normalizing Rskin by Rp,

~Rskin � 1
Rp

Rskin � Rn

Rp
− 1, (15)

where ~Rskin is the normalized neutron skin thickness. This
normalization serves to remove size dependence when
comparing neutron skins of different nuclei. The result of the
normalization in Equation 15 is shown in Table 2. The difference
between the normalized skins of 208Pb and 48Ca in Table 2 reveals
that the RMS radius of the neutron distribution does not simply
scale by the size of the nucleus for nuclei with similar
asymmetries. Although it is true that the nuclear charge radius
scales roughly by A1/3 (and by extension so does Rp), the same
cannot be said about Rn.

If one is to scale by the size of the nucleus, then the extension of
the proton distribution due to Coulomb repulsion (which scales with
the number of protons) should also be considered. As 208Pb has four
times as many protons as 48Ca, the effect of Coulomb repulsion on
the neutron skin of 208Pb could be up to four times more than its
effect on the 48Ca neutron skin, which can reasonably be taken from
the predicted skin of −0.06 fm in 40Ca. In order to further investigate
the effects of the Coulomb force on the neutron skin, we removed
the Coulomb potential from the DOM self-energy. In doing this, the
quasihole energy levels become much more bound, which increases
the number of protons. To account for this, we shifted εF such that it
remains between the particle-hole gap of the protons in 208Pb,
corresponding to a shift of 19 MeV. Removing the effects of the
Coulomb potential leads to an increased neutron skin of 0.38 fm.
The results of the normalized neutron skins with Coulomb removed
are listed in Table 2 for each nucleus, where it is clear that the
Coulomb potential has a strong effect on the neutron skin. This
points to the fact that the formation of a neutron skin cannot be
explained by the asymmetry alone. Whereas the asymmetry in 48Ca
is primarily caused by the additional neutrons in the f7/2 shell, there
are several different additional shell fillings between the neutrons
and protons in 208Pb. It is evident that these shell effects make it
more difficult to predict the formation of the neutron skin based on
macroscopic properties alone.

4 Conclusion

We have reviewed a nonlocal dispersive optical-model analysis
of 48Ca and 208Pb in which we fit elastic-scattering angular
distributions, absorption and total cross sections, single-particle
energies, charge densities, ground-state binding energies, and
particle numbers. When sufficient data are available to
constrain our self-energies, the DOM is capable of accurate
predictions. With our well-constrained self-energies, we report
non-negligible high-momentum content in both 48Ca and 208Pb,
which is consistent with the experimental observations at JLAB
[64, 65, 69]. Spectroscopic factors are automatically generated and
reproduce 48Ca(e, e′p)47K experimental momentum distributions

FIGURE 9
Neutron (red solid line) and proton (blue dashed line) point
distributions in 208Pb and 48Ca weighted by r4 while normalized to
particle number. Figure adapted from Ref. [30].

TABLE 2 DOM predicted neutron skins for 40Ca,48Ca, and208Pb. Also shown
are the neutron skins normalized by Rp, denoted as ~Rskin, as well as neutron
skins with the Coulomb potential removed from the self-energy, denoted
as RnoC

skin . The last entry is the normalized neutron skin with Coulomb

removed, ~R
noC
skin .

Nucleus 40Ca 48Ca 208Pb

αasy 0 0.167 0.211

Rp 3.39 fm 3.38 fm 5.45 fm

Rn 3.33 fm 3.63 ± 0.023 fm 5.70 ± 0.05 fm

Rskin −0.06 fm 0.25 ± 0.023 fm 0.25 ± 0.05 fm

~Rskin −0.017 0.070 ± 0.0067 0.046 ± 0.0092

RnoC
skin 0 fm 0.309 ± 0.023 fm 0.380 ± 0.05 fm

~R
noC
skin

0 0.089 ± 0.0067 0.070 ± 0.0092
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and those predicted in 208Pb appear consistent with the most up-
to-date analysis of the (e, e′p) reaction for the last valence proton
orbit [60]. Furthermore, these spectroscopic factors explain the
reduction of the form factors of high spin states obtained in
inelastic electron scattering [58], lending support to the
interpretation of Ref. [59]. The thick skin predicted in 208Pb
(R208

skin � 0.25 ± 0.05) is in agreement with PREX-2, whereas that
predicted in 48Ca (R48

skin � 0.25 ± 0.023) is not consistent with
CREX. With more neutron scattering data in 48Ca, the DOM
could provide a better prediction of R48

skin. Including the CREX
result in a DOM fit of 48Ca would provide a much needed
constraint, bringing the neutron dataset closer to “completeness.”

To reproduce the reduced neutron RMS radius reported by
CREX, we expect that the neutron distribution in 48Ca would shrink
such that more neutrons concentrate in the interior of 48Ca. This
redistribution would translate to increased high-momentum
neutrons which could invert the hierarchy of the current DOM
fit in which there is a higher percentage of high-momentum protons
than neutrons (see Figure 6), counter to the evidence suggested by
the CLAS experiments on other asymmetric nuclei [65, 69].
Currently, this is speculation, but we are exploring new DOM fits
using CREX as an additional constraint so we can reach a better
understanding. We must also consider the possibility that the size of
48Ca is inadequate for extracting/applying bulk nuclear properties.
The shell-closure of the f7/2 neutrons in 48Ca, for example, could be
playing a stronger role in the formation of the skin than the EOS.
Similarly, it is possible that this np dominance picture is distorted by
finite-nucleus effects that are not negligible in 48Ca. The DOM
provides a unique perspective of the nucleus in that we can link these
entirely different measurements through the dispersion relation in
order to reach a deeper understanding of the relation between the
EOS (and hence exotic objects such as neutron stars) and
finite nuclei.

The DOM analysis provides an alternative approach to the
multitude of mean-field calculations that provide a large variety
of results for the neutron skins of 48Ca and 208Pb [72] while also
contrasting with the ab initio result of Ref. [17] for 48Ca and Refs.
[18, 19] for 208Pb. The experiments employing parity-violating
elastic electron scattering on these nuclei [14, 15] therefore
remain the most unambiguous approach to determine the
neutron skin. A systematic study of more nuclei with similar
asymmetry, αasy, to 208Pb and 48Ca would help in determining
the details of the formation of the neutron skin. This will lead to
a better understanding of the EOS, which is vital in the current
multi-messenger era onset by the first direct detection of a neutron
star merger [78].
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