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With the rapid advancement of information technology and intelligent systems,
autonomous driving has garnered significant attention and research in recent
years. Key technologies, such as Simultaneous Localization and Mapping (SLAM),
Perception and Localization, and Scene Segmentation, have proven to be
essential in this field. These technologies not only evolve independently, each
with its own research focus and application paths, but also complement and rely
on one another in various complex autonomous driving scenarios. This paper
provides a comprehensive review of the development and current state of these
technologies, along with a forecast of their future trends.

KEYWORDS

autonomous driving, simultaneous localization and mapping, perception and
localization, scene segmentation, deep learning

1 Introduction

Autonomous driving has developed rapidly in the past 2 decades and is now gradually
evolving towards full automation. The premise for autonomous vehicles to achieve high-
level tasks such as decision-making and planning is to obtain accurate self-state and
environmental perception information in various complex scenarios, among which
technologies such as Simultaneous Localization and Mapping (SLAM), Perception and
Localization, Point Cloud Completion and Scene Segmentation are crucial, as shown in
Figure 1. Specifically, SLAM is the basic framework for information association between
agents and the environment, which provides agents with the ability to construct and locate
real-time environment maps. Agents need to interact with the environment with a high
degree of autonomy, and the Perception and Localization technology of autonomous
driving systems is particularly critical. It covers a series of advanced functions from
environmental perception to precise autonomous positioning. Scene Segmentation
greatly enhances the agent’s understanding and adaptability to complex scenes by
performing detailed semantic analysis of the environment.

This paper will detail the development history, current implementation mechanisms
and their practical roles in autonomous driving and broader computer vision and 3D data
processing of these key technologies. Through in-depth analysis of the current situation and
challenges of these technologies, this paper aims to explore their development trends and
forecast how to improve the efficiency and intelligence level of the overall system through
technology integration. In addition, it will also predict the future development direction of
these technologies and their potential role in promoting the Frontier of automation and
intelligent technologies.
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2 Simultaneous Localization and
Mapping (SLAM)

2.1 Definition, basic principles and
development history of SLAM

Simultaneous Localization and Mapping (SLAM) is a
technology in which a robot estimates its own state (position,
speed, direction, sensor bias, etc.) in an unknown environment,
and simultaneously constructs its motion environment based on
sensor perception information. Over the past 30 years, there were
many significant progress made in SLAM field which has been
widely used in many industries. The basic principles and
development of visual SLAM, laser SLAM and multi-sensor
fusion SLAM in the order of different main sensors will be
introduced in this section. The specific development route is
shown in Figure 2. Due to the widespread application of the
fusion of Inertial Measurement Unit (IMU) and SLAM, the
development of such applications is also described in 2.1.1 and 2.1.2.

2.1.1 Visual SLAM
In the early stage of visual SLAM research, most of them belong

to filtering-basedmethods, such as EKF-basedMonoSLAM [1], tight
coupling system composed of IMU and monocular camera [2]
which realize real-time operation for the first time. Mourikis

et al. [3] proposed the famous MSCKF based on the
conventional EKF (Extended Kalman Filter). The state vector of
MSCKF contains multiple camera states, and the measurement of
the same feature point is used to define constraints between two or
more camera poses. When some specific conditions are met, these
constraints are used for filter updates. Compared with the
conventional EKF method, the advantage of the MSCKF method
is to maintain only one state variable with low dimension, and no
longer store the coordinate information of map points, so as to
reduce the amount of storage and calculation. MSCKF algorithm has
become one of the classic algorithms of VIO, but it does not optimize
the location of map points in the scene, therefore it is difficult to
ensure the overall positioning accuracy for a long time.
Optimization-based SLAM method is another mainstream
solution, which optimizes the robot pose to be solved and the
position of spatial waymark points through Bundle Adjustment
(BA) technology. Compared with filtering-based methods,
optimization-based methods usually achieve stronger robustness
and higher accuracy, and their framework is more flexible. But it
is more computational and time-consuming because its multiple
iterative optimization process requires more computing resources.
In 2007, Klein et al. [4] proposed the famous PTAM (Parallel
Tracking and Mapping) algorithm, which applied graph
optimization theory to solve SLAM problems for the first time,
meanwhile, this algorithm pioneered the parallel implementation of

FIGURE 1
The overall framework of the paper.
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locating and mapping on two independently running threads. Mur-
Artalet [5] continued and improved the basic idea of PTAM, and the
famous ORB-SLAM algorithm was proposed. ORB-SLAM is a more
complete monocular SLAM system, which includes three threads:
tracking, partial mapping and loopback detection. In each thread,
ORB (Oriented FAST and Rotated BRIEF) operator [6] is used to
extract and describe image features. In 2017, Mur-Artal [7] further
proposed ORB-SLAM2, which supports both monocular camera
input and binocular cameras and RGB-D cameras input. Similar to
the filtering-based method, the combination of visual inertial
sensors is often used to build visual inertial SLAM system in the
optimization-based framework. Leutenegger [8] proposed
keyframe-based OKVIS (Open Keyframe-based Visual-Inertial
Syetem). In 2021, Campos et al. [9] proposed ORB-SLAM3,
which can support monocular, binocular, and RGB-D image
input of pinhole or fisheye lens models, and can perform visual,
visual inertial, and multi-map SLAM processes. VINS-Mono
(Monocular Visual-Inertial Navigation System) proposed by Qin
et al. [10] is another representative work of optimization methods.
VINS-Mono uses a sparse direct method similar to SVO [11] as its
front end, simple corner points are extracted on the image, and the
corner points are tracked by KLT (Kanade-Lucas-Tomasi) optical
flow method. In constructing the BA, a quaternion-based IMU pre-
integration model [12], a sliding window, and a two-step
marginalization technique are used. Depending on the type of
visual front end, all of the above visual SLAM methods can be
referred to as feature point methods. Feature point method has long
been regarded as the mainstream method of SLAM, but the
disadvantage of this method is that it easily leads to poor feature
extraction or feature tracking effect when encountering weak texture

environment, fast robot movement speed or blurred visual imaging,
which affects the performance of the algorithm, and the key point
extraction and descriptor calculation are also time-consuming.
Therefore, some researchers have also studied another kind of
direct SLAM method, which directly estimates camera motion
according to pixel gray information. Concha [13] proposed a
monocular visual inertial odometer VIDS (Visual-Inertial Direct
SLAM) based on the direct method. Forster proposed a SVO (Semi-
Direct Monocular Visual Odometry), which combines feature point
method with direct method. SVO executes motion estimation thread
and map construction thread in parallel, and can obtain fast and
accurate positioning effect when the observation scene is
approximately plane. Engel et al. [14] proposed a monocular
SLAM method LSD-SLAM (Large-Scale Direct Monocular
SLAM) based on direct method, which can obtain more accurate
motion estimation in large-scale scenarios and construct large-scale
environmental maps. On this basis, Engel et al. [15] incorporated the
photometric calibration strategy and further exploited sparsity, and
proposed the DSO (Direct Sparse Odometry) algorithm. Stumberg
[16] proposed the VI-DSO method with further fusion of IMU
measurement information.

In addition, thanks to the development of semantic
segmentation technology and object detection technology based
on deep learning, the integration of higher-level semantic
information into the design and implementation of SLAM
algorithm has become a new direction for researchers. Bowman
et al. [17] used probabilistic representation to theoretically analyze
the solution of semantic SLAMproblems, and proposed a theoretical
framework for semantic data association and iterative solution in
SLAM by using Expectation-Maximum algorithm (EM). On this

FIGURE 2
SLAM technology development roadmap.
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basis, Lianos et al. [18] proposed a semantic SLAM algorithm VSO
(Visual Semantic Odometry) that uses semantic information to
assist visual feature tracking. Yang et al. [19] proposed a
monocular SLAM algorithm that fuses indoor plane features
(walls, floors, etc.) with object-level road signs. Frost et al. [20]
solved the problem of missing scale in monocular SLAM by
constructing 2D projection constraints of vehicle targets with
known scales in BA. Nicholson et al. [21] proposed a three-
dimensional modeling method of object-level road marks, i.e., an
ellipsoid is used to represent three-dimensional object road marks,
and a semantic constraint residual term with geometric significance
is added to the optimization function of BA to improve positioning
accuracy. Li et al. [22] proposed that the closed-loop detection
function in complex situations such as large viewing angle changes
and occlusion can be enhanced by constructing object-level
semantic mapping.

2.1.2 Radar SLAM
The measurement data of LiDAR is a point cloud, and each

point cloud contains the spatial coordinates of many spatial points
in the Ontology coordinate system at the time of LiDAR
measurement. LiDAR SLAM uses point cloud registration,
i.e., pose estimation is realized by finding the matching item
between the source frame and the target frame and inferring the
pose transformation from the source frame to the target frame.

Early LiDAR SLAM studies have mainly focused on 2D LiDAR,
and several 2D laser SLAM based on filtering and optimization
frameworks have been proposed, including EKF-based frameworks,
Unscented Kalman Filter (UKF)-based frameworks [23], and classic
framework GMapping [24] based on Particle Filter (PF) [25]. A
representative work of graph optimization-based methods is
GraphSLAM [26].

With the development of technology, SLAM based on 3D
LiDAR has gradually become a research hotspot. The research
focus of SLAM method based on 3D LiDAR is mainly on point
cloud registration because the basic theory of SLAM has gradually
matured when 3D LiDAR began to be studied. Iterative Closest
Points (ICP) [27] is the most classic point cloud registration method,
which correlates points in a source frame with points in a target
frame according to the nearest neighbor criterion, and then solves
the optimal transformation between two point clouds. Based on ICP,
Mendes et al. [28] proposed to achieve positioning by ICP
registration between the current frame and key frames, and then
detect loopbacks by ICP registration between different key frames.
In order to overcome the defects that the original ICP is sensitive to
initial values and measurement noise, many variants of ICP were
proposed and applied to LiDAR SLAM. According to the curvature,
LOAM [29] extracts surface feature points and corner feature points
from the point cloud, and these feature points are registered with
adjacent frames and world maps through point-surface and point-
line ICP to realize low drift pose estimation. Based on LOAM,
LeGO-LOAM [30] introduces ground point constraints in inter-
frame registration to suppress height drift, and the pitch angle, roll
angle and vertical axis coordinates related to height are first
optimized, and then other pose components are optimized,
which improves the solution efficiency of inter-frame registration.
Also based on point-surface ICP, IMLS-SLAM [31] and SuMa [32]
represent planes in maps in the form of hidden planes and patches,

respectively. ICP based on normal distribution describes the local
geometry of the point cloud through the local covariance matrix of
the point cloud, so that the registration takes into account the local
orientation of the point cloud. Among them, the representative
methods are Normal Distribution Transformation (NDT) [33] and
Generalized ICP (GICP) [34].

In addition to ICP, researchers are also actively exploring the
application of other point cloud registration schemes in LiDAR
SLAM. S4-SLAM [35] uses Super4PCSI [36], a method for point
cloud registration based on affine invariance of line segment
crossover ratio. GP-SLAM+ [37] uses Gaussian process
regression to predict “test points” evenly distributed in space on
the current point cloud, and then registers them with the results
predicted from the map. SegMap [38] uses machine learning to
extract feature points and calculate descriptors from the point cloud,
adds semantic information to the point cloud, which can achieve
more robust registration, and can reach a pose output frequency of
1 Hz, so as to lay a foundation for the introduction of subsequent
machine learning methods.

2.1.3 Multi-sensor fusion SLAM
Generally, multi-sensor fusion positioning methods can be

divided into loose coupling method and tight coupling method.
The former fuses the independent positioning results of single
sensors, while the latter fuses the original measurement
information of various sensors.

As the cost of sensors decreases, SLAM methods that integrate
three or more sensors have attracted more and more attention from
academia and industry in order to obtain higher precision and
robust performance and further extend the applicable scenarios of
SLAM systems. In 2018, Zhang et al. [39] proposed a sequential
multi-sensor fusion SLAM-VLOAM. In this method, IMU firstly
provides pose prediction for a loosely coupled VIO, and then the
localization results of the VIO are further loosely coupled with
LiDAR data to realize a pose estimation from coarse to fine. LVI-
SAM [40] combines the VIO system and the LIO system to construct
a tightly coupled LVIO. Among them, VIO provides the initial value
for the point cloud registration of LIO, and the output of LIO system
helps the VIO system to initialize and obtain the depth of visual
feature points. Moreover, LVI-SAM also detects the working
conditions of these two subsystems respectively. When one
subsystem fails, the other system can run independently to
ensure the robustness of the system. At the back end, LVI-SAM
uses a factor map to receive the inter-frame pose constraints
provided by the two subsystems to smooth the trajectory and
improve the overall estimation accuracy. Based on FAST-LIO
and VINS-Mono, R2LIVE [41] uses ESIKF to tightly couple IMU
data with camera data and LiDAR data respectively, and uses a local
factor map to adjust key frame pose and visual feature point
position. LIC-Fusion [42] is based on the architecture of tightly
coupled VIO method MSCKF, LiDAR frames are introduced on the
basis of visual frames, and the constraints of LiDAR common view
features are added between LiDAR frames. Meanwhile, the external
parameters and time differences between sensors are estimated as
filtering parameters, which achieves tight coupling well. LIC-
Fusion2.0 [43] proposes a more robust plane tracking method
between LiDAR frames on the basis of LIC-Fusion, which further
improves the system performance.
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2.2 Application cases of SLAM in
different fields

Since SLAM is essentially autonomous positioning and
environmental information correlation in unknown
environments, and involves a variety of sensors, direct needs
exist in many fields. Therefore, the application of SLAM
technology in various industries has been fully studied after
decades of development, covering robotics, industrial automation,
autonomous driving, augmented reality, medical care, aerospace,
geology and environmental science, military security, etc.

Robotics is the hottest field of SLAM technology application.
In indoor environments, service robots use SLAM for localization
mapping to autonomously navigate and perform tasks in hotel,
hospital and home environments [44]; SLAM is used for
autonomous navigation and intelligent obstacle avoidance of
material delivery trolleys on the factory floor to improve
logistics efficiency and automation levels [45]; Unmanned
aerial vehicles can use SLAM to carry out autonomous flight
[46], and realize surveying and mapping, express delivery and
other tasks. Autonomous driving vehicles rely on SLAM to build
high-precision maps and assist vehicles in path planning,
obstacle avoidance and positioning to ensure driving safety
[47]. On AR and VR, SLAM enables such devices to build and
update virtual environment maps in real time [48], and can be
further used for highly immersive gaming experiences, create
dynamic and interactive learning environments or help designers
create virtual prototypes and simulations in the field of industrial
design; In the medical field, SLAM can also be used for surgical
navigation, assisting the safe movement of instruments by
building a high-precision model of the surgical area. In the
military field, SLAM helps reconnaissance drones navigate and
position under the denial condition of no external available
signals, and realize tasks such as reconnaissance, surveillance,
and target tracking [49].

2.3 Key issues and challenges of SLAM
technology

2.3.1 Front-end data association
The SLAM front-end module is responsible for feature

extraction, description and tracking on the raw measurement
data of the sensor, so as to establish data association on
continuous time frames. The state of the carrier can be
preliminarily estimated and optimized based on the correctly
associated image or point cloud frame. The results of front-end
estimation are crucial in the accuracy of the whole SLAM system,
but modern SLAM systems generally require the front-end to have
high real-time and robustness, which puts forward high
requirements for the selection and matching of correlation
features. Meanwhile, it is also challenging to correctly correlate
the sensor data of different modes in time and space because the
front end directly manipulates the sensor data. In addition, various
degradation scenarios for vision and LiDAR (lack of features, low
feature discrimination, and tracking loss caused by fast motion)
require the front end to have accurate, reliable, and stable data
processing performance.

2.3.2 Back-end state estimation
With the idea of minimizing errors, the back-end state

estimation optimizes and modifies the initial estimation provided
by the front-end globally or locally, so as to obtain more accurate
and robust trajectory and three-dimensional environment map. In
addition, when the system detects a loop, the back-end module will
cooperate with the loop detection module to introduce new
constraints to correct the accumulated error, so as to improve
the accuracy and robustness of the whole SLAM system. It is
necessary to develop more efficient optimization algorithms and
data structures to cope with it because the complexity of back-end
optimization may increase with the expansion of state and map
scales. Meanwhile, nonlinear optimization is easy to fall into local
minimum, so it is necessary to set appropriate initial values,
optimization strategies and constraints to solve it. In real-time
applications, the back-end module needs to complete the
optimization process in a limited time, and it is also a challenge
how to achieve better optimization results in the shortest time.

2.3.3 Loopback detection
Loopback detection is a key component of SLAM, especially in

navigation and mapping tasks over long distances or large ranges.
However, there is the possibility of misjudgment: one is to identify
different scenes as the same scene, and the other is to detect the same
scene as different scenes. The main reasons for misjudgment are as
follows: (1) The scale inconsistency caused by the change of distance
ratio between camera and scene at different time points in visual
SLAM. (2) The judgment error caused by the change of viewing
angle when observing the same scene at different time points. (3)
Dynamic objects may be incorrectly identified as cyclic features, and
may also cause changes in the location and appearance of the visited
scene. The front-end module of the system may also generate
erroneous guidance when tracking dynamic targets. (4) Weather,
time, season and other factors may change the characteristics of the
same scene. All the above items are all challenges in SLAM
loopback detection.

2.4 Future development direction of SLAM
technology

2.4.1 Deep learning-based SLAM
At present, deep learning has shown its potential in the field of

SLAM, and there are studies on the introduction and replacement of
deep learning methods in each module, including image matching
[50, 51], point cloud registration [52], semantic segmentation [53],
closed-loop detection [54] and pose estimation [55], etc. In addition,
SLAM systems directly based on end-to-end networks [56] also
appeared. All the above studies have injected new vitality into the
field of SLAM, but so far SLAM methods based on deep learning
have not been able to reach the accuracy and reliability of
conventional methods. The future development trends of
learning-based SLAM systems include: (1) Deep learning
networks are needed for online learning on long-term SALM
systems in open environments to cope with new scenes and
objects independent of training data. (2) Deep learning networks
are inseparable from training data. Learning-based SLAM is highly
dependent on the richness of training data, requires a lot of labeling
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work, and needs to explore low-sample learning techniques. (3) At
present, many large models have emerged in the field of deep
learning. They have the advantages of powerful data processing
capabilities, complex problem solving capabilities, high precision
and high performance. Large models are expected to be deployed in
SLAM systems to achieve all-round improvement in the future.

2.4.2 Multi-agent collaborative SLAM
Multi-agent refers to the overall system in which various forms

of intelligent robots cooperate to complete complex tasks according
to task division in a certain time and space [57]. Due to the
limitation of the endurance time of a single robot, the efficiency
of obtaining 3D information is low with small range; Moreover, it is
difficult to comprehensively analyze the complex structure and
scene information in real time due to the limitation of working
mode. Meanwhile, SLAM has error accumulation characteristics,
which makes it difficult to ensure the accuracy of long-term and
large-scale mapping. These problems can be solved through the
collaborative SLAM of multiple agents. The realization of multi-
agent SLAM requires multiple agents to cooperate in a single-
machine or cross-machine collaboration manner. Meanwhile,
multiple agents share scene maps and perform information
interaction and fusion, so as to significantly improve the
efficiency, accuracy and robustness of single SLAM.

2.4.3 New type sensors
A variety of new sensors are expected to be introduced into

SLAM system with the development of sensor technology. For
example, the Event Camera, which is designed to imitate the
animal vision system to record the time and location of the event
stream. Compared with conventional cameras, it has the advantages
of no motion blur, sub-millisecond time delay and ultra-high
dynamic range, which has been applied to feature tracking [58],
optical flow [59], 3D reconstruction [60], and SLAM [61]. However,
due to the uniqueness of event cameras, the processing of noise and
spatiotemporal information is different from that of traditional
vision, and all task-level algorithms need to be redesigned [62].

3 Perception and positioning
technology for autonomous driving

3.1 The importance of perception and
positioning technology in autonomous
driving system

In the autonomous driving system, the main task of perception
and positioning is to obtain the environmental information around
the vehicle through relevant sensors, and determine the position and
attitude of the vehicle in the environment, so that the vehicle can
achieve safe driving under complex traffic road conditions.
Perception technology identifies road conditions, obstacles, traffic
signs, and other vehicles based on vehicle sensor data. This kind of
understanding of the environment is crucial for the vehicle, because
it must be able to dynamically respond to rapid changes on the road,
such as avoiding sudden obstacles and adapting to different
environmental conditions such as weather and light. Positioning
technology can estimate the motion state quantities of the vehicle,

including position, pose and speed, in real time and accurately based
on the vehicle sensor information, so as to meet the demand of other
functional modules of the autonomous driving system for motion
state information. Perception and positioning technology provides
key underlying information and support for the autonomous driving
system, and provides the foundation for the advanced functions of
the system such as decision-making and planning, which directly
affects the safety, efficiency and reliability of autonomous vehicles.
Autonomous driving perception and localization technologies are
explained from two aspects: perception and localization. Perception
technologies include visual perception, LiDAR perception, and
millimeter wave radar sensing, while localization technologies
include inertial odometer, satellite navigation and positioning,
wheel speed odometer, and map matching. The specific
technology is shown in Figure 3.

3.2 Autonomous driving perception
technology

Real-time, accurate and robust perception of road traffic
environment is the basic but most challenging task in
autonomous driving. By equipped with multi-modal sensors, the
autonomous driving system needs to accurately identify information
such as the type, location, trajectory and motion status of targets in
road traffic. Autonomous driving perception technology can be
mainly divided into visual perception, LiDAR perception and
millimeter wave radar perception according to sensor principles.

3.2.1 Visual perception
Vision sensors can obtain images with rich color, texture and

semantic information with low cost, so they are widely used in
perception tasks of autonomous driving, including traffic target
detection, drivable area segmentation and lane line recognition
[63]. Object detection ensures the safety of autonomous driving
by identifying and locating traffic targets such as vehicles,
pedestrians, cyclists, and traffic signs. Object detection methods
can be divided into two categories: two-stage networks and single-
stage networks. Two-stage networks (such as the R-CNN series,
including Fast R-CNN [64] and Faster R-CNN [65]) achieve high
accuracy through regional proposal method, but with slower
inference. On the other hand, single-stage networks (such as SSD
[66] and YOLO [67]) sacrifice partial accuracy in exchange for faster
inference speed by simultaneously handling bounding box
regression and target classification. Such networks divide input
images into meshes or use anchor boxes of various sizes to
extract multi-scale features. For autonomous driving scenarios, D.
Gragnaniello [68] proposed a 2D multi-object detection and
tracking algorithm to solve the problem of multi-class object
detection and tracking. OVTrack proposed by Li et al. [69]
handles the detection and tracking of arbitrary object classes
through visual language models. Huang et al. [70] proposed a
multi-object tracking algorithm based on self-supervised
appearance model.

Drivable area segmentation enables autonomous vehicles to
effectively plan safe trajectories by identifying drivable areas on
the road. CNN-based deep learning models perform well in
semantic segmentation, which are widely used for pixel-level
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segmentation of drivable regions. Xia and Kim [71] proposed a
semantic segmentation architecture that combines multiscale
contextual features and low-level features, using hybrid spatial
pyramid pooling and global attention fusion. Zhang et al. [72]
proposed a GPNet for traffic scene segmentation, combining
multi-scale features of gating and pairwise techniques. SegFormer
[73] provides sufficient segmentation efficiency and performance
through a position-independent hierarchical Transformer encoder
and lightweight decoder network. Real-time semantic segmentation
is a prerequisite for autonomous driving which needs to achieve
competitive segmentation accuracy at low computational costs.
DSANet [74] is a computationally efficient network consisting of
channel segmentation and shuffling modules and dual attention
modules using expanded spatial attention and channel attention to
achieve higher segmentation accuracy and lower
computational cost.

Accurate lane marker detection and segmentation enable
autonomous vehicles to remain within the appropriate lane for
precise trajectory control. Conventionally, lane lines are detected
using a Canny edge detector [75] and then located in the scene using
either a Hough transform [76] or RANSAC [77]. However, these
methods are susceptible to illumination and occlusion [78]. CNN-
based deep learning models overcome these limitations by
annotating lane segments at the pixel level [79]. Zou et al. [80]
adopted a segmentation method based on multimodal fusion
network for lane detection. Qin et al. [81] proposed an anchor
frame-driven sequential classification method for lane detection,
which can significantly reduce the computational cost.
LaneScanNET [82] assists autonomous driving systems in lane

change or lane keeping decisions by combining obstacle detection
networks (ODN) and lane detection networks (LDN). The proposed
architecture combines the results of obstacle detection and lane line
segmentation to predict the obstacle lane state in the field of view of
autonomous vehicles. DSUNet [83] is a UNet-based architecture
designed for lane detection and path prediction in autonomous
driving, using deep separable convolution for faster inference in
real-time autonomous driving.

In addition, the visual perception system can obtain different
types of information through multiple configurations such as
monocular, binocular, and multi-ocular cameras. Such multi-
modal data helps to improve the robustness and accuracy of
perception, such as obtaining depth information through
binocular vision, and achieve panoramic perception through
multi-eye vision. However, visual perception technology relies
heavily on ambient lighting conditions. The effect of visual
perception will be greatly reduced under low light, strong light,
backlight and night conditions, requiring additional processing and
compensation technology; The visual perception system is easily
affected by obstructions, resulting in part of the visual field being
blocked. In open environment, visual perception system can provide
comprehensive environmental information, but it needs to be used
in combination with other sensors in complex environment to make
up for the deficiency of visual perception [84].

3.2.2 LiDAR perception
LiDAR directly measures the distance of traffic scenes by

transmitting and receiving laser beams to obtain high-precision
point cloud data. There are different processing methods for point

FIGURE 3
Schematic diagram of perception and positioning technology of autonomous driving.
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cloud data. The projection method tries to project the point cloud
data into a two-dimensional plane, and then uses a two-dimensional
method to process it. Another part of the research voxelizes 3D point
cloud data (Voxelization), i.e., the space is divided into small cubes
(called voxels). However, a large amount of original information is
lost in the process of preprocessing data whether it is the projection
method or the voxelization method, and the full performance of
high-precision LiDAR cannot be exerted. In order to make full use of
the collected information, the mainstream method perception tasks
in recent years directly use point cloud data [85]. LiDAR is also used
for a variety of perception tasks on autonomous vehicles, such as 3D
target detection, 3D target tracking, 3D semantic segmentation, and
instance segmentation [86].

LiDAR operates independently of natural light, providing
reliable environmental awareness day and night and in various
weather conditions. Direct ranging is more accurate and reliable
than visual inference of depth information, especially in long-
distance and complex scenes. However, the relatively high cost of
LiDAR limits its large-scale commercial application, but the cost is
expected to decrease with technological progress and expansion of
mass production. Due to the large amount of three-dimensional
point cloud data generated by LiDAR, it requires powerful data
processing capabilities and efficient algorithms for real-time
processing and analysis. Therefore, higher requirements are put
forward for the computing platform of autonomous driving systems,
and data processing pipelines and algorithms need to be optimized
to meet real-time needs. And although it can work in a variety of
weather conditions, the attenuation and scattering of laser signals
may affect the measurement accuracy in extreme environments such
as dense fog and heavy rain and snow.

3.2.3 Millimeter wave radar sensing
Millimeter-wave radar was mainly used in automotive assisted

driving systems in the past. In recent years, with the improvement
of semiconductor radio frequency technology, millimeter-wave
radar has shown huge advantages in bandwidth, size and cost,
and has also shown great application potential in advanced
perception tasks of autonomous driving. Scholars have studied
the problem of target recognition based on millimeter wave radar
point cloud. These methods are divided into two categories: one is
to extract information through hand-designed feature extractors,
such as Schumann et al. [87] obtain the target area through
clustering, and classify pedestrians, vehicles and other targets
based on hand-designed multi-dimensional features; The other
is to directly extract features through deep neural networks.
Danzer et al. used PointNet [88] and PointNet++ [89] methods
for pedestrian and vehicle target recognition respectively, and
Lombacher et al. [90, 91] converted radar point cloud into
rasterized data, and then proposed a series of CNN methods for
feature extraction and target recognition.

3.3 Autonomous driving positioning
technology

Autonomous driving positioning technology can accurately
estimate the motion state quantities of the vehicle in real time
based on the vehicle sensor information to meet the functional

requirements of other autonomous driving modules. The following
is an introduction based on the main sensing equipment [92].

3.3.1 Inertial odometer
Inertial odometers use the measurement values of inertial

devices such as gyroscopes and accelerometers to estimate the
carrier’s running trajectory. The calculation accuracy depends on
the measurement accuracy and stability of inertial devices. For cost
considerations, autonomous vehicle platforms usually deploy
consumer-grade inertial devices based on Micro Electro
Mechanical System (MEMS) structure. MEMS inertial devices
often have large measurement noise and complex error
characteristics. In order to improve navigation and positioning
accuracy, they need to be compensated for their errors in use.
The errors of MEMS inertial devices can be roughly divided into
static errors, dynamic errors and random errors. Among them, static
error and dynamic error are generally considered to be deterministic
error related to the motion state of the carrier, and static error can be
compensated by offline calibration method [93], or online
estimation through other sensor information, while dynamic
error is difficult to calibrate or estimate. For random error, it
cannot be eliminated by calibration or estimation method, but
only an identification model can be established to estimate the
parameters of random error. In addition, researchers have explored
the application of Gauss-Markov processes [94], wavelet transform
methods [95], generalized wavelet moment methods [96] in random
error identification and denoising. Due to the complexity of
dynamic error and random error models, researchers have begun
to try to model inertial odometer errors in a data-driven way in
recent years. Martin Brossard et al. [97] employed CNN to predict
the bias error of gyroscopes online based on time series window data.
Another solution is to directly use neural network to model the
calculation process of inertial odometer in an end-to-end way. Joao
Paulo et al. [98] encoded the original angular velocity measurement
and acceleration measurement input into a discrete CNN channel,
and then used a bidirectional Long Short-Term Memory (LSTM)
network to encode the time series inertial information to predict the
pose increment in an end-to-end manner.

3.3.2 Satellite navigation and positioning
The Global Navigation Satellite System (GNSS) uses navigation

satellite wireless signals to perform pseudo-range or carrier ranging,
calculates the geometric intersection of spatial straight lines based on
the ranging information, and estimates the position of the signal
receiver in the global coordinate system. GNSS is widely used in
location services for autonomous driving due to its simplicity, speed
and wide coverage. Standard Point Positioning (SPP), also known as
pseudo-range single point positioning, is the most common GNSS
positioning method. Influenced by clock error, ionospheric
interference, tropospheric interference and other factors, the
positioning accuracy of SPP is low. Differential GNSS technology
eliminates the temporal and spatial correlation factors such as
satellite orbit error, clock error, ionospheric error and
tropospheric error by differentiating satellite signals with similar
geographical locations, and improves the stability of satellite
positioning. In order to improve satellite positioning accuracy,
carrier phase ranging technology was born, which can provide
centimeter-level ranging accuracy. Combining carrier ranging and

Frontiers in Physics frontiersin.org08

He et al. 10.3389/fphy.2024.1485026

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1485026


difference principles gave birth to real-time dynamic carrier phase
difference technology (Real time Kinematic, RTK) [99], RTK can
complete the solution of the ambiguity of the whole circle in a short
time and provide position measurement up to centimeter level. At
this stage, the RTK technology of reference station network with
wide coverage is formed mainly by establishing multiple RTK
reference stations for networking and using wireless networks to
transmit differential signals.

Satellite signals are easily affected by clock error, clock drift,
clock jump, etc. during transmission, which will result in data
failure. Therefore, it is necessary to enhance the reliability of
self-localization through fault detection. Traffic accidents
caused by positioning deviation can be effectively avoided by
analyzing the validity of observation data, identifying and
eliminating fault data. At present, localization fault detection
is usually divided into three categories: snapshot detection,
sequence detection, and density anomaly detection [100].
Snapshot detection mode focuses on the consistency test of
current observations, which can identify step faults more
accurately. The sequence detection method comprehensively
uses historical data and current data for consistency test,
which can effectively improve the detection effect of slope
faults. Furthermore, the distribution uncertainty of observed
data and the dependence on prior knowledge can be overcome
through identifying anomaly localization data based on the
density difference between current data and neighboring data.
In the actual operation scenarios of autonomous vehicles, GNSS
positioning faces the risk of signal interference; In scenes such as
tree-lined road sections, high-rise streets, and under viaducts,
blocked by environmental obstacles, the multi-path effect
caused by multiple reflections and propagation of satellite
signals will greatly interfere with the signal calculation ability
of the receiver, resulting in deviations in position and speed
measurements. In scenarios such as tunnels and underground
garages, satellite signals are completely blocked, and GNSS will
completely lose its positioning capabilities [101].

3.3.3 Wheel speed odometer
The wheel speed odometer recovers the motion state of the

vehicle from the wheel speed information measured by the wheel
speed meter. Wheel speed information is essentially the
observation information of the vehicle moving speed.
Compared with inertial navigation, the number of integrations
involved in recovering the vehicle position state through wheel
speed is fewer, so the wheel speed odometer is generally more
accurate than the inertial odometer. Wheel speed odometers also
face the problem of error accumulation, and researchers are also
trying to use data-driven methods to improve the accuracy of
wheel speed odometers. Uche Onyekpe et al. [102] used the
position error between the speed difference model and the
GNSS measurement as a neural network supervised signal to
train the LSTM network, and the output of the network was used
to compensate the position output of the speed difference model;
After that, the team further proposed a structurally optimized
wheel speed odometry network WhONet [103], using Recurrent
Neural Network (RNN) to improve the real-time performance of
prediction. Experiments show that the accuracy of this method
exceeds the conventional speed differential motion model.

Martin Brossard et al. [104] used Gaussian Processes (GP) to
model the wheel speed model and its uncertainty, and combined
variational inference to train the neural network as the kernel
function of GP to reduce the computational complexity of GP.

3.3.4 Map matching
Map matching technology matches the positioning features

provided by high-precision maps with sensor signals to estimate
the position and pose of the vehicle in the map. Different from the
SLAM system, high-precision map features are collected through
professional mapping equipment, and converted into the global
coordinate system through offline optimization and other steps,
with excellent position accuracy. Therefore, map matching based on
high-precision maps can achieve high-precision global positioning.
According to the feature form of map positioning and the type of
vehicle sensor, map matching technology has different
implementation ideas. In the early autonomous driving, map
matching technologies with LiDAR as the main body have been
widely studied, such as ICP [29] and NDT [35]. In the grid
positioning method proposed by Jesse Levinson et al. [105], the
high-precision map records the environmental reflection intensity
and elevation information in a plane two-dimensional raster, and
the map matching process uses histogram filtering to calculate the
likelihood probability corresponding to pose sampling points.
Compared with dense point cloud map scheme, vector semantic
map models road objects in the environment with parametric
geometric vector shapes, and records its geometric attributes and
semantic category attributes. Its lightweight characteristics are
beneficial to real-time transmission applications of autonomous
driving. In addition, compared with conventional visual
descriptors, semantic tags, as higher-level abstract information,
are less affected by changes in light conditions, seasonal weather
changes, and dynamic obstacle occlusion [106]. Therefore, high-
precision vector semantic maps have the potential for large-scale
application deployment.

3.4 Challenges and future development
directions of autonomous driving
perception and positioning technology

Although the perception and positioning technology of
autonomous driving system has made great progress, with
the continuous improvement of the intelligence of
autonomous driving vehicles, the requirements for
corresponding technologies are also constantly increasing,
and the current technology still faces some challenges. For
example, how does the system maintain the accuracy and
robustness of perception in complex scenes and
environments such as severe weather like rain and fog, low-
recognition scenes with insufficient lighting conditions, and
urban congested road sections; Ensure the accuracy and
reliability of positioning in GNSS occlusion or denial
environments such as tunnels and urban canyons; Strike a
balance between real-time performance and computing
resource cost when a large number of sensors and computing
tasks are involved. In view of these challenging problems, there
are the following future development directions.
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3.4.1 Multi-source fusion sensing and localization
The data of a single sensor will fail in some environments. The

current practical solution is to combine multiple complementary
sensors to compensate for their respective shortcomings. Different
environments rely on different sensor combinations for effective
sensing [107]. In the future, multi-sensor fusion will further develop
in the direction of multi-modality, scalability and low computing
requirements, thereby achieving robust and reliable real-time
perception and positioning.

3.4.2 Collaborative perception
There are blind spots and limited perception range in the sensor

perception of a vehicle. With the continuous development of
intelligent network connection technology composed of wireless
communication V2X [108] (Vehicle to Everything, including V2V:
Vehicle to Infrastructure and V2P: Vehicle to Persons), a new
generation of autonomous driving perception technology will
further develop to the level of high-dimensional network
connection collaborative perception. The information of vehicles,
roads, traffic facilities and pedestrians can be shared and interacted
through V2X to achieve integrated, global and high-performance
traffic status collaborative perception.

3.4.3 Unified perspective perception
In recent years, the Bird’s Eye View (BEV) [109] unified

perception large model based on surround-view camera has
attracted a lot of attention from academia and industry, and has
become a hot spot in autonomous driving perception research. The
BEV perception paradigm converts the information of the vehicle-
mounted surround-view sensor into the BEV space through a series
of operations, and represents it in the vehicle body coordinate
system in the form of a two-dimensional spatial grid.
Accordingly, a series of perceptual tasks share the same BEV
spatial features, and perform neural network decoding for their
respective task objectives. The BEV awareness model is expected to
be constructed as a large-parameter neural network model that
supports multi-modal, long-time series data input and is oriented to
multi-task applications.

4 Scene segmentation technology

4.1 Application of the definition of scene
segmentation technology in 3D data
processing

Scene segmentation aims to divide the whole three-dimensional
scene into several regions with different semantics, which refers to
the category information of real objects observed by scene data.
Scene segmentation is the foundation of scene understanding and
plays an important role in various fields involving 3D data
processing. In autonomous driving, scene segmentation is used to
identify roads, vehicles, pedestrians and other obstacles, and
generate semantic maps of the surrounding environment of
vehicles in real time, providing a basis for decision-making of
autonomous driving system; In robotics, scene segmentation
helps robots understand their working environment, correctly
identify work areas and paths, and enable them to navigate

autonomously and interact with the environment; In medical
image processing, for three-dimensional CT or MRI data, scene
segmentation technology can be used to identify and label different
organs and diseased areas, thereby improving the accuracy of
diagnosis; In the field of remote sensing mapping, scene
segmentation can be used for environmental monitoring, urban
modeling and so on.

4.2 Classification of scene segmentation
techniques

In various applications, most of the objects processed by scene
segmentation are represented in the form of point clouds, i.e., the
three-dimensional data obtained by scanning and reconstructing the
real scene with depth sensors. Since point cloud data is usually
disordered, unorganized, and unstructured, and point clouds are
huge in open scenarios, it is extremely challenging to segment it and
semantically label each point. From the method point of view,
semantic segmentation can be divided into: (1) semantic
segmentation based on 2D-3D mapping; (2) voxel-based
segmentation method; (3) semantic segmentation based on graph
convolution; (4) semantic segmentation based on sparse
convolution; (5) semantic segmentation based on point
convolution. The development route of scene segmentation
technology is shown in Figure 4.

4.2.1 2D-3D mapping-based method
Compared with three-dimensional computer vision, two-

dimensional vision has a longer development history, so in some
methods, the semantic segmentation problem of three-dimensional
point clouds is tried to be solved by using technologies in the field of
two-dimensional vision. V-MVFusion [110] proposes a two-
dimensional projection [111] from multiple perspectives to
represent a three-dimensional point cloud, and then uses a two-
dimensional semantic segmentation network framework [112–114]
to process the two-dimensional projection. Based on one-way
feature mapping, a bidirectional fusion between two-dimensional
features and three-dimensional features is proposed, i.e., two-
dimensional image segmentation and three-dimensional point
cloud segmentation are performed simultaneously on the scene,
and two-way feature mapping is performed in the decoder network,
and the experimental results show that bidirectional mapping can
improve the performance of semantic segmentation of 3D point
clouds better than unidirectional mapping. Because the mapping
between point cloud and image often involves preprocessing
operations of depth map and occlusion information estimation,
the early semantic segmentation methods of point cloud are difficult
to be applied in practice. In order to solve this problem,
DeepViewAgg [115] proposes a mapping method without
preprocessing operations, which can estimate the pixel depth in
real time to obtain the correspondence between points and pixels.
For the point cloud semantic segmentation method based on 2D-3D
mapping, its advantages are that on the one hand, it can make full
use of the mature segmentation technology in the field of image, and
on the other hand, the 2D image features from multiple perspectives
can provide rich context information for 3D semantic segmentation.
However, such methods require additional 2D image data and
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involve complex multi-view projections, so they rely too much on
the choice of camera viewing angle.

4.2.2 Voxel-based method
In order to reduce the reliance on redundant image and

perspective information, some methods [116, 117] choose to
convert point clouds into three-dimensional voxels, i.e., spatially
small-volume elements, and then use sparse convolution for
semantic segmentation. Sparse convolution concentrates the
computation on a non-empty voxel grid, which can effectively
reduce the computational overhead. However, since the
convolution operation may pass the features of one non-empty
voxel to multiple voxels, the number of non-empty voxels will
always be high as the multi-layer network is convolved. To solve
this problem, SparseConvNet [118] proposes a submanifold sparse
convolution operation. This operation requires that for a certain
voxel grid point, its non-empty condition is that the central grid
point of the receptive field is also non-empty. This method can
effectively reduce the number of non-empty voxel grid points,
improve the segmentation performance and reduce the
computational overhead. After that, more work has been done to
try to improve the efficiency and performance of sparse convolution.
MinkowskiNet [119] proposes a 4D sparse convolution network,
which can process the time series data of three-dimensional point
clouds through sparse convolution, and has achieved good results on
both indoor and outdoor scene data sets. Haotian et al. [120] further
proposed that TorchSparse should be used to improve problems
such as computational irregularity and high video memory
occupancy in sparse convolution processes. The main advantage
of voxel-based method is that it has high efficiency in processing

point clouds and is easy to be applied to large-scale point cloud scene
data; The disadvantage is that the point cloud needs to be voxelized
first. Some key details may be lost when the voxel resolution is low.

4.2.3 Point convolution-based method
Also due to the success of convolutional neural networks

(CNNs) in the field of images, a lot of work has been done to try
to migrate convolutional operations to point clouds. Point cloud
segmentation is a technique in computer vision and 3D graphics
used to divide point cloud data into different regions or categories. A
point cloud is a set of discrete points representing objects or scenes
in three-dimensional space, obtained through scanning devices such
as LiDAR or 3D cameras. These points typically contain coordinate
information (X, Y, Z), and sometimes include additional attributes
such as color or intensity. The purpose of point cloud segmentation
is to divide these points into meaningful subsets, such as separating
buildings, roads, vehicles, and pedestrians from a complex point
cloud. PointNet [121] and PointNet++ [122] are representative
works in this regard, which aggregate global or local features
through max-pooling operations to avoid the negative effects of
point cloud disorder. PointNet++ proposes hierarchical local feature
aggregation based on PointNet, which is used to improve the
network’s ability to recognize local features, and lays the
foundation for more semantic segmentation methods based on
point convolution in the future. KPConv [123] used kernel
points to replace the convolution kernel of conventional
convolution operations. The features of input points in the
convolution process are obtained by the weighted sum of features
of adjacent kernel points. Because the kernel points are continuously
distributed in the geometric space, their positions can be learned

FIGURE 4
Development roadmap of scene segmentation technology.
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through the network, and this variable convolution operation can
effectively adapt to the problem of uneven local point distribution in
the point cloud. On this basis, PAConv [124] used the ScoreNet
network to estimate the weighting coefficients of kernel points in the
convolution process, and further improved the performance of point
convolution through the learnability of the network. The advantage
of this method is that it directly processes the point cloud without
additional image data or data conversion operations, so it can retain
the detailed information of the point cloud to the maximum extent.

4.2.4 Graph convolution-based method
Graph convolutional neural network (GNN) is a kind of neural

network that specializes in dealing with graph structure. The spatial
interaction between three-dimensional points in a point cloud can
be represented by a graph, and each point is used as a node of the
graph. Therefore, it tries to apply graph convolutional network to
point cloud semantic segmentation in some work. L Jiang et al. [125]
proposed to enhance point cloud semantic segmentation by an edge
feature branch that uses graph convolution techniques to explicitly
establish the semantic relationship of each point with its
neighborhood points and extract contextual information within
the local neighborhood. Similarly, SPH3D-GCN [126] proposes a
spherical kernel-based graph convolution operation for point cloud
processing, which also directly establishes local graph relations
through point coordinates. Another way to use graph
convolution to point cloud semantic segmentation is to
additionally use the grid model corresponding to the point cloud.
Since the grid model has its own coordinate and edge information,
graph convolution network can be well applied. DCM-Net [127]
proposes to extract geodesic information on the grid model through
graph convolution operation, and uses two convolution operations
to extract Euclidean distance and geodesic distance respectively, and
fuses the two kinds of information through feature stitching. VMNet
[128] uses a dual-branch network structure to process point clouds
and grid models separately, and proposes a feature fusion module
based on attention mechanism to selectively perform fusion, thereby
improving the performance of this method in semantic
segmentation.

4.2.5 Attention mechanism-based method
As attention mechanism shows powerful feature representation

capabilities in the fields of natural language processing and
computer vision, and it also tried to apply it to semantic
segmentation of 3D point clouds in many works.
PointTransformer [129] is one of the representative works.
Different from previous scalar attention mechanisms, this
method proposes a vector attention mechanism for point clouds
and uses learnable position coding to improve the network’s ability
to capture spatial geometric information. However, this method uses
a local attention mechanism to reduce the computational overhead.
When dealing with complex scenes, it is necessary to superimpose
multiple layers of attention modules to expand the receptive field of
features. To solve this problem, StratifiedFormer [130] proposes a
hierarchical attention mechanism to establish long-distance
relationships between features. For each point, this method will
simultaneously sample adjacent points in its nearer and farther
distances to calculate attention. The sampling is denser in the nearer
distance and sparser in the far distance, which can directly expand

the receptive field. In addition, some efforts have been made to
improve the attention mechanism in point cloud semantic
segmentation in terms of efficiency and performance. Fast Point
Transformer [131] utilizes a voxel hash architecture to speed up
attention modules. Point Transformer V2 [132] groups vector
attention on the basis of Point Transformer, further strengthens
position coding information, and improves the robustness of
network processing point clouds.

4.3 Advantages, disadvantages and
development trends of existing scene
segmentation technologies

Existing scene segmentation technologies are outstanding in
high precision and detail capture, which can achieve high-
precision segmentation in three-dimensional space, capture
subtle geometric details, and provide richer information for the
understanding and processing of complex scenes. However, the
technology also has some shortcomings. First of all, processing 3D
point cloud and voxel data requires a lot of computing resources
and high-performance hardware, especially in high-resolution and
large-scale scenarios, where computing costs and storage
requirements are high. Secondly, it is expensive to obtain high-
quality 3D data and perform accurate annotation, and the
complexity of data annotation increases the difficulty of
preparing training data. Meanwhile, 3D scene segmentation
algorithms are usually complex with weak real-time processing
capabilities, and are difficult to run efficiently on resource-
constrained devices, which is a significant bottleneck in
applications that require rapid response. In addition, the
existing 3D scene segmentation models lack robustness and
generalization ability when they meet complex environments
and different scenes, and may require additional tuning and
training for specific scenes.

Future development trends mainly focus on the following
aspects. First, with the continuous advancement of deep learning
technology, especially the application of Transformer and GNN, the
accuracy and efficiency of 3D scene segmentation will be further
improved. These advanced models are better able to handle large-
scale and complex 3D data. Secondly, future research will focus more
on multi-task learning and self-supervised learning to reduce the
dependence on large-scale labeled data, thereby reducing the cost of
data labeling and improving the generalization ability and
robustness of the model. Third, with the improvement of
hardware performance and the optimization of algorithms, it will
be possible to achieve efficient real-time 3D scene segmentation on
mobile devices and edge devices, which will promote the practical
application of 3D scene segmentation technology in autonomous
driving, intelligent robots and other fields. Fourthly, the accuracy
and reliability of scene segmentation can be improved by fusing
different types of 3D sensor data. Multi-sensor fusion technology
will become an important direction of future 3D scene segmentation
research. In addition, combining 3D scene information with other
modalities (such as text, audio, etc.) can enhance the performance of
scene segmentation, and cross-modal fusion technology will provide
more comprehensive and accurate information support for 3D scene
segmentation.
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5 Summary and outlook

In this paper, the research status of SLAM, perception and
positioning of autonomous driving, scene segmentation and other
technologies are introduced respectively. These technologies are
interdependent and work together, which constitute the core of
modern autonomous driving system. SLAM provides basic
positioning and map construction capabilities, scene
segmentation provides advanced semantic understanding of the
environment, and autonomous driving perception and
positioning technology integrates this information for
autonomous navigation and decision-making. They are actually
closely related and interacted with each other although these
technologies belong to different fields on the surface. For
example, in the field of autonomous driving, the acquisition of
high-precision maps relies on high-precision mapping of SLAM,
while higher-level environmental awareness requires scene
segmentation and target detection, and real-time positioning also
requires SLAM.The future development direction and trend of each
technology are prospected when summarizing it. On this basis,
development directions applicable to all mentioned technologies will
be summarized in the paper, aiming at the common characteristics
of all reviewed technologies.

(1) Continuous Application of Deep Learning

Since all the above technologies involve feature extraction and
calculation, deep learning has unparalleled advantages in this
respect. In the future, deep learning will continue to play a role
in various technical fields, integrating more deep learning
technologies such as 3D scene reconstruction, 3D target
detection, and point cloud completion, which are even expected
to completely replace conventional methods in some fields.

(2) Fusion of multi-source and multi-modal information

When the above calculations for three-dimensional data
processing or scene perception are applied, multi-source and
multi-modal data can provide a more comprehensive and
integrated description and understanding of real scenes and
objects than single type of data.

(3) High Real-time Performance and Low Computing Load

All data processing technologies will further pursue real-time
performance and low computing load to improve processing
efficiency and reduce processing costs, so as to promote the real
implementation of these technologies in various fields.

The future development of autonomous driving will not only
transform transportation technology but will also have profound
impacts on law, ethics, and society. In terms of law, the division of
responsibility for autonomous vehicle accidents will become a core
issue. On the ethical front, the decision-making challenges brought
by autonomous driving technology are also a major concern. For
example, how should a vehicle make moral judgments when faced
with unavoidable accidents (such as the “trolley problem”)? The
social impacts are equally important. Autonomous driving could

significantly reduce traffic accidents and improve road safety, but it
will also disrupt the job market, particularly in the transportation
industry. Moreover, as private vehicle ownership declines and
shared autonomous vehicle fleets rise, urban planning could be
reshaped, changing the way people travel. However, the
widespread application of this technology will also raise privacy
issues, and how to protect user data will spark ongoing debates in
social and policy realms. Overall, the future of autonomous driving
is not just about technological breakthroughs but also about
comprehensive transformations in law, ethics, and social
structures, with the key challenge being how to find a balance
in these areas.
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