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Slant spacelike ruled surfaces
and their Bertrand offsets
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University, Riyadh, Saudi Arabia, 2Department of Mathematics, Faculty of Science, Assiut University,
Assiut, Egypt

In this work, we investigate the synthesis problem of slant spacelike ruled
surfaces and associated Bertrand offsets (BO) in E3

1 (Minkowsk 3-space). We
provide the parametric equation for a non-developable spacelike ruled surface
(SLRS) by using the Blaschke frame (BF). This results in the amplitude to
control a family of curvature functions defining the domestic form of this
SLRS . Therefore, we found the appropriate SLRS criteria to be slant SLRS .
Thus, several new Bertrand offsets (BO) for slant SLRS are investigated and
constructed.
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1 Introduction

The fundamental principle of a directed line’s motion in connection with a solid
body is referred to as the RS concept in spatial kinematics. This notion holds great
importance in conventional differential geometry and has been the subject of extensive
research by numerous scholars, as demonstrated by [1–7]. From a geometric perspective,
the properties of RS and their offset surfaces have been analyzed in both Euclidean
and non-Euclidean spaces. Bertrand curves were examined in the field of line-geometry
by Ravani and Ku, revealing that RS can possess an infinite number of BO, similar to
how a plane curve can possess an infinite number of B mates [8]. Küçük and Gürsoy
provided certain characterizations of BO related to the trajectory of RS by studying
the relationships between the projection areas for the spherical curves of BO and
their integral invariants [9]. Kasap and Kuruoğlu conducted an analysis of the integral
invariants of the couple of RS in the Euclidean 3-space E3, as documented in [10]. By
considering the orthonormal frame along striction curve of a ruled surface, Önder has
defined slant ruled surfaces in the Euclidean 3-space [11]. Moreover, Kaya and Önder
have studied the position vectors and some differential equation characterizations for
slant ruled surfaces in the Euclidean 3-space E3 [12–14]. They have also defined a new
type of slant ruled surface as the Darboux slant ruled surface and characterized for this
type of slant surfaces [15]. In [16], Önder introduced some characterizations for a non-
null ruled surface to be a slant ruled surface in Minkowski 3-space E3

1 . In their study,
Kasap and Kuruoğlu investigated BO of RS in Minkowski 3-space E3

1 , as documented in
[17]. [18] demonstrated the involute–evolute offsets of RS . Orbay et al. began studying
the Mannheim offsets of RS in [19]. Önder and Uğurlu conducted a study on the
relationships between invariants of Mannheim offsets of T LRS . They also formulated
many considerations for the development of these surface offsets [20, 21]. In view of the
involute–evolute offsets of the ruled surface in [7], Şentürk and Yüce described the integral
invariants of the involute–evolute offsets of RSs using the geodesic Frenet frame [22].
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In recent times, Yoon has investigated the evolute offsets ofRS
in E_13 with a stationary Gaussian curvature and mean curvature
[23]. A plethora of comprehensive treatises has been published on
this subject, as demonstrated by the numerous written works, such
as [24–27]. However, to the best of our knowledge, no prior work has
focused on constructingBO of slantSLRS , utilizing the geometric
attributes of the striction curve (SC). Here, we intend to fill the gap
in the existing literature.

In this paper, with the identification of slant curves, we
treat the structure issue of the BO of a slant SLRS family in
Minkowski 3-space E3

1 . Therefore, we extend the parametrization
of BO for any slant non-developable SLRS . Furthermore, we
inquire into the ownerships of these SLR surfaces and grant their
distribution. Meanwhile, we extend some interpretative paradigms
to display SLR surfaces with their BO along mutual geodesic,
line of curvature, and asymptotic curve. Our ramifications in this
paper may be beneficial in any area that demands documentation
around surfaces due to the descriptions supplying insights into
surfaces theory.

2 Basic concepts

Let E3
1 indicate the Minkowski 3-space [28, 29]. For vectors a =

(a1,a2,a3) and b = (b1,b2,b3) in E3
1 ,

⟨a,b⟩ = a1b1 − a2b2 + a3b3

is named the Lorentzian inner product. We also explain a vector

a× v = (a2b3 − a3b2,a1b3 − a3b1,a1b2 − a2b1) .

Since < , > is an indefinite metric, recall that a vector
a ∈ E3

1 can have one of three causal natures; it can be
SL if ⟨a,a⟩ > 0 or a = 0, timelike (T L) if ⟨a,a⟩ < 0, and
null or lightlike if ⟨a,a⟩ = 0 and a ≠ 0. The norm of a ∈
E3
1 is explained by ‖a‖ = √|⟨a,a⟩|; then, the hyperbolic and

Lorentzian (de Sitter space) unit spheres are

H2
+ = {a ∈ E3

1 ∣ ‖a‖
2 ≔ a21 − a

2
2 + a

2
3 = −1} (1)

and

S2
1 = {a ∈ E

3
1 ∣ ‖a‖

2 ≔ a21 − a
2
2 + a

2
3 = 1} . (2)

2.1 Ruled surface

RS is a surface produced by a line L mobile on a curve c(v).
The several locations of the line coined the producers or rulings of
the surface. Such a surface, thus, has the ruled form [1–6]

R:y (v, t) = c (v) + vb (v) , v ∈ I, t ∈ ℝ, (3)

such that ‖b‖2 = σ(±1), ‖b′‖2 = η(±1), < c′,b′ > = 0; ′ = d
dv
. In this

circumstance, the curve c(v) is the striction curve (SC) and v is the
arc length of the spherical non-null curve b(v). If b is not stationary

or not null or b′ null, then the Blaschke Frame BF for b(v) will be
registered as

b = b (v) ,z (v) = b′,g (v) = b× z,
b× z = g, b× g = σz, z× g = −ηb, ‖g‖2 = −ση,

} (4)

where b,z,g are named the ruling, the central normal, and the central
tangent, respectively. The Blaschke formula is from Equation 4

(
b′

z′

g′
)=(

0 1 0
−ση 0 γ
0 σγ 0

)(
b

z

g

), (5)

where γ(v) = det (b′′,b′,b) is the spherical curvature of b(v). In view
of BF with signs σ, η, and −ση, SC is

c′ (v) =
v

∫
0

(σΔ (v)b (v) − σηδ (v)g (v))dv. (6)

γ(v), Δ(v), and δ(v) are titled the curvature parameters of R. The
geometrical view of these parameters is proved as follows: χ is the
spherical curvature of the spherical image curve b(v); Δ depicts the
angle through the tangent of SC and the ruling of R; and δ is the
distribution parameter ofR, from Equation 3 at the ruling b.

In this study, we will meditate a non-developable SLRS
nominated by (σ,η) = (1,−1). Then,

(
b′

z′

g′
)=(

0 1 0
1 0 γ
0 γ 0

)(
b

z

g

)= ϖ×(
b

z

g

),

b× z = g, b× g = z, z× g = b, ‖b‖2 = −‖z‖2 = ‖g‖2 = 1,

}}}}}}}}
}}}}}}}}
}

(7)

where ϖ(v) = γb− g is the Darboux vector from Equation 6, and

c′ (v) =
v

∫
0

(Δ (v)b (v) + δ (v)g (v))dv. (8)

Therefore, a non-developable SLRS can be perceived as follows:

R:y (v, t) = c (v) + tb (v) , t ∈ I,v ∈ ℝ. (9)

The unit normal vector is

u (v, t) =
yt × yv
‖yt × yv‖

=
tg+ δz
√−t2 + δ2

, |t| > |δ| . (10)

Note that u(v,0) is identical with z, which is the central normal at the
striction point. The curvature axis of b(v) ∈ S2

1 is from Equations 1,
2

e (v) = ϖ
‖ϖ‖
=

γ

√γ2 + 1
b− 1

√γ2 + 1
g. (11)

Let ψ be the radii of curvature through b and e.
Then, from Equation 11

e (v) = cos ψb− sin ψg, with cot ψ = γ (v) . (12)

Definition 1: [16] In E3
1 , a surface can be determined by the induced

metric on it. Hence, a surface is called
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• T L surface iff the metric is Lorentzian metric.
• SL surface iff the metric is a positive definite
Riemannian metric.
• Null surface iff the metric is null.

Corollary 1: The curvature κ(v), the torsion τ(v), and the geodesic
curvature γ(v) of b(v) ∈ S21 fulfill that

κ (v) = √γ2 + 1 = 1
sin ψ
= 1
ρ (v)
, τ (v) ≔ ±ψ′ = ±

γ′

γ2 + 1
. (13)

Corollary 2: If γ(v) is a specified, then b(v) ∈ S21 is a
Lorentzian circle.

Proof. Through Equation 13, we can see that γ, which is
stationary, yields τ(v) = 0, and κ(v) is stationary, which reveals b(v) ∈
S2
1 is a Lorentzian circle (If γ(v) ≠ 0) or a Lorentzian great circle

(when γ(v) = 0).
Let’s state the Darboux frame {c(v); j1, j2, j3}; let c′(v)‖c′(v)‖

−1 =
f1(v) be the tangent unit to c(v), j3 = − z(v) is the surface unit normal
along c(v), and j2(v) = j1 × j3 be the tangent unit to R. Therefore,
we can write

(
j1

j2

j3

)=(
cos ϕ 0 sin ϕ
− sin ϕ 0 cos ϕ

0 −1 0
)(

b

z

g

),

‖j1‖2 = ‖j2‖2 = −‖j3‖
2 = 1,

}}}}}}}}
}}}}}}}}
}

(14)

and
Δ
√δ2 +Δ2

= cos ϕ, δ
√δ2 +Δ2

= sin ϕ. (15)

Let u be the arc length of c(v), that is, du = √δ2 +Δ2dv. Then, from
Equations 14, 15 the Darboux formula is expressed as

d
du
(
j1

j2

j3

)=(

0 γg −γn
−γg 0 τg
γn −τg 0

)(
j1

j2

j3

), (16)

where

γg (v) =
1

δ2 +Δ2
d
du
(δ dΔ

du
−Δ dδ

du
), γn (v) =

Δ+ γδ
δ2 +Δ2 ,τg (v) =

δ− γΔ
δ2 +Δ2 . (17)

γg(v), γn(v), and τg(v) are the geodesic curvature, the normal
curvature, and the geodesic torsion of c(ϰ), respectively. Therefore,
using Equations 16, 17

1) c(v) is a SL geodesic curve iff γg(v) = 0⇔ δ dΔ
du
−Δ dδ

du
= 0;

2) c(v) is a SL asymptotic curve iff γn(v) = 0⇔ Δ+ γδ = 0;
3) c(v) is a SL curvature line iff τg(v) = 0⇔ δ− γΔ = 0.

Remark 1: From Equation 8 and the above notations, we state that
(a) if δ(v) = 0, thenR is a SL tangential developable, and

γg (v) = 0,γn (v) =
1
Δ
, τg (v) = −

γ
Δ
.

(b) if Δ(v) = 0, thenR is a SL binormal surface, and

γg (v) = 0,γn (v) =
γ
δ
, τg (v) =

1
δ
.

(c) if δ(v) = Δ(v) = 0, thenR is a SL cone, and

γg (v) = γn (v) = τg (v) = 0.

Definition 2: [14] A ruled surface is named a slant ruled
surface if all its rulings have a stationary angle with a
definite line.

3 Bertrand offsets for slant SLR
surfaces

In this section, we contemplate and analyze the BO for slant
SLRS .Then, a theory hassling to the theory of the Bertrand curves
can be broadened for such surfaces.

In comparable with [30], a point e0(v) ∈ S2
1 will be heading

an ek curvature axis of the curve b(v) ∈ S2
1 ; for all v such that

< e0,b(v) > = 0, but < e0,b
t+1
1 (v) > ≠ 0. Here, b

t+1
1 signalizes the

tth derivative of b(v) with regard to v. For the first curvature
axis e of b(v), we find < e,b′ > = ± < e,z > = 0, and < e,b′′ > =
± < e,b+ γg > ≠ 0. So, e is at least an e2 curvature axis of b(v) ∈
S2
1 . We now sign a height function d:I×S2

1 →ℝ, by d(v,e0) = <
e0,b > . We set the notation d(v) = d(v,e0) for any specified point
e0 ∈ S2

1 .

Proposition 1: Under the overhead presumptions, we capture
the following:

i) dwill be specified in the first evaluation iff e0 ∈ Sp{b,g}, that is,

d′ = 0⇔< b′,e0 >= 0⇔< z,e0 >= 0⇔ e0 = c1b+ c2g;

for real numbers c1,c2 ∈ ℝ, and c21 + c
2
2 = 1.

ii) d will be specified in the second evaluation iff e0 is the e2
curvature axis of e0 ∈ S2

1 , that is,

d′ = d′′ = 0⇔ b0 = ±b.

iii) d will be specified in the third evaluation iff e0 is the e3
curvature axis of e0 ∈ S2

1 , that is,

d′ = d′′ = d′′′ = 0⇔ e0 = ±e, andγ′ ≠ 0.

iv) d will be specified in the fourth evaluation iff e0 is the e4
curvature axis of e0 ∈ S2

1 , that is,

d′ = d′′ = d′′′ = div = 0⇔ e0 = ±e,γ′ = 0, andγ′′ ≠ 0.

Proof. For d′, we determine

d′ =< b′,e0 > . (18)

So, we realize

d′ = 0⇔< z,e0 >= 0⇔ e0 = c1b+ c3g; (19)

for real numbers c1, c2 ∈ ℝ, and c21 + c
2
2 = 1, the consequence is

evident.2- Derivation of Equation 18 displays that

d′′ =< b′′,e0 >=< b+ γg,e0 > . (20)
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FIGURE 1
Slant SLRS (left) and its parallel BO (right).

FIGURE 2
Slant SLRS (left) and its oriented BO (right).

By Equations 18–20, we determine

d′ = d′′ = 0⇔< b′,e0 >=< b′′,e0 >= 0⇔ e0 = ±
b′ × b′′

‖b′ × b′′‖
= ±e.

3- Differentiation of Equation 20 displays that

d′′′ =< b′′′,e0 >= (1+ γ2) < z,e0 > +γ′ < g,e0 > .

Thus, we gain

d′ = d′′ = d′′′ = 0⇔ b0 = ±b, andγ′ ≠ 0.

4- By corresponding debates, we can also determine

d′ = d′′ = d′′′ = div = 0⇔ b0 = ±b,γ′ = 0, andγ′′ ≠ 0.
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FIGURE 3
Slant SLRS (left) and its parallel BO (right).

FIGURE 4
Slant SLRS (left) and its oriented BO (right).

The proof is finished.
In view of Proposition 1, we determine

(a) The osculating circle S(ρ,e0) of b(v) ∈ S2
1 is displayed by

< e0,b >= √1+ ρ2, < b′,e0 >= 0,< b′′,e0 >= 0,

which are pointed via the situation that the osculating circle
must have touch of at least third order at b(v0) iff γ′ ≠ 0.

(b) The curve b(v) ∈ S2
1 and the osculating circle S(ρ,e0) have

touched at least fourth order at b(v0) iff γ′ = 0 and γ′′ ≠ 0.

Through this method, by catching into meditation the curvature
axes of b(v) ∈ S2

1 , we can attain a concatenation of curvature axes e2,
e3,…, en. The ownerships and the joint links via these curvature axes
are much pleasant troubles. For example, it is facile to catch that if
e0 = ± e and γ′ = 0, b(v) located at ψ is specified relative to e0. At this
position, the curvature axis is fixed up to second order and R is a
slant T LRS .

Theorem 1: A non-developable SLRS is a slant SLRS iff its
geodesic curvature γ(v) is fixed.

Definition 3: Let R and R
∗
be two non-developable ruled SL

surfaces in E3
1 .R is entitled a BO of R

∗
if there exists a bijection via

their rulings such that R and R
∗
possess a reciprocal central normal

at the conformable striction points.
Let R

∗
be a BO of R and {c

∗
(v
∗
)b
∗
(v
∗
),z
∗
(v
∗
),g
∗
(v
∗
)} is the

BF ofR
∗
, as shown in Equations 7–9. Then, the surfaceR

∗
can be

allocated by

R∗:y∗ (v∗, t) = c∗ (v∗) + tb∗ (v∗) , t ∈ ℝ, (21)

where

c∗ (v∗) = c (v) + Γ∗ (v)z (v) . (22)

Here, Γ
∗
(v) is the distance through the proportional striction points

of R and R
∗
. Through the differentiation of Equation 21 via v and

considering Equation 22, we assign

z∗v∗
′
= (Δ+ Γ∗)b+ Γ∗

′
z+ (δ+ γΓ∗)g. (23)
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FIGURE 5
Slant SLRS (left) and its parallel BO (right).

Since z
∗
= z at the congruent striction points ofR andR

∗
, we gain

Γ
∗′
= 0⇒ Γ

∗
is fixed. Furthermore, given that Γ is the angle among

the rulings ofR andR
∗
, that is,

<b∗,b>= cosΓ. (24)

By differentiation of Equation 23, we gain

<z∗,b> v∗
′
+ <b∗,z>= −Γ′ sinΓ. (25)

Since z
∗
= z, then we realize Γ′ = 0⇒ Γ is fixed. Moreover, at the

congruent striction points of R and R
∗
, we observe that <g

∗
,g >

= cosΓ. Then, by Equation 24

(
b∗

z∗

g∗
)=(

cosΓ 0 sinΓ
0 1 0
− sinΓ 0 cosΓ

)(
b

z

g

). (26)

If Γ = 0(resp. π
2
), thenR andR

∗
are parallel (resp. oriented) offsets.

Theorem 2: The couple (Γ,Γ
∗
) is fixed at the corresponding striction

points of R and R
∗
.

It is apparent from Theorem 2 that a non-developable SLRS ,
frequently, has a binary infinity ofBO. EveryBO can be displayed by
a fixed linear offset Γ

∗
∈ ℝ and a fixed-angle offset Γ ≥ 0. Therefore,

ifR
∗
is a BO ofR, thenR is also a BO ofR

∗
.

Let u
∗
(v
∗
, t) be the SL unit normal of R

∗
. Then,

as shown in Equation 10, we locate

u∗ (v∗, t) =
y∗v × y∗t
‖y∗v × y∗t ‖

=
tg∗ + δ∗z∗

√−t2 + δ∗2
, |t| > |δ∗| , (27)

where δ
∗
is the distribution parameter ofR

∗
.

The dissimilarity between the normal to a RS and its BO
is apparent from Equations 10, 26. This demonstrates that the
BO of a RS is often not a parallel offset. Therefore, the parallel
circumstances through R

∗
in view of R can be exhibited by

the following:

Theorem 3: R and R
∗
are parallel offsets iff (a) δ = δ

∗
, with (b),

their Blaschke frames, being conformable.
Proof. Let u

∗
(v
∗
, t) × u(v, t) = 0, that is, R and R

∗
are parallel

offsets. Then, by Equations 10, 26, we acquire

t (δ∗ − δ cosΓ)b− t2 sinΓz− tδ sinΓg = 0,

which is assumed true for any value t ≠ 0, that is, δ = δ
∗
, and Γ = 0.

Let the two events hold true, that is, δ = δ
∗

and Γ = 0.
Then, substituting them into u

∗
(v
∗
, t) × u(v, t) using Equation

27, we acquire

u∗ (v∗, t) × u (v, t) =
tg∗ + δ∗z∗

√−t2 + δ∗2
×

tg+ δz
√−t2 + δ2

,

which indicates thatR andR
∗
are parallel offsets since the previous

u
∗
(v
∗
, t) × u(v, t) is a zero vector.

Using the same approach, but with a developable surface δ = 0,
we encounter the following:

Corollary 3: A developable SLRS and its developable BO are
parallel offsets iff their Blaschke frames are identical.

Corollary 4: A developable SLRS and its non-developable BO
cannot be parallel offsets.
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FIGURE 6
Slant SLRS (left) and its oriented BO (right).

FIGURE 7
Slant SL tangential (left) and its parallel BO (right).

Furthermore, we also detect

d
dv∗
(
b∗

z∗

g∗
)=(

0 1 0
1 0 γ∗

0 γ∗ 0
)(

b∗

z∗

g∗
), (28)

where

dv∗ = (cosΓ+ γ sinΓ)dv, γ∗dv∗ = (γ cosΓ− sinΓ)dv. (29)

By takeoff dv
∗
/dv, we locate using Equations 28, 29

(γ− γ∗)cosΓ+ (γ∗γ− 1) sinΓ = 0. (30)

This presents a new perspective ofBO of SLR surfaces, specifically
focusing on their geodesic curvatures.

Theorem 4: R and R
∗
are BOSLR surfaces iff Equation 30 is

fulfilled.
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FIGURE 8
Slant SL tangential (left) and its oriented BO (right).

FIGURE 9
Slant SL binormal (left) and its parallel BO (right).

Corollary 5: R and R
∗
are parallel offsets iff γ

∗
− γ = 0.

Corollary 6: R and R
∗
are oriented offsets iff γ

∗
γ− 1 = 0.

For γ(v) being fixed, from Equations 7, 12, we have the ODE,
b′′′ − κ2b′ = 0. In accordance with several algebraic manipulations,
the solution is

b (ϰ) = (cos ψ, sin ψ sinh ϰ, sin ψ cosh ϰ) , (31)

where ψ is fixed and ϰ = √1+ γ2v. Then,

z (ϰ) = db
d ϰ
‖ db
d ϰ
‖
−1
= (0,cosh ϰ, sinh ϰ) ,

g (ϰ) = b× z = (− sin ψ,cos ψ sinh ϰ,cos ψ cosh ϰ) .

}
}
}

(32)

Therefore, from Equations 8, 30, 31, SC c(ϰ) is expressed as

c (ϰ) ≔ (
c1
c2
c3

) =
(((

(

(
ϰ

∫
0
Δd ϰ)cos ψ−(

ϰ

∫
0
δd ϰ) sin ψ

(
ϰ

∫
0

Δ sinh ϰ d ϰ) sin ψ+(
ϰ

∫
0

δ sinh ϰ d ϰ)cos ψ

(
ϰ

∫
0

Δ cosh ϰ d ϰ) sin ψ+(
ϰ

∫
0

δ cosh ϰ d ϰ)cos ψ

)))

)

. (33)

Hence, from Equations 9, 30–33, the slant SLRS is expressed as

R:r (ϰ, t) = (c1,c2,c3) + t (cos ψ, sin ψ sinh ϰ, sin ψ cosh ϰ) . (34)

Furthermore, by Equations 20, 25, 33, BOR
∗
is expressed as
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FIGURE 10
Slant SL binormal (left) and its oriented BO (right).

FIGURE 11
Slant SL cone (left) and its parallel BO (right).

R∗:r∗ (ϰ, t) = (
c1 + Γ∗ sinh ϰ +t cos ϖ

c2 + Γ∗ cosh ϰ +t sin ϖ sinh ϰ
c3 + t sin ϖ cosh ϰ

), t ∈ ℝ, (35)

where ϖ = ψ+ Γ and Γ
∗
can control the shape of R

∗
; here, we will

set Γ
∗
= − 0.5, ψ = π

4
, −4 ≤ t ≤ 4, and −3 ≤ϰ≤ 3.

3.1 Classifications of the slant SLR and its
BO

From Equations 34, 35, the slant SLRS and its BO can be
distributed as follows:1) Let SC be a SL asymptotic curve, i.e., γn =
0⇒ Δ+ γδ = 0. The slant SLR and its parallel (oriented) BO are
shown in Figure 1; Figure 2; Δ = ϰ.
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FIGURE 12
Slant SL cone (left) and its oriented BO (right).

2) Let SC be a SL geodesic curve, i.e.,

γg (v) = 0⇔ δdΔ
du
−Δ dδ

du
= 0⇒ δ/Δ = c,

where c is a real constant. The slant SLR and its parallel (oriented)
BO are shown in Figure 3 (Figure 4); c = − 2 and Δ(ϰ) = ϰ.

3) Let SC be a SL curvature line, i.e., τg(v) = 0⇔ δ− γΔ = 0.
The slant SLR and its parallel (oriented) BO are shown in
Figure 5 (Figure 6); Δ(ϰ) = ϰ.

4) Let δ = 0, i.e., R be a SL tangential developable. The
slant SLR and its parallel (oriented) BO are shown in
Figure 7 (Figure 8); Δ(ϰ) = ϰ.

5) Let Δ = 0, that is, R be a SL binormal. The slant SL
binormal and its parallel (oriented) BO are shown in
Figure 9 (Figure 10); δ(ϰ) = ϰ.

6) Let Δ = δ = 0, that is,R be a SL cone. The slant SL cone and
its parallel (oriented) BO are shown in Figure 11 (Figure 12);
δ(ϰ) = ϰ.

4 Conclusion

This work explores the features of slant curves and develops and
classifies slant SLR surfaces and their BO in Minkowski 3-space
E3
1 using the Blaschke domain. Next, we construct contemporary

SLR surfaces in Lorentzian line space and determine their BO.
In addition, we also obtain various groupings by a slant SLRS
and its striction curve.These advancements are expected to enhance
the usefulness ofmodel-basedmanufacturing inmechanical outputs
and geometric patterning. The authors intend to correlate this
study across several domains and examine the classification of
singularities, as identified in [31, 32].
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