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This study proposes a novel perspective to calibrate the conditional value at risk
(CoVaR) of countries based on the monotone composite quantile regression
neural network (MCQRNN). MCQRNN can fix the “quantile crossing” problem,
which is more robust in CoVaR estimating. In addition, we extend the MCQRNN
method with quantile-on-quantile (QQ), which can avoid the bias in quantile
regression. Building on the estimation results, we construct a systemic risk
spillover network across countries in the Asia–Pacific region by considering
the suffering and overflow effects. A comparison among MCQRNN, QRNN,
and MCQRNN-QQ indicates the significance of monotone composite
quantiles in modeling CoVaR. Additionally, the network analysis of composite
risk spillovers illustrates the advantages ofMCQRNN-QQ-CoVaR compared with
QRNN-CoVaR. Moreover, the average composite systemic suffering index and
the average composite systemic overflow index are introduced as country-
specific measures that enable identifying systemically relevant countries
during extreme events.
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1 Introduction

The Sino–U.S. trade war and the COVID-19 epidemic have caused huge fluctuations in
Asia–Pacific stock markets. Compared with other economic organizations, the Asia–Pacific
Economic Cooperation (APEC) organization provides a diversified financial markets
environment, including developed and developing countries. In addition, APEC’s
organizational structure and cooperation mechanism are more flexible, which means
member countries cooperate while maintaining autonomy. Moreover, the economic
structure of APEC countries is highly complementary; for example, resource-rich
countries tend to trade closely with countries with developed manufacturing industries.
By establishing interconnectivity, APEC encourages deeper cooperation in infrastructure,
trade, and investment among countries in the region. According to statistical data, APEC
members account for more than 40% of global trade. Within the region, trade among
members is higher than trade with non-members. Despite the large volume of intra-APEC
trade, APEC trade relations may depend more on bilateral relationships of large countries
such as China and the United States than other economic organizations such as the
European Union. This means that the trade closeness of APEC is greatly affected by the
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policy changes of large countries. Consequently, in the stage of
Sino–U.S. trade friction, the trade cooperation of member countries
will undergo great changes.

In the COVID-19 phase, the economic conditions of China and
the United States will directly affect the risk level of the
organization’s members. Therefore, the research on systemic
financial risks among APEC member countries in this paper is
helpful for a deeper analysis of the risk contagion mechanisms
between different economies and could provide a supplement to
existing literature. Growing uncertainty results in countries facing
cross-border risk shocks, making the issue of systemic risk a renewed
focus of research by academics and regulators. Systemic risk caused
by the bankruptcy of systemically important economies is primarily
the failure of the financial system. From the aspect of international
markets, when an important node is damaged by a shock, other
markets may also be affected and could eventually be contagious to
the entire financial system.

To measure the systemic risk, studies in recent years have begun
to focus on the risk contagion or spillover effect [1]. The former is
mainly from a theoretical modeling perspective [2–6]. Additionally,
more focus on empirical measurement provides compositions for
the “edge” of the financial network. For instance, Engle (2002)
constructs the GARCH-DCC method to capture the risk spillover
among market indexes [7]. Rodriguez (2007) measures the
interdependence among East Asian stock via switching-parameter
copulas [8]. Billio et al. (2012) prompt the empirical framework of a
risk spillover network based on Granger causality [9]. Diebold and
Yılmaz (2014) involve variance decomposition in risk spillover and
analyze the vulnerability by financial networks [10]. Baruník and
Křehlík (2018) study the risk spillover from aspects of heterogeneous
frequency responses to shock [11].

The risk modeling system of this paper is an addition to
the conditional value at risk (CoVaR), which is the systemic
risk approach [12]. Adrian and Brunnermeier (2016) define
ΔCoVaR as the change of system’s value at risk in the
condition of one single institution’s loss, which has provided a
new perspective for risk spillover effects [12]. Nevertheless, the
original CoVaR needs to assume a linear relationship between the
return of market indexes and institutions’ stock prices. Thus,
Hautsch et al. (2015) provide a paradigm of multivariate
CoVaR, which is based on the marginal effect of risk spillovers
among financial institutions [13]. Furthermore, based on
SIM − CoVaR, Fan et al.(2018), Härdle et al. (2016) propose a
tail event driven network technique (TENET), where the ΔCoVaR
is replaced as the partial differentiation of multivariate nonlinear
CoVaR [14, 15]. On this basis, Keilbar and Wang (2022) adapt the
TENET model approach based on a neural network method,
which also uses partial differential to calculate the marginal
effect among agents [16]. QRNN − CoVaR has already been
employed for risk spillover among inter-industries and energy
markets [17, 18]. Moreover, graph learning in attributed networks
are used in risk spillover by different node-to-cluster distance
functions [19, 20].

This paper seeks to expand the research perspective on systemic
financial risk by examining the composite risk spillover effects
among financial markets to avoid possible errors in the setting of
quantiles. We construct the composite risk spillover measure based
on the multi-quantile CoVaR by multi-quantile CAViaR

(MQ − CAViaR) and quantile-on-quantile regression (QQR).
QQR has been widely involved in correlation and spillover effect
[21–23], although it has not been adopted byCoVaR estimation. It is
found that the concept of QQR is suitable for systemic financial risk
because there are two-sided quantile sets in the CoVaR definition.
However, in traditional methodology, both the stand-alone
quantiles and exposed quantiles are set as a fixed small number
(normally 5%). If CoVaR is extended to multiple (stand-alone)
quantiles, a tough problem, “quantile crossing,” will emerge and
raise a paradox of “higher risk but less1 loss” [24, 25]. The problem of
non-monotonicity of risk indicators arises when estimating CoVaR
using single-quantile regression. However, financial risk indicators
must ensure their monotonicity, so the issue of quantile crossover
must be addressed [26, 27].

Some studies focus on this problem. Acharya et al. (2017)
assessed the expected loss below one quantile in dealing with the
problem of quantile crossing [27]. Catania and Luati (2023) used a
semiparametric model to satisfy the condition of non-crossing
quantiles [28]. By investigating the QQ − CoVaR, this paper not
only obtains a more robust risk spillover measure, but also
facilitates the examination of the characteristics of nonlinear
systemic risks in each market. In addition, although some
studies have addressed the risk-related networks of financial
markets in the Asia–Pacific region [29–31], few visualize the
systemic risk of quantile regression neural networks. The
findings of this paper should make an important contribution
to the field of capturing systemic risk spillovers among financial
markets and recognition of risk sources.

This paper proposes a quantile-on-quantile regression to
examine the two-sided quantile in CoVaR estimation. The effects
of systemic risk are analyzed by three-dimensional surface plots in
empirical research. We extend the quantile regression in the
systemic risk approach with a monotone composite quantile
regression neural network, which can not only be suitable for
solving the nonlinear issue but also optimize the “quantile
crossing” problem. Moreover, we introduce the composite
systemic suffering indicator, the composite systemic overflow
indicator, and the total composite overflow indicator as three
country-specific measures to identify systemically relevant
countries in the Asia–Pacific region during extreme events.

This article makes three main contributions. First, we estimate
the systemic financial risk through a new perspective that adopts 3D
surface plots. Second, multi-quantiles are adopted in the model to
capture the multi-state characteristics of risk. Third, MCQRNN is
used to relieve the quantile crossing problem.

The remainder of the paper will be organized as follows: Section
2 will (i) introduce the multi-quantile CoVaR based on monotone
composite neural network quantile regression (MCQRNN) and (ii)
describe the methodology of MCQRNN − QQ − CoVaR in details.
After constituting the risk modeling system step by step, the
empirical results based on Asia–Pacific stock markets and
discussion will be presented in Section 3. Finally, a conclusion of
this paper and suggestions for future study are drawn in Section 4.

1 “Higher risk but less loss” means the greater the risk, the smaller the loss

because of the quantile crossing.
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2 Materials and methods

2.1 The monotone composite neural
network of quantile regression
(MCQRNN) method

A quantile regression model based on a linear regression
equation estimates parameters for τ quantiles under the variable
Yt by introducing an indicative function in the loss function [32],
defined as Equation 1.

min
β

∑n
t�1
ρτ Yt −Xtβ( ), (1)

where ρτ(z) � |z| · |τ − I(z< 0)| is the loss function at the quantile
level of τ (known as the pinball loss function). Where I(z< 0) is the
indicative function, the value is 1 when the independent variable
z< 0; otherwise, the value is 0. However, this model only considers
linear relationships between the variables, which cannot state the
effect of non-linearity. For this reason, Taylor (2000) involved a
neural network model called the quantile regression neural network
approach (QRNN) [33]. Cannon (2018) extended theQRNN to the
monotone composite neural network of quantile regression
(MCQRNN), which can mitigate the “quantile crossing”
problem [34]. The comprehensive estimations of multi-quantile
CoVaR can be obtained by adjusted MCQRNN. Assuming the
number of market indexes isN and their price returns are Ri

t{ }, the
conditional value at risk of market i in level of quantile qs can be
obtained by hi(R−i

t , qs) defined as2 Equation 2.

hi R−i
t , qs( ) ≡ ∑Mn

m�1
ωi
m · ψ eω

ii
m · qs +∑

j≠i
ωji
mR

j
t + bim⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + bi (2)

The difference between QRNN and MCQRNN is introducing
quantile qs as an input variable with a positive weight of eω

ii
m . In

addition, the nonlinear activation function ψ(·) is assumed to be
invariant and known. The parameter of each node m in the hidden
layer consists of weights ωji

m | j ≠ i}{ and the intercept bim, while the
output layer parameters are ωi

m and bi. These parameters are verified
to be consistent and asymptotically normal under large sample and
regularity conditions. Moreover, they converge to the true function
at a certain rate [35, 36].

However, the loss function in the quantile regression is not
differentiable everywhere. It limits the use of artificial neural
networks’ regular algorithms (ANNs) in MCQRNN. Therefore,
it is necessary to adjust the form of the loss function. One approach
is to add a Huber norm h(u) [37], which allows a smoothing
approximation to the error term near the origin. Furthermore,
h(u) is a hybrid L1/L2 − norm, which makes it possible to use
standard gradient-based optimization algorithms.

In addition, when the capacity of the neural network is large, it is
prone to over-fitting problems. Choosing a modest neural network
structure and hyperparameters is an effective approach often used in
machine learning. In a single hidden layer network, the most
important hyperparameter is the number of hidden nodes Mn.

Therefore, choosing the appropriate number of nodes can reduce
the capacity of the neural network and avoid the over-fitting
phenomenon. In addition, Bishop (1995) proposed alleviating this
problem by introducing weight decay regularization [38]. Such
regularization requires adding an additional penalty term to the
weight parameter ωh

k,m. Referring to model of Cannon [39, 40], the
final estimator is set as Equation 3 included a quadratic penalty term.

min
hi

1
TS

∑T
t�1
∑S
s�1
ρ∑T
t�1
∑S
s�1

ρ

Ri
t-h

i R-it , qs( )( ) + λ
Mn

∑Mn

m�1
ωi
m( )2

+ λ
MnN

∑Mn

m�1
eω

ii
m( )2 + λ

MnN
∑Mn

m�1
∑
j≠i

ωji
m( )2, (3)

where λ is the parameter that regulates the weight of the quadratic
penalty term in the loss function. When λ is 0, this regression is
transformed to an ordinary MCQRNN. In this paper, simple
sampling is used to train neural networks. According to the
experience of [40] and [16], we selected 50% of the samples from
the sample period as the training set to train the loss function, which is
Equation 3, in the MCQRNN model. Except for λ and Mn

hyperparameters, the intercept and weights of the neural network
are trained. Otherwise, too large λ will lead to the loss of non-linear
characteristics of the model, when the transfer function ψ is the
sigmoidal hidden layer transfer function, such as hyperbolic tangent
tanh. To balance the degree of the over-fitting and the prediction
accuracy, λ is set to equal to 2 here. Furthermore, the optimization of
the loss function as shown in Equation 3 can be achieved by using a
quasi-Newton optimization algorithm, which is less complex and
more appropriate for the computational complexity in this paper. The
quantile regression neural network process is visualized in Figure 1.

2.2 Calibrate systemic risk system

The calibration details of MCQRNN − QQ − CoVaR are
explained in this section. There are four steps involved in the
systemic risk system calibration. The first step is the estimation

FIGURE 1
Quantile regression neural network process.

2 qs is the stand-alone level; −i of R−i
t is a vector.
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of VaR based on CAViaR. Next, the results are used to estimate
CoVaR withMCQRNN andQQ for each country. In the third step,
the composite risk spillover effects are calculated by resulting in an
extreme risk spillover measure. Finally, the systemic risk measures
are proposed based on the systemic risk network. The process of the
risk modeling system is demonstrated in Figure 2 as follows:

Step 1: Estimation of value at risk with CAViaR

Because it is challenging to select common macro-state
variables for all indexes, the linear quantile regression of value
at risk is no longer suitable for measuring the tail risk of stock
markets. Hence,CAViaR is adopted in the first step [41]. Given the
asymmetric effects of the rise and fall of each index, AS − CAViaR
at the quantile level of pl can be estimated in the following
Equation 4 [42]3:

CAViaRj
l,t β( ) � β1 + β2CAViaR

j
l,t−1 β( ) + β3 Rj

t−1[ ]+ + β4 Rj
t−1[ ]−,

(4)
where [Rj

t−1]+ is the absolute value of market index j’s return when
the lagged log-return is larger than zero, and the rest is 0. Rj−

t−1 is the
absolute value when the lagged log-return is minus zero. β �

[β1, β2, β3, β4] is the vector of the parameters. By utilizing the
differential evolution algorithm [43] and the loss function similar
to Equation 1, the CAViaRj

l,t is an appropriate risk indicator for
individual stock market j at the quantile level of pl.

Step 2: Estimation of CoVaR with MCQRNN − QQ

First, the MCQRNN method is adopted to estimate ĥ
i(R-it , qs)

based on Equation 3. Additionally, given the quantiles of stand-
alone [q1, q2, ..., qS] and quantiles of exposed risk [p1, p2, ..., pL], the
quantile-on-quantile conditional value at risk (QQ − CoVaR) can be
obtained by theMCQRNN. QQ − CoVaR [16] is estimated similar
to CoVaR [12] and TENET [44]. To embed the dependency among
financial markets, the estimation of CoVaR by MCQRNN is
introduced. Following [16], the definition of CoVaR is adjusted
as Equation 5 to adapt to a multivariate model.

Prob Ri
t <CoVaRs,i

l,t

∣∣∣∣Rj
t � CAViaRj

l,t,∀j ≠ i( ) � qs. (5)

Assume the CoVaR of market index i is predictable via function
hi(R−i

t , qs), and other indexes’ current return Rj
t }j≠i{ , ĥ

i
is the

estimator of the function and can be trained by the MCQRNN
algorithm [34]. Therefore, the CoVaR in the condition of each risk
state (pl, qs) can be obtained by Equation 6.

CoVaRs,i
l,t � hi CAViaR−i

l,t , qs( ). (6)

FIGURE 2
Flowchart of the risk modeling systems.

3 pl represents the conditional exposed risk.
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It should be noted that, in distinction to Keilbar and Wang, this
paper estimates CoVaRs,i

l,t for all quantiles of the whole range
4. Thus,

the CoVaR of each market index i can be expressed as a three-
dimensional surface at each time point by setting theX andY axes to
denote different quantile levels p and q, respectively. The z-axis
values are CoVaRs,i

l,t . There is an advantage of reflecting both the
non-linear relationship between CoVaRs,i

l,t varying with the risk
condition CAViaRj

l,t{ } and the CoVaR at each of its own risk
levels q.

Step 3: Calculation of composite risk spillover effects

To examine the margin impact of index j on the CoVaRs,i
l,t , the

partial derivative is taken, which is named djils,t. According to the
format of the function ĥ

i
estimated byMCQRNN, the risk spillover

from j to i is expressed as Equation 7,

dji
ls,t �

∂ĥi
∂Rj

t

CAViaR-il,t, qs( )
� ∑Mn

m�1
ω̂i
mω̂

ji
m · ψ′ eω̂

ii
m · qs +∑

j≠i
ω̂ji
mCAViaR

j
l,t + b̂

i

m
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (7)

where the derivative of the transfer function is set as
ψ′ � 1

2 (1 − tanh2(z2)), and all parameters are trained by
MCQRNN. This measure should be based on the accuracy of
the CoVaR estimation, but the QRNN, as a non-linear neural
network model, is prone to over-fitting at a single quantile.
Consequently, the MCQRNN adopted in this paper is able to
reduce the impact of potential fitting error at a single quantile on
the overall risk spillover. Considering the risk spillovers at different
quantiles, the composite risk spillover can be defined as δjit as
Equation 8.

δjit �
1
SL

∑S
s�1
∑L
l�1

1 + CAVia| Rj
l,t

⎞⎠ · 1+( |
∣∣∣∣∣∣∣∣∣∣ CoVaRs,i

l,t
⎞⎠·
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣dji
ls,t

⎛⎝ ∣∣∣∣∣∣∣∣∣∣⎡⎢⎢⎣ ⎤⎥⎥⎦, if j ≠ i

0,                       if j � i,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

where the |djils,t| is the absolute value of risk spillover, and the
risk-weighted composite risk spillover from index j to i is defined as
δjit . Because the absolute value of the risk indicators (CAViaR,
CoVaR) in the more extreme state is larger, the risk spillover in the
extreme risk state couple (pl, qs) accounts for more weight in the
aggregate indicator.

To reflect the sensitivity of average-level composite risk spillover
to the two-sided quantiles, we decompose the �δ

ji � ∑T
t�1δ

ji
t into two

partial spillover indicators δjis and δjil , as Equation 9.

�δ
ji

s �
1
TS

∑T
t�1

∑L
l�1

1 + CAViaRj
l,t

∣∣∣∣ ∣∣∣∣( ) · 1 + CoVaRs,i
l,t

∣∣∣∣ ∣∣∣∣( ) · dji
ls,t

∣∣∣∣ ∣∣∣∣[ ], if j ≠ i

0, if j � i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�δ
ji

l �
1
TS

∑T
t�1

∑S
s�1

1 + CAViaRj
l,t

∣∣∣∣ ∣∣∣∣( ) · 1 + CoVaRs,i
l,t

∣∣∣∣ ∣∣∣∣( ) · dji
ls,t

∣∣∣∣ ∣∣∣∣[ ], if j ≠ i

0, if j � i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(9)

The partial spillover indicators are used to reflect the average
impact of the two-sided risk state on the spillover from market j to
market i in the sample period. The partial spillover indicator of pl

side δjil is the composite spillover effect at the exposed risk state of pl,
which reflects the sensitivity to the risk state of the entire system.
Correspondingly, the δjis indicates the response of spillover effect to
the change in stand-alone risk status qs. In addition, it is necessary to
consider the spillover of market j to i under the most extreme
conditions, that is, q1 or p1. Hence, we consider the conditional
partial spillover indicators under the fixed q1 quantile or fixed p1 as
Equation 10.

�δ
ji

1s �
1
T
∑T
t�1

∣∣∣∣∣∣∣∣∣dji
1s,t| and �δ

ji

l1 �
1
T
∑T
t�1

∣∣∣∣∣∣∣∣∣dji
l1,t|. (10)

The non-linear characteristics of inter-market risk spillover can
be analyzed by comparing the two types of partial spillover indices
under different quantiles, and the mutation quantile of spillover can
be captured. In addition, to reflect the extreme risk spillover, the
�δ
ji
11 � ∑T

t
dji11,t is defined as spillover at a single quantile. If this

indicator is calculated by QRNN, it will be the same as the spillover
defined by [18].

Last but not least, similar to the partial spillover indicators, four
partial CoVaR terms can be defined as the average CoVaR when the
one-side quantile takes different values under the condition of the
other fixed, that is, CoVaR

i
s and CoVaR

i
l. To reflect the tail risk in

the extreme condition, the traditional CoVaR estimated by QRNN
and MCQRNN are also calculated as CoVaR

i
1s, CoVaR

i
l1. Taking

the CoVaR
i
s and CoVaR

i
1s as an example, Equation 11 is consistent

with the partial spillover �δ
ji
s .

CoVaR
i

s �
1
TL

∑L
l�1
∑T
t�1
CoVaRs,i

l,t

CoVaR
i

1s �
1
T
∑T
t�1
CoVaRs,i

l,t|l�1.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(11)

The quantile crossing problem in the estimation of CoVaR can
be described and counted as Equation 12,

∃s1 < s2, |CoVaRi

s1
<| |CoVaRi

s2
|. (12)

For each market, the total number of “quantile crossing”
problems can be accumulated by a monotonicity test. Because
the CoVaRt is more adaptable in financial markets, we employ
CoVaRs,i

1,t, CoVaR
i
1s, and CoVaR

i
s to accumulate numbers of

“quantile crossings” for each market.

Step 4: Network analysis for composite systemic risk

The average measures of composite systemic risk will be gained
in the final step. First, because the risk spillover of market index j on
market index i involves two quantiles pl and qs, the average
indicators are composited and averaged. Referring to previous
works [16, 45], the composite systemic suffering indicator Γit
should be aggregated as Equation 13. The composite index is
weighted by the own risk of each spillover emitter. This is
because if market j has higher own risks, market i will bear
more systemic risk spillover.4 −i in CAViaR−i

l,t is a vector, which is the same as R−i
t in Equation 2.
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Γit �
1
SL

∑S
s�1
∑L
l�1

∑
j≠i

1 + CAViaRj
l,t

∣∣∣∣ ∣∣∣∣( ) · dji
ls,t

∣∣∣∣ ∣∣∣∣[ ]. (13)

Second, the composite systemic overflow indicator Φj
t can be

defined as Equation 14.

Φj
t � 1

SL
∑S
s�1
∑L
l�1

∑
i≠j

1 + CoVaRs,i
l,t

∣∣∣∣ ∣∣∣∣( ) · dji
ls,t

∣∣∣∣ ∣∣∣∣[ ]. (14)

To reveal the trend of the spillover effect, the total composite
overflow indicator Πt can be calculated as Equation 15.

Πt � 1
SL

∑S
s�1
∑L
l�1
∑N
j�1

∑
i≠j

1 + CAViaRj
l,t

∣∣∣∣ ∣∣∣∣( ) · 1 + CoVaRs,i
l,t

∣∣∣∣ ∣∣∣∣( ) · dji
ls,t

∣∣∣∣ ∣∣∣∣[ ]
(15)

The total overflow indicator can be regarded as the weighted
sum ofΦj

t , which reflects the changing trend of risk spillover time of
each market in the sample.

Lastly, the adjusted adjacency matrix is defined as Equation 16.

At �
0 �δ

12
t / �δ

1N
t

�δ
21
t 0 / �δ

2N
t

..

.
/ 1 ..

.

�δ
N1
t

�δ
N2
t / 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (16)

The adjusted adjacency matrix accounts are the risk spillover
indicators. Systemic spillover effects are thus determined by the
marginal effects of theMCQRNN procedure, as well as by the VaR
and CoVaR of the considered countries.

3 Results and discussion

3.1 Data and descriptions

We select the stock market indices of N � 18 representative
countries or regions from the Asia–Pacific Economic Cooperation
(APEC) organization varying from January 2012 to December
2021 as sample data. Due to the weekday effect and excessive
short-term volatility noise in daily frequency data, the daily
returns of stock indexes taken from the WIND database are
transformed into weekly data. The logarithmic return is
calculated using the closing price on the last trading day of each
week. Adopting weekly frequency data can effectively avoid the
problem of time differences between the markets, and the data for
each week can simply be treated as contemporaneous. The indexes
and their abbreviations of regions for the 18 markets are shown
in Table 1.

As shown in Table 2, the total number of observations is
9,396 because some markets have missing samples due to the
holidays or other factors. The average weekly return of each
market is all positive, which indicates that the indices prices of
Asia–Pacific stock markets at the end of 2021 are higher than they
were in 2011. It is worth noting that the minimum value of all
samples is −20.13%, which is the weekly return of the Chile index in
the fourth week of March 2020. The maximum value occurred in the
next week, which is 15.81% in Japan. The World Health

Organization recognized the COVID-19 outbreak as a global
pandemic on 11 March 2020. After 2 weeks of declines, most
global stock markets rebounded sharply in the last week of March.
Except for the stock markets of Mexico, mainland China, and
Hong Kong, all the financial markets have a kurtosis of 3 or more
in their return distributions. The return curves show a sharp peak
pattern, which indicates that the outliers are more dispersed. In
addition, the skewness of all the markets in the sample is negative,
indicating that the return series of each market is left skewness;
that is, the probability of negative extreme value is higher than
positive. The augmented Dickey–Fuller (ADF) value of each
market return is negative and less than the test critical value at
the 1% significant level, rejecting the null hypothesis of a unit root.
All Jarque–Bera (JB) statistics are significant at the 1% level, which
rejects the null hypothesis of Gaussian distribution for the
market returns.

3.2 Estimation of multi-quantile CAViaR
and CoVaR

3.2.1 Estimation of multi-quantile CAViaR
The CAViaR series for each market return can be calculated

based on the methodology described in Section 2.2. Different from
the conventionalVaR calculation, a list of quantiles [5%, 10%, , 95%]
is selected to calculate the multi-quantile CAViaR (MQ − CAViaR)
at each quantile.

TABLE 1 Abbreviations of regions and indexes.

Region Abbr Index

Australia AU S&P/ASX 200

Canada CA S&P/TSX

Chile CL S&P CLX IPSA

China CN Shanghai&Shenzhen 300

Hong Kong HK Hengshen Index

Indonesia ID Jakarta Composite

Japan JP Nikkei 225

Malaysia MY Kuala Lumpur KLCI

Mexico MX MMX

New Zealand NZ New Zealand NZ50

Philippines PH Philippines Manila

Republic of Korea KP KOSPI

Russian Federation RU MOEX

Singapore SG FTSE Singapore STI

Tai Wan TW Taiwan Weighted Index

Thailand TH SE THAI Index

United States of America US S&P500

Viet Nam VN Ho-Chi-Minh Index
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TheMQ − CAViaR line diagrams of the United States and China
are shown in Figure 35. Scatter points in gray represent the weekly
returns, while the line represents theCAViaR at each quantile level. As
can be seen from the diagrams, the MQ − CAViaR lines
approximately envelop the points of return. From the perspective of
the whole-time sequence, the Chinese stockmarket fluctuates more. In
contrast, the US stock market returns are more concentrated overall,
except for two extreme values: late 2011 and early 2020. Since the
second half of 2011, the US stock market has suffered severe shocks,
especially due to the downgrade of the US credit rating and the
continued deterioration of the European debt crisis, which triggered
investor panic and increased US stock volatility. In addition, 2020 was
the time of the worldwide outbreak of the COVID-19 pandemic. These
two unexpected events hugely impacted the US stock market, while
during the remaining time, the US stock market was relatively stable
compared to the Chinese stock market. The patterns of the CAViaR
charts reflect the differences in the maturity of the two markets. In
terms of general trends, the Chinese stock market is more volatile, with
larger absolutemarket returns under extreme conditions because of the
frequent policy intervention and excessive proportion of individual
investors. Meanwhile, the CAViaR of the US market is smaller in
absolute terms, indicating that its market is able to return to a steady
state relatively quickly after a short-term shock. Furthermore, the
CAViaR lines of China at different quantiles are asymmetrical in the

vertical dimension. Its envelope area is larger below the zero value; in
other words, its value stays more in the negative zone. In contrast, the
CAViaR values of the United States are more concentrated in the
positive zone. According to the distribution of returns, the Chinese
stock market tends to suffer losses, while the US stock market tends to
make profits.

3.2.2 Comparison of CoVaR estimated by QRNN
and MCQRNN

According to the count method described in Equation 11, the
number of cross-quantile occurrences in each market is shown in
Table 3. Because 18 pairs of adjacent quantiles and 522 periods in
each market are compared, the first column of the table shows that
the quantile crossing is a common problem in the estimation of
CoVaRs,i

1,t. Even when considering the average level, the quantile
crossing is still obvious when comparing 18 pairs of quantiles.
However, MCQRNN completely eliminates this problem. To
further analyze the level of risk in the market under different
conditions, as described in Section 2.2, the three-dimensional
mesh-surface graphs were plotted to present the QQ − CoVaR at
each qs quantile of a stand-alone state and pl quantile of an exposed
state. Figure 4 presents the MCQRNN-QQ-CoVaR plots for other
markets indexes6.

TABLE 2 Descriptive statistics.

abbr Sample Mean (%) Std (%) Min (%) Median (%) Max (%) Skewness Kurtosis JB ADF

AU 522 0.12 1.94 −13.98 0.23 6.12 −1.5408 8.924 1900*** −7.806***

CA 522 0.11 1.91 −16.49 0.21 9.07 −2.2577 18.951 8,094*** −8.064***

CL 522 0.01 2.54 −20.14 0.04 12.94 −0.9160 10.686 2,504*** −7.68***

CN 522 0.15 3.00 −14.02 0.28 10.66 −0.5934 2.303 151*** −7.024***

HK 522 0.05 2.40 −9.97 0.26 7.60 −0.3494 0.739 22*** −7.988***

ID 522 0.11 2.19 −15.69 0.26 8.68 −1.1749 8.044 1,540*** −7.154***

JP 522 0.24 2.87 −17.43 0.29 15.82 −0.5016 4.980 552*** −7.958***

MY 522 0.00 1.42 −9.79 0.00 5.49 −0.3292 5.420 633*** −8.415***

MX 522 0.07 2.08 −10.56 0.15 7.53 −0.2621 2.324 120*** −8.051***

NZ 522 0.26 1.62 −15.08 0.38 7.86 −1.8384 16.638 6,191*** −8.393***

PH 522 0.09 2.53 −19.26 0.10 10.19 −1.0599 9.947 2,203*** −7.523***

KP 522 0.09 2.19 −14.13 0.25 9.26 −0.8743 6.779 1,049*** −7.593***

RU 522 0.19 2.51 −16.04 0.23 8.16 −0.6988 4.424 458*** −8.843***

SG 522 0.03 1.88 −11.70 0.14 9.16 −0.2586 5.689 693*** −8.215***

TW 522 0.18 2.06 −11.13 0.41 6.78 −0.8800 3.443 329*** −8.126***

TH 522 0.09 2.12 −18.96 0.25 7.54 −1.6991 14.018 4,435*** −8.137***

US 522 0.26 2.13 −16.23 0.39 11.42 −1.2804 11.530 2,973*** −8.483***

VN 522 0.28 2.56 −15.72 0.54 8.25 −1.0027 4.289 489*** −7.54***

5 MQ-CAViaR charts for other stock markets are shown in Supplementary

Appendix Figure SA1.

6 Supplementary Appendix Figure SA2 presents the QRNN-QQ-CoVaR 3D-

surface plots for other market indexes.
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FIGURE 3
Multi-quantile CAViaR diagrams of the United States and China. (A) The United States of America and (B) mainland China.

TABLE 3 Cross-quantile count by the monotonicity test.

ID QRNN MCQRNN

CoVaRs,i
1,t CoVaR1s CoVaRs CoVaRs,i

1,t CoVaR1s CoVaRs

AU 1,396 2 1 0 0 0

CA 1,529 2 0 0 0 0

CL 2,202 3 0 0 0 0

CN 1,361 3 0 0 0 0

HK 880 1 0 0 0 0

ID 1,149 2 0 0 0 0

JP 860 1 0 0 0 0

MY 1,541 3 0 0 0 0

MX 1,399 2 0 0 0 0

NZ 1,477 1 0 0 0 0

PH 1,753 2 0 0 0 0

KP 841 1 0 0 0 0

RU 1,636 4 0 0 0 0

SG 1,153 3 0 0 0 0

TW 825 1 0 0 0 0

TH 381 0 0 0 0 0

US 1,770 1 0 0 0 0

VN 787 0 0 0 0 0

Total 22,940 33 1 0 0 0
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FIGURE 4
MCQRNN-QQ-CoVaR 3D-surface plots for other market indexes. (A) Australia, (B) Canada, (C) Chile, (D) Hong Kong, (E) Indonesia, (F) Japan, (G)
Malaysia, (H) Mexico, (I) New Zealand, (J) Philippines, (K) Korea, (L) Russia, (M) Singapore, (N) Tai Wan, (O) Thailand, and (P) Vietnam.
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We select China and the United States as outstanding examples.
Figure 5 represents the level of CoVaR and non-linear
characteristics in the United States and mainland China7.

By comparing the QRNN − QQ − CoVaR surfaces in
Figures 5A, B and MCQRNN − QQ − CoVaR in Figures 5E, F,
it is found that the surface calculated by MCQRNN is smoother
than that calculated by QRNN. That means less bias in CoVaR
calculations for an extreme quantile, such as q � 0.95, by
MCQRNN. On the same axis scale, the surface of the
United States is flatter, which means fewer sensitivities to the
quantile of stand-alone risk.

The reasons for the differences between China and the
United States are market structure, investor base, and risk
distribution. The American market is the largest and most
diversified in the world, with companies representing a wide
array of industries and sectors. This diversification helps to
mitigate stand-alone risks associated with individual companies,
sectors, or events. Additionally, American institutional investors
like mutual funds, pension funds, and hedge funds play a
significant role. These institutions usually employ sophisticated
risk management strategies, including diversification and hedging,
which further diminish sensitivity to stand-alone risks.
Furthermore, the US market offers a wide array of financial

instruments, such as options, futures, and swaps, that allow for
the hedging of specific risks. This availability of hedging tools
enables market participants to isolate and manage stand-alone
risks effectively. Because the CoVaR estimated QRNN is based
on each quantile separately, there is a non-monotonic trend
with the change of q quantile in Figure 5E. In order to compare
the differences between QRNN and MCQRNN in different
conditions, we analyze the CoVaR of single quantiles and
multi-quantiles separately.

Considering that CoVaR in this paper takes into account two
quantiles, partial CoVaR in two directions are shown in Figures
5C, D according to Equation 11. On the one hand, as shown in
Figure 5C, the red line and the blue line respectively represent
the CoVaR calculated by QRNN and MCQRNN, when the pl

quantile is 0.01. Meanwhile, the green and gray line respectively
represent the average level of CoVaR calculated by QRNN and
MCQRNN at each pl quantile. In extreme conditions, the blue
line tends to be a straight line, while the red line fluctuates around
it. The phenomenon of “quantile crossing” occurs when the
CoVaR of qs � 0.45 is higher than that of qs � 0.5, which
indicates that MCQRNN is more robust than QRNN. The
“quantile crossing” problem is weakened at the average level as
shown in green line. On the other hand, as shown in Figure 5D,
four lines respectively represent partial CoVaR exposed to the
entire risk, which states nonlinear characteristics. The results of
MCQRNN and QRNN are similar at the average level, as shown
by the green and gray lines in Figure 5. However, under extreme
conditions, the red lines are always below the blue lines, and the
phenomenon of quantile crossing still appears. Therefore, the

FIGURE 5
QQ-CoVaR surface and partial CoVaR curve of China and the United States. (A) QRNN-QQ-CoVaR of US, (B) MCQRNN-QQ-CoVaR of US, (C)
CoVaRs of US, (D) CoVaRl of US, (E) QRNN-QQ-CoVaR of CN, (F) MCQRNN-QQ-CoVaR of CN, (G) CoVaRs of CN, and (H) CoVaRl of CN.

7 Supplementary Appendix Figure SA3 represents the stand-alone CoVaR

plots for other market indexes. Supplementary Appendix Figure SA4

represents the exposed partial CoVaR plots for other market indexes.
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improved CoVaR calculated by MCQRNN is more robust when
considering multiple and two-sided quantiles to avoid the
“quantile crossing” problem.

3.3 Analysis of composite risk spillovers

3.3.1 Network analysis of composite risk spillovers
According to Equation 8, after the estimation of CoVaR, the

composite risk spillover can be obtained as the adjacency matrix
[�δji]N×N shown in Figure 6 and the network graph shown in
Figure 7. In order to draw the risk spillover network maps
across N markets, the adjacency matrix [�δji]N×N can be
obtained by the average level of sample period [�δji]N×N. A
weighted directed network can be plotted on the basis of this
adjacency matrix.

As shown in Figure 6, each cell of the matrix represents a risk
spillover correlation between the two markets. Where the color is
darker, the level of risk spillover represented by the cell is higher.
The cells with relatively dark colors in the graph are, respectively,
the risk spillovers of HK →CN, CA →US, and US →CA. The
mutual risk spillover between the United States and Canada can be
explained by their geographical location, economic connections,
and political policies. Canada is adjacent to the United States, and

the two countries have a very close political relationship and an
active trade association. Similar to the US and CA, the geographical
location and economic connections between CN and HK are quite
tight. However, the risk spillover level of HK →CN is the highest,
while that of CN →HK is much lower. It is obvious that the high
level of risk spillover effect from Hong Kong to the mainland
China is due to the economic linkage between the two countries
and the effect of Shanghai-Hong Kong Stock Connect program. In
contrast, the economic policy of the Chinese system is different
from that of western systems. The financial institutions in
mainland China are not aggressive in investing. Moreover, the
trade from mainland China to Hong Kong concentrates on
domestic goods, which are at low prices. Those goods are why
the risk spillover from CN to HK is relatively low. Therefore, the
Hong Kong stock market is more mature and less susceptible
to shocks.

In the following, we present a two-way weighted network to
analyze systemic risks with a clearer visual structure. First, the
adjacency matrix needs to be read via the NetworkX package in
Python. Figure 7 shows a network map using the mean value of the
samples. The arrow indicates the direction of the risk spillover.
Both the size of the arrow and the width of the line segment
indicate the intensity of risk spillover. Note that the width of
the line segment states the level of the spillover of the larger one in

FIGURE 6
Heatmap of composite risk spillover in the overall period.
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FIGURE 7
�δ
ji
of composite risk spillover in the overall period.

FIGURE 8
Distribution of �δ

ji
of composite risk spillover in the overall period.
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the two-way relationship, in which the thinner one is covered.
Therefore, the level of the risk spillover can only be judged based
on the arrows in the comparison of two-way relationships. As can
be seen, the most prominent line segment in this map is from HK
to CN because of the Shanghai-Hong Kong Stock Connect and
Shenzhen-Hong Kong Stock Connect programs. The level of risk
spillover between the United States and Canada is also high, but
the two-way relationship is symmetrical with almost equal size
arrows. Similar two-way relationships also exist between TW and
KP, JP and KP, ID and PH, and AU and CA. Such two-way
relationships can be explained by the frequent trade interactions.
It implies that stock markets are not only barometers of the
economy but also effective reflections of the economic trades
and global value chains through risk spillovers among
financial markets.

Figure 8 is a frequency histogram of the risk spillover
relationships. Four colors represent four algorithms adopted in
calculating the risk spillover. The intensity of risk spillovers
can be seen to exhibit a right-skewed spike with a thick tail.
This indicates that while most risk spillovers are at low levels, the
risk in extreme conditions is substantially outside the average
range. In addition, the distribution of the red line is relatively flat,
which means the risk spillover may be overestimated by QRNN at
a single quantile. The results of the remaining three algorithms are
similar, though the peak of the green line is slightly skewed to
the right.

3.3.2 Comparison of composite risk spillover
calculated by QRNN and MCQRNN

A 3D-mesh surface is also employed to illustrate the one-way
spillover from Hong Kong to mainland China, which is the most
significant correlation in the Asia–Pacific region. As can be seen
from the result fromQRNN Figure 9A, the �d

ji
ls fromHong Kong to

the mainland is fluctuating and outstanding at the extreme
quantile qs � 0.95. However, as shown in Figure 9B,
MCQRNN can show relatively gentle overflow changes,
especially showing no mutation characteristics at the extreme
level. Similar to the algorithm comparison diagram of CoVaR in
Figure 5, it can be seen from Figure 9C that spillover levels
represented by the blue and gray lines are more stable than
those of the red and green lines. Meanwhile, the extreme
situation of qs � 0.95 does not appear. This suggests that the
estimators at the extreme quantile may be very sensitive to outliers
under the partial differential spillover method. In contrast,
MCQRNN can both make the estimation results of CoVaR
more robust and obtain a more accurate assessment of the
overflow level. In addition, from Figures 9C, D, the partial
spillover increases with the decline of quantile qs and pl; that
is, during the challenging period, the risk spillover from Hong
Kong to Chinese mainland is higher.

3.3.3 Trend of total composite overflow indicator
To compare the overflow dynamic throughout the

sample period, the time series diagram is drawn in Figure 10.
Four lines in various colors represent the overall overflow
levels of the two algorithms at the extreme level or the
average level, based on the computational method of Πt

in Section 2.4.

Compared with the composite overflow indicators calculated
by the multi-quantile algorithm (in green and gray), the peak of
overflow levels in the extreme condition represented by the red and
blue lines are relatively higher because the peaks of overflow levels
at the multi-quantile are flattened by averaging. Moreover,
although spillover instability under extreme quantile conditions
is reduced, the fluctuations of overflow calculated by the
MCQRNN method reveal more significance during periods of
higher systemic risk. In other words, MCQRNN also presents
more robust and significant results even when calculating overflow
under extreme conditions. The most prominent period was during
the COVID-19 pandemic, which showed a higher level of spillover
than other periods. Under the influence of this extreme event, the
global real economy has stagnated, and production has been
interrupted, leading to investor panic and insufficient
investment confidence. Therefore, risk accumulates, and global
asset prices fall. In contrast, the peak value calculated by QRNN at
a single quantile in this period is not different from that in other
periods. Therefore, the single-quantile QRNN method is worse
than others.

Although the fluctuations of each line are different, there are
four significant periods with high overall composite overflow levels.
The first period is from May 2012 to September 2013, which
corresponds to the EU debt crisis and the US stock market crash.
The second period is in the second half of 2015 before the Chinese
stock market crash occurred. The third period begins in 2018, which
corresponds to the Sino-American trade war. The last fluctuant
period is from March 2020 to February 2021, which is caused by the
outbreak of COVID-19.

3.4 Comparison of systemic risk models

In this part, we analyze the average overflow of each market to
the systemic �Φj, and their suffering �Γi, relying on the methodology
in8 Section 2.4.

The suffering indicators �Γi and the overflow indicators �Φj,
which are respectively calculated by single-QRNN, multi-
QRNN, single-MCQRNN, and multi-MCQRNN, are drawn
as bar charts in Figure 11. As the legend shows, the suffering
indicators �Γi are in light color and on the left side of each market,
while the overflow indicators �Φj are darker and on the right side.
In addition, the CoVaR calculated by QRNN andMCQRNN are
illustrated as light and dark orange in the secondary axis. It is
obvious that the light red bars stand out, indicating that China
suffers the highest risk overflow when the �Γi calculated by QRNN
at a single quantile. However, when the algorithm is substituted
by MCQRNN with multiple quantiles, China is no longer the
highest suffering market. In addition, the CoVaR obtained by
QRNN and MCQRNN are relatively close, and the CoVaR of
each market states no significant correlation with both �Φj and �Γi
indicators.

8 In Section 3.4, we calculate the average values for Γ it and Φj
t , respectively.

The equations are �Γ
i � 1

T ∑T
t�1
Γ it and �Φ

j � 1
T ∑T
t�1
Φj

t .
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FIGURE 10
Total composite overflow indicator of the Asia–Pacific stock markets.

FIGURE 9
Risk spillover from HK to CN and partial indicators. (A) �d

ji
ls by QRNN, (B) �d

ji
ls by MCQRNN, (C) �δ

ji
s &

�δ
ji
1s by QRNN or MCQRNN, and (D) �δ

ji
l &

�δ
ji
l1 by QRNN

or MCQRNN.
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Although Figure 11 shows differences in index calculations
under the four algorithms, the comprehensive index is smaller
than that calculated by a single sub-site. Whether under single or
multi-component sites, the exponents obtained by the
MCQRNN algorithm are all smaller than those obtained by
the QRNN algorithm. In order to investigate whether the results
of algorithms affect the ranking of systemic risk in each market,
we also list the top ten markets of systemic risk index under
various algorithms. As shown in Table 4, markets with higher risk
overflow �Φj are HK, CA, US, and SG. This result is consistent
with the global financial markets’ practical experiences. In
contrast, JP, CN, HK, and PH suffer more systemic risk
because of the higher �Γi. On the one hand, this may be related
to the fact that these countries are more dependent on trade
exports and have poor economic resilience, resulting in suffering
more risk overflow. On the other hand, higher �Γi may also
indicate that investors in these stock markets react strongly
to the shocks. Compared with MCQRNN, the �Γi of China is
driven higher than it calculated by QRNN, which means
that the MCQRNN method weakens the impact of the
extreme condition.

4 Discussion and conclusion

To improve the traditional paradigm of risk spillovers among
financial markets, this paper has calculated a multi-quantile CoVaR
based on MCQRNN. This study broadens the perspective of risk
spillover research to financial market indexes and takes into account
both the analysis of tail risk spillovers and risk spillovers under
normality. The following conclusions were drawn based on
empirical analyses of the Asia–Pacific region:

First, by visualizing the partial CoVaR, the “quantile crossing”
problem is found on the estimation of CoVaR but can be relieved
by MCQRNN. This issue can be described as “a worse condition
may cause less risk loss.” It is not only a logical problem but also
reveals that CoVaR may be sensitive to quantile selection.
Fortunately, this problem rarely occurs on CoVaRl at the
quantile of exposure risk state and can be relieved by
substituting MCQRNN for QRNN. On the other hand,
through the estimation of partial CoVaRl at the other side
quantile, the non-linear characteristic of each market is
visualized. Different from the CoVaR at the stand-alone risk
state, the value at risk declines rapidly when exposed risk rises

FIGURE 11
Composite systemic risk of each market.
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to an extreme state. This concludes that the non-linear algorithm is
suitable for estimating CoVaR precisely without over-fitting.

Second, the overestimation of spillover may occur when
calculated by QRNN at a single quantile, compared with
MCQRNN − QQ or at multiple quantiles. Based on the
comparison of two 3D-mesh surfaces and the line charts of
partial δ of four algorithms, the over-fitting in extreme
conditions may contribute to the overestimation of composite
spillover. The estimation of QRNN at a single quantile shows
less robustness than other three algorithms in the trend chart of
total composite overflow.

Third, the stock market in mainland China is highly exposed to
the risk spillovers from the Hong Kong stock market. In addition
to the short geographical distance between them, another reason
for this relatively asymmetric risk spillover may be that investors in
mainland China are more concerned about the opposite, but
investors in Hong Kong are more independent and have more
complete information. In addition, the mutual spillovers between

the United States and Canada are also significant, which may
be due to the special geographic relationship between the
United States and Canada as well as tight trade cooperation and
economic dependency between two markets. Cross-market
comparisons show that the model supports the traditional view
that Hong Kong, Canada, United States, and Singapore are more
important markets in the Asia–Pacific region. In contrast, the
Chinese mainland and Japanese markets received the most
spillovers during the sample period.

This paper studies the systemic risk and risk spillover under
multiple quantiles, providing a reference for stock investment and
risk regulation in the Asia–Pacific market. This method can not only
be applied to the study of inter-institutional risk spillover but can
also be helpful in capturing the nonlinear characteristics of
individuals’ systemic risk. However, this paper still has some
shortcomings. Limited by the time and space complexity of the
algorithms, it is impossible to use the rolling window to estimate and
calculate the daily samples. Therefore, the out-of-sample prediction

TABLE 4 Composite systemic risk indicators of each market.

ID Systemic suffering indicator Systemic overflow indicator

Single quantile Multiple quantile Single quantile Multiple quantile

QRNN MCQRNN QRNN MCQRNN QRNN MCQRNN QRNN MCQRNN

AU 0.0742 0.0658 0.0568 0.0507 0.0681 0.0610 0.0653 0.0577

CA 0.0656 0.0426 0.0526 0.0470 0.1187 0.0710 0.0992 0.0830

CL 0.1132 0.0392 0.0739 0.0592 0.0981 0.0564 0.0559 0.0458

CN 0.1713 0.1019 0.0969 0.0763 0.0698 0.0348 0.0452 0.0343

HK 0.0874 0.0539 0.0780 0.0672 0.1374 0.1004 0.0989 0.0882

ID 0.1176 0.0585 0.0655 0.0520 0.0735 0.0575 0.0633 0.0545

JP 0.1392 0.0962 0.0924 0.0809 0.1022 0.0543 0.0620 0.0574

KP 0.0710 0.0679 0.0598 0.0530 0.0850 0.0710 0.0844 0.0717

MX 0.0747 0.0444 0.0618 0.0538 0.0717 0.0417 0.0589 0.0483

MY 0.0633 0.0189 0.0433 0.0339 0.0919 0.0531 0.0555 0.0464

NZ 0.0605 0.0282 0.0456 0.0331 0.0785 0.0464 0.0480 0.0357

PH 0.1044 0.0792 0.0768 0.0634 0.0968 0.0577 0.0615 0.0513

RU 0.0807 0.0407 0.0720 0.0583 0.0716 0.0356 0.0453 0.0357

SG 0.0580 0.0421 0.0529 0.0503 0.1385 0.0787 0.0887 0.0769

TH 0.0809 0.0346 0.0549 0.0452 0.0991 0.0495 0.0594 0.0468

TW 0.0625 0.0504 0.0573 0.0482 0.0985 0.0498 0.0596 0.0473

US 0.0865 0.0703 0.0673 0.0616 0.1141 0.0804 0.0914 0.0776

VN 0.1028 0.0759 0.0663 0.0484 0.0375 0.0285 0.0343 0.0259
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effect of the model cannot be investigated. Further study is needed to
improve the efficiency of the model and expand the sample.
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