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Pseudomodes of non-self-adjoint Schrödinger operators corresponding to large
pseudoeigenvalues are constructed. The approach is non-semiclassical and
extendable to other types of models including the damped wave equation
and Dirac operators.
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1 Introduction

The (ε-)pseudospectrum σε(H) (with positive ε) of an operator H in a Hilbert space is
the union of the spectrum σ(H) of H and all those complex numbers λ from the resolvent
set ρ(H) of H for which

‖ H − λ( )−1‖> 1
ε
.

Equivalently, σε(H) comprises the spectrum ofH and λ ∈ C (pseudoeigenvalues) for which
there exists a vector ψ (pseudomode) in the domain of H such that

‖ H − λ( )ψ‖< ε ‖ψ‖.
IfH is self-adjoint (or, more generally, normal), the ε-pseudospectrum is trivial in the sense
that it is just the ε-tubular neighbourhood of the spectrum of H. In general, however, the
pseudoeigenvalues can lie outside the ε-tubular neighbourhood and their location is
important to correctly seize various properties of H, see [1–3].

The goal of this brief research report is to explain in a succinct way the approach in
Krejčiřík and Siegl [4] to locate pseudoeigenvalues of (non-semiclassical)
Schrödinger operators

− d2

dx2
+ V x( ) in L2 R( ), (1)

whereV: R → C is at least locally square-integrable andRV≥ 0. In such a case, there exists
a unique m-accretive extensionHV of Equation 1 initially defined onC∞

0 (R), see ([5], Thm.
VII.2.6). Since our constructed pseudomodes are compactly supported and at least twice
weakly differentiable, they belong to the domain of HV.

The operator HV is self-adjoint (respectively, normal) if, and only if, V is real-valued
(respectively,IV is constant). To ensure non-trivial pseudospectra, we shall therefore adopt
the standing hypothesis

lim sup
x→−∞

IV x( )< 0< lim inf
x→+∞

IV x( ), (2)
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where the limits are allowed to be infinite. The assumption
(Equation 2) can be interpreted as a “global” version of the
Davies’ condition IV′ ≠ 0, see [6] and also [7].

To simplify the presentation, the potential V will be assumed to
be smooth and imaginary-valued. Typical examples to keep in mind
are as follows:

V1 x( ) ≔ i arctan x( ), V2 x( ) ≔ ixm with m odd,
V3 x( ) ≔ i sinh x( ), (3)

or their imaginary shifts. In particular, V2 with m � 3 is the
celebrated imaginary cubic (or Bender’s) oscillator (with purely
real and discrete spectrum, see Figure 1), which was made
popular in the context of the so-called PT -symmetric quantum
mechanics in [8].

The objective is to develop a systematic construction of
pseudomodes ensuring that, for any diminishing ε → 0, there
is a complex number λ with large magnitude |λ|→ ∞ such that
λ ∈ σε(HV). The results are particularly striking whenever this
set of pseudoeigenvalues lie outside (in fact, “very far” from) the
ε-tubular neighbourhood of σ(H). This is particularly the case of
the imaginary cubic oscillator, for which the analysis below show
that for an arbitrarily small ε there exists a pseudoeigenvalue λ
with an arbitrarily large imaginary part, despite the fact that the
spectrum is purely real (see Figure 1 for a numerical
quantification of the pseudospectrum level lines). This
property implies the lack of Riesz basis for the
eigenfunctions, challenging in the spirit of [9] the physical
relevance of the L2(R)-realisation of the Bender’s oscillator.
The follow-up [4] summarised in this report can be considered
as a methodical and more advanced study of not necessarily
polynomial potentials.

The feature of the approach of [4] is that it does not rely on
semiclassical methods developed in [6, 7, 10]. In fact, we are able to
construct large-energy pseudomodes for potentials (like of
exponential type, see V3 of Equation 3) which cannot be reduced
(by scaling) to a small Planck’s constant included in the kinetic
energy. On the contrary, the known claims in the semiclassical
setting follow immediately from our approach.

2 Methods

Our strategy of the construction of pseudomodes is based on the
Liouville–Green approximation, also known as the JWKBmethod in
mathematical physics. The key idea is that, if V were constant, exact
solutions of the differential equation associated with HVg � λg
would be the two non-integrable functions

g± x( ) ≔ exp ± i∫x

0

�������
λ − V t( )√

dt( ).
The starting point of the approximation scheme is to use the

same ansatz for variable V as well. More specifically, we choose
g0 ≔ g− for it is exponentially decaying under the hypothesis
(Equation 2), whenever Iλ is small with respect to the limits of
IV at ± ∞. A direct computation yields

HV − λ( )g0 � r0 g0 with r0 ≔ − i

2
V′�����
λ − V

√ . (4)

Recalling the simplifying hypothesis that RV � 0 and assuming in
addition thatIλ � 0 andRλ> 0 (typically large), one has the estimate

‖r0‖∞ ≤
1���

Rλ
√ 1−δ

|V′|
2|V|δ/2
��������

��������∞ (5)

for every δ ∈ [0, 1). It follows that large real energies always lie in the
pseudospectrum, namely, for every positive ε,

λ ∈ C:
���
Rλ

√
1−δ > 1

ε

|V′|
2|V|δ/2
��������

��������∞{ } ⊂ σε HV( ).

Of course, this result is interesting only if the supremum norm is
bounded. From examples (Equation 3), relevant potentials are thus V1

and V2 withm � 1, in which case we can take δ � 0 and obtain thus a
pseudomode satisfying the decay ‖(HV − λ)g0‖ � O((Rλ)−1/2) ‖g0‖
asRλ → ∞. The latter is particularly interesting because the spectrum
of the imaginary Airy operator is empty, see, e.g., ([3, 11], SectionVII.A)
or more generally [12], where the last reference includes also an
elementary proof of the optimal resolvent norm estimate for the
Airy operator.

FIGURE 1
Spectrum (red dots) and pseudospectra (enclosed by the green contour lines) of the imaginary cubic oscillator. (Courtesy of Miloš Tater.)
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It is not difficult to modify the exponentially decaying
pseudomode g0 to a compactly supported pseudomode f0, while
still keeping the same decay ‖(HV − λ)f0‖ � O((Rλ)−1/2) ‖f0‖ as
Rλ → ∞. Indeed, let ξ1: R → [0, 1] be a smooth function such that
ξ1 � 1 on [−1, 1] and ξ1 � 0 outside [−2, 2]. Given any positive
number l, let us define the rescaled cut-off function ξl(x) ≔ ξ1(x/l).
Then f0 ≔ ξl g0 is compactly supported and one has

HV − λ( )f0 � ξ l HVg0 + −ξ′′l + 2i
�����
λ − V

√
ξ l′( )g0.

Using that ξl → 1 pointwise as l → ∞, while one gains one l−1 by
each derivative, it is possible to verify the desired decay by the
λ-dependent choice l ≔ Rλ.

To cover a larger class of potentials, let us consider a modified
ansatz g1 ≔ g0 exp(−ψ0), where ψ0 is a function to be chosen later.
A direct computation yields

HV − λ( )g1 � r0 − 2i
�����
λ − V

√
ψ0′ + ψ0″ − ψ0′2( )g1.

Now we choose ψ0 to annihilate the error term r0 from Equation 4,
by solving the first-order linear differential equation
r0 − 2i

�����
λ − V

√
ψ0′ � 0, namely, ψ0 ≔ log

�����
λ − V4

√
. Thus we arrive at

the familiar expression

g1 x( ) � 1��������
λ − V x( )4

√ exp −i∫x

0

�������
λ − V t( )√

dt( ).
Then

HV − λ( )g1 � r1 g1 with r1 ≔ − 5
16

V′2

λ − V( )2 −
1
4

V′′

λ − V
,

where the new error term r1 can be estimated as follows:

‖r1‖∞ ≤
1���

Rλ
√ 2 1−δ( )

5 |V′|2
16 |V|1+δ +

|V′′|
4 |V|δ

��������
��������∞.

This result is an improvement upon (Equation 4) with (Equation 5)
in two respects. First, if the supremum norm is bounded for δ � 0,
we get a pseudomode with an improved decay ‖(HV − λ)g1‖ �
O((Rλ)−1) ‖g1‖ as Rλ → ∞. This is the case of V1 and V2 with
m � 1 from examples (Equation 3). Second, keeping the decay
O((Rλ)−1/2) by the choice δ � 1/2, we can now cover V2 with m �
3 from examples (Equation 3).

The above scheme can be continued by employing the general
ansatz in square-root powers of λ:

gk � exp −λ1/2 ψ−1 + λ−0/2 ψ0 + λ−1/2 ψ1 +/ + λ− k−1( )/2 ψk−1( ), (6)

where ψ−1(x) ≔ iλ−1/2 ∫x

0

�������
λ − V(t)√

dt and ψk−1 with k ∈ N is
iteratively chosen in such a way to annihilate the previous error term
rk−1. By enlarging k, more derivatives of V are required. On the other
hand, a better decay (in negative powers ofRλ → ∞) of the new error
term is achieved and a larger class of potentials can be covered. For
instance, all the examples (Equation 3) are already covered by the choice
k � 2, namely, ‖(HV − λ)g2‖ � O((Rλ)−1/2) ‖g2‖ as Rλ → ∞.

3 Results

To make the above procedure rigorous, it is important to ensure
that g0 in the expansion (Equation 6) is dominant, in order to

guarantee that gk(x) have appropriate decay properties at x � ± ∞.
One of the main achievements of [4] is the formulation of the robust
sufficient condition

|V n( ) x( )|
|V x( )| � O |x|n]( ) and |x|4 1+]( ) � O |V x( )|( ) (7)

to hold as |x|→ ∞ with some real number ]≤ 0 for every
n � 1, . . . , k + 1. Note that ] � −2, −1 and 0 for the potentials V1,
V2 and V3 of Equation 3, respectively. In fact, it is possible to allow
for ]> 0 (corresponding to superexponentially growing potentials).
Moreover, different behaviours at x →± ∞ may be allowed.
However, let us stick to Equation 7 to make the presentation
here as simple as possible.

To get a compactly supported pseudomode, it turns out that the
adequate λ-dependent cut-off function should be supported in the
interval [−l−, l+], where (denoting 〈l〉 ≔ (1 + l2)1/2)

l± ≔
inf l≥ 0 :

|V ± l( )|2
〈l〉4 1+]( ) � λ{ } if V is unbounded at ± ∞,

λ1−
]
4 if V is bounded at ± ∞ .

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Recall that we assume Iλ � 0 and note that l± → ∞ as λ → ∞. In
particular, l± � λ3/2, λ1/(2m) and log λ as λ → ∞ for the potentialsV1,
V2 and V3 of Equation 3, respectively.

Under the present simplifying hypotheses (in particular,Iλ � 0,
RV � 0 and ]≤ 0), the general result of Krejčiřík and Siegl [4] (Thm.
3.7) can be formulated as follows.

Theorem 1. Let V: R → iR be smooth satisfying Equations 2, 7
with given k ∈ N. If

λ− k+1( )/2 sup
x∈ −l− ,l+( )

|V x( )| 〈x〉 k+1( )] �������→
λ→+∞

0, (8)

then there exists {ψλ}λ ⊂ C∞
0 (R) such that ‖ψλ‖ � 1 and

lim
λ→+∞

‖ HV − λ( )ψλ‖ � 0. (9)

The extra condition (Equation 8) with the choice k � 0 is clearly
satisfied for the potential V1 of Equation 3 (in fact, for any bounded
potential satisfying Equations 2, 7). To satisfy Equation 8 for all the
polynomial potentials V2 of Equation 3, it is sufficient to take k � 1.
Finally, Equation 8 is verified for the exponential potential V3 of
Equation 3 with k � 2.

In Krejčiřík and Siegl [4], the decay rate in Equation 9 is carefully
quantified in terms of the left-hand side of Equation 8 and other
quantities related to the behaviour of a general potential V
at infinity.

4 Discussion

4.1 Generality

The JWKB-type scheme sketched in Section 2 is made rigorous
in [4] for a fairly general class of potentials V, beyond the present
simplifying hypotheses. In particular, the potential V is allowed to
have a real part, however, its largeness must be suitably “small” with
respect to its imaginary part. This is quantified by natural
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modifications of Equations 2, 7. What is more, pseudoeigenvalues
along general curves (beyond the present simplifying hypothesis
Iλ � 0) diverging in the complex plane are located. In particular,
the rotated harmonic (or Davies’) oscillator V(x) � ix2 made
popular in the pioneering work [13] or shifted harmonic
oscillator V(x) � (x + i)2 studied in [3, 14] are covered. At the
same time, potentials decaying at infinity are included. Finally,
possibly discontinuous potentials (like V(x) � isgn(x)) are
comprised by a refined mollification argument.

4.2 Optimality

It turns out that the conditions on potentials identified in [4] as
well as the regions in the complex plane where the
pseudoeigenvalues are located are optimal. The latter can be
checked directly for the rotated harmonic (or Davies’) oscillator
V(x) � ix2 with help of the conjecture due to [15] solved by [16],
More generally, the optimality of the pseudospectral regions follows
by upper resolvent estimates performed in [17, 18].

4.3 Generalisations

Themethod of [4] is fairly robust and can be generalised to other
models. So far, this has been done for the damped wave equation in
[19], Dirac operators in [20] and biharmonic operators in [21].

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

DK: Writing–review and editing, Writing–original draft,
Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding
acquisition, Formal Analysis, Data curation, Conceptualization.
PS: Writing–review and editing, Writing–original draft,
Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding
acquisition, Formal Analysis, Data curation, Conceptualization.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. DK was
supported by the EXPRO grant No. 20-17749X of the Czech Science
Foundation.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Trefethen LN, Embree M. Spectra and pseudospectra. Princeton University Press
(2005).

2. Davies EB. Linear operators and their spectra. Cambridge University Press (2007).

3. Krejčiřík D, Siegl P, Tater M, Viola J. Pseudospectra in non-Hermitian quantum
mechanics. J Math Phys (2015) 56:103513. doi:10.1063/1.4934378

4. Krejčiřík D, Siegl P. Pseudomodes for Schrödinger operators with complex
potentials. J Funct Anal (2019) 276:2856–900. doi:10.1016/j.jfa.2018.10.004

5. Edmunds DE, EvansWD. Spectral theory and differential operators. Oxford: Oxford
University Press (1987).

6. Davies EB. Semi-classical states for non-self-adjoint Schrödinger operators. Comm
Math Phys (1999) 200:35–41. doi:10.1007/s002200050521

7. Zworski M. A remark on a paper of E. B. Davies. Proc Amer Math Soc (2001) 129:
2955–7. doi:10.1090/s0002-9939-01-05909-3

8. Bender CM, Boettcher PN. Real spectra in non-Hermitian Hamiltonians having PT
symmetry. Phys Rev Lett (1998) 80:5243–6. doi:10.1103/physrevlett.80.5243

9. Siegl P, Krejčiřík D. On the metric operator for the imaginary cubic oscillator. Phys
Rev D (2012) 86:121702(R. doi:10.1103/physrevd.86.121702

10. Dencker N, Sjöstrand J, Zworski M. Pseudospectra of semiclassical (pseudo-)
differential operators. Comm Pure Appl Math (2004) 57:384–415. doi:10.1002/cpa.
20004

11. Helffer B. Spectral theory and its applications. New York: Cambridge University
Press (2013).

12. Arnal A, Siegl P. Generalised airy operators preprint on arXiv:2208.14389 (2022).

13. Davies EB. Pseudo-spectra, the harmonic oscillator and complex resonances. Proc
R Soc Lond A (1999) 455:585–99. doi:10.1098/rspa.1999.0325

14. Mityagin B, Siegl P, Viola J. Differential operators admitting various rates of
spectral projection growth. J Funct Anal (2017) 272:3129–75. doi:10.1016/j.jfa.2016.
12.007

15. Boulton L. The non-self-adjoint harmonic oscillator, compact semigroups and
pseudospectra. J Operator Theor (2002) 47:413–29.

16. Pravda-Starov K. A complete study of the pseudo-spectrum for the rotated
harmonic oscillator. J Lond Math. Soc. (2006) 73:745–61. doi:10.1112/
s0024610706022952

17. Bordeaux Montrieux W. Estimation de résolvante et construction de quasimode
près du bord du pseudospectre (2013). Preprint on arXiv:1301.3102

18. Arnal A, Siegl P. Resolvent estimates for one-dimensional Schrödinger
operators with complex potentials. J Funct Anal (2023) 284:109856. doi:10.1016/j.
jfa.2023.109856

19. Arifoski A, Siegl P. Pseudospectra of the damped wave equation with unbounded
damping. SIAM J Math Anal (2020) 52:1343–62. doi:10.1137/18m1221400

20. Krejčiřík D, Nguyen Duc T. Pseudomodes for non-self-adjoint Dirac operators.
J Funct Anal (2022) 282:109440. doi:10.1016/j.jfa.2022.109440

21. Nguyen Duc T. Pseudomodes for biharmonic operators with complex potentials.
SIAM J Math Anal (2022) 55:6580–624. doi:10.1137/22m1470682

Frontiers in Physics frontiersin.org04

Krejčiřík and Siegl 10.3389/fphy.2024.1479658

https://doi.org/10.1063/1.4934378
https://doi.org/10.1016/j.jfa.2018.10.004
https://doi.org/10.1007/s002200050521
https://doi.org/10.1090/s0002-9939-01-05909-3
https://doi.org/10.1103/physrevlett.80.5243
https://doi.org/10.1103/physrevd.86.121702
https://doi.org/10.1002/cpa.20004
https://doi.org/10.1002/cpa.20004
https://doi.org/10.1098/rspa.1999.0325
https://doi.org/10.1016/j.jfa.2016.12.007
https://doi.org/10.1016/j.jfa.2016.12.007
https://doi.org/10.1112/s0024610706022952
https://doi.org/10.1112/s0024610706022952
https://doi.org/10.1016/j.jfa.2023.109856
https://doi.org/10.1016/j.jfa.2023.109856
https://doi.org/10.1137/18m1221400
https://doi.org/10.1016/j.jfa.2022.109440
https://doi.org/10.1137/22m1470682
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1479658

	Pseudomodes of Schrödinger operators
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	4.1 Generality
	4.2 Optimality
	4.3 Generalisations

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


