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The segmentation of gastrointestinal (GI) organs, including the stomach,
small intestine, and large intestine, is crucial for radio oncologists to
plan effective cancer therapy. This study presents an innovative semantic
segmentation approach that integrates the Swin Transformer Block with the
U-Net model to delineate healthy GI organs accurately using MRI data.
The paper presents a novel approach that merges the Swin Transformer
and U-Net models to leverage global context learning capabilities and fine-
grained spatial resolution. Incorporating this integration greatly enhances the
model’s capacity to achieve precise and comprehensive semantic segmentation,
specifically in accurately outlining the gastrointestinal tract in MRI data. It
utilizes the Swin Transformer, incorporating a shift-based windowing technique
to gather contextual information efficiently while ensuring scalability. This
novel architecture effectively balances local and global contexts, improving
performance across various computer vision tasks, especially inmedical imaging
for segmenting the gastrointestinal tract. The model was trained and tested
on the UW Madison GI Tract dataset, which comprises 38,496 MRI images
from actual cancer cases. By leveraging the self-attention mechanisms of the
Swin Transformer to capture global context and long-term dependencies, this
approach combines the strengths of both models. The proposed architecture
achieved a loss of 0.0949, a dice coefficient of 0.9190, and an Intersection over
Union (IoU) score of 0.8454, demonstrating its effectiveness in providing high
accuracy and robust performance. This technology holds significant potential
for integration into clinical processes, enhancing the precision of radiation
therapy for GI cancer patients.

KEYWORDS

swin transformer, U-Net model, segmentation, gastrointestinal tract, radiation therapy,
UWmadison GI tract dataset

1 Introduction

Gastrointestinal cancers include cancers of the colon, liver, stomach, and esophagus,
which are the most common and deadly in the world [1]. They are a substantial source
of health burden, especially among older men, and have led to high mortality rate
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around the globe. GLOBOCAN, the International Agency for
Research on Cancer reported that cancer remains one of the most
common diseases and causes of death, accounting for around
1.93 million new cases in 2020 and 900,000 deaths. The statistics
unveil essential issues that should be urgently addressed through
preventive measures, proper early detection methods, and better
treatment protocols to mitigate the global burden of cancer [2].

The treatment of GI cancers is generally wide-ranging and based
on the type of cancer. For example, patients who have colon cancer
often experience surgical intervention, chemotherapy, or radiation
therapy [3, 4]. To be more specific, among the three, it tends to be
central with the position of being more dominant because it utilizes
high-energy X-rays to eliminate cancer cells [4]. Radiation therapy
poses a significant challenge in the GI tract. It enables radiation
oncologists to reach nearer the cancer cells without affecting the rest
of the healthy tissues [5, 6]. Determining tumor size and location
helps to optimize treatment plans by giving a higher radiation
dose to cancerous tissues, thus providing an effective and targeted
approach. Segmentation further allows for easy follow-up of the
treatment response, where clinicians can analyze changes in the
affected organs’ size and shape during therapy [7, 8].

There has been a revolution in clinical practice over the past
decade with the appearance of deep learning as a drastically
transforming tool, mainly in the diagnostic space of medical
imaging [9, 10]. Techniques like image classification, object
recognition, and segmentation have dramatically improved disease
diagnosis and treatment planning, thus increasing the accuracy
and personalization of patient care [11, 12]. CNN and U-Net
architectures shown as deep learning models exhibited auspicious
performance in segmenting small intestines, large intestines, and
stomachs from MRI scans [13, 14]. This considerable dataset
training facilitates the models to recognize and outline segments of
disease areas, enabling clinicians to establish relevant information
for early detection, treatment, and follow-up monitoring [15–17].

This study introduces a novel deep-learning model that
integrates Swin Transformer Blocks and U-Net architecture for the
semantic segmentation of GI structures, explicitly targeting the
small intestine, large intestine, and stomach. The model leverages
the strengths of U-Net, which is optimized for segmentation
tasks, and Swin Transformer, which effectively captures global
context and pixel relationships within images. Our model achieves
highly detailed and precise segmentation by combining these two
approaches. The proposed model holds potential for significant
clinical applications, enhancing the ability to accurately identify
anatomical structures and improving diagnostic, therapeutic, and
follow-up capabilities in GI cancermanagement.This research effort
makes significant contributions as follows:

• The paper presents a novel approach that merges the Swin
Transformer and U-Net models to leverage global context
learning capabilities and fine-grained spatial resolution.
Incorporating this integration greatly enhances the model’s
capacity to achieve precise and comprehensive semantic
segmentation, specifically in accurately outlining the
gastrointestinal tract in MRI data.

• The paper utilizes the Swin Transformer, incorporating a shift-
based windowing technique to gather contextual information
efficiently while ensuring scalability. This novel architecture

effectively balances local and global contexts, improving
performance across various computer vision tasks, especially in
medical imaging for segmenting the gastrointestinal tract.

• The U-Net architecture captures intricate details and preserves
spatial information. The model effectively integrates context
data and high-resolution information by utilizing skip
connections, resulting in accurate localization of object
boundaries.

The following outlines the later parts of this study: Section 2
summarizes the literature work, and Section 3 addresses the
input dataset. Section 4 elaborates on the proposed Integrated
Swin Transformer U-Net Model, Section 5 represents the results,
Section 6 offers a comparative investigation of the proposed
model with state-of-the-art outcomes, and Section 7 presents the
conclusion.

2 Literature work

Many medical imaging researchers have used deep learning
architectures to build segmentation and classification models for
the gastrointestinal system. Ganz et al. [18] developed software
based on narrow-band imaging (NBI) data to differentiate
polyps autonomously. The proposed model outperforms previous
algorithms for automatically segmenting 87 images. Wang et al. [19]
developed a technique named “Polyp-Alert” to support endoscopists
in locating polyps during colonoscopy. By monitoring the detected
polyp edge(s), the method aggregates images of the same polyp(s)
in one shot. Vázquez et al. [20] provided an enlarged segmentation
dataset intending to create a novel robust norm for research into
colonoscopy image analysis. The proposed dataset includes four
relevant classifications for evaluating the endoluminal scene, each
serving a different therapeutic need. Using the dataset, the authors
train conventional fully convolutional networks (FCNs) to construct
new baselines.

Brandao et al. [21] described a DL-based segmentation
algorithm for identifying lesions in colonoscopy images. Shape-
from-shading is also used to provide a more comprehensive picture
of tissues. Depth is introduced as an extra input passage to the RGB
data in their network models, and the resulting network performs
better.The segmentationmodel got an IoUof 48%, producing an IoU
of 56.95% on the CVC-Colon dataset. Dijkstra et al. [22] described
a one-step method for detecting polyps. The approach leverages
an FCNN model for segmenting polyp. They tested the proposed
network on different datasets, and their outcomes were promising.

Banik et al. [23] offered amultiscale patch network for automatic
polyp area segmentation. The patches are then concatenated for
precise polyp area pixel label annotation. The proposed model was
validated using the CVC-Clinic DB. Wang et al. [24] created a
multiscale MCNet for segmentation of GI Tract endoscopic images,
using global and local contexts as training guidance. One global
subnetwork determines each input image’s worldwide structure.
They then build two cascaded local subnetworks based on the
worldwide subnetwork’s output feature maps to collect regional
appearance. Three subnetworks learn feature maps concatenated
for the lesion segmentation task. Galdran et al. [25] described
a new approach for gastrointestinal polyp delineation using an
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encoder-decoder approach. In the proposed method, pre-trained
encoder-decoder architecture was successively joined. Sharma et al.
[26] used an encoder and a standard U-Net architecture. More
sophisticated algorithms with remarkable performance in various
classification contexts are available. One can encode these models
to generate a distinctive U-Net design and improve output. Ye
et al. [27] proposed SIA-UNet, a modified network including MRI
sequence information. Extensive studies on the UWM database
were conducted to evaluate the suggested model. Chou et al. [28]
employedMask R-CNN along with U-Net techniques to distinguish
the GI parts. Sharma et al. [29] suggested a model that is a U-
Net design built from the ground up and utilized for image
segmentation.

Li et al. [30] examined and combined several 2.5D data creation
strategies to make the most of the images and proposed a 2.5D
feature combination approach with adjacent weighting. Their
solution integrates several representation processes by deeply
combining multidimensional convolutions into fundamental
modules. Extensive experiments on a publically accessible GI
database show that the 2.5D combination strategy outperforms
the 2.5D method devoid of feature combination by 0.36% on dice
and 0.12% on Jaccard. Using two methods—a UNet and a ResNet50
encoder—and a sparser UNet—Chia et al. [31] look at FiLM, a
technique for leveraging pixel width and height picture data to
improve UNet design. Using the variety of methods of the ensemble,
Georgescu et al. [32] offered a fresh strategy for building ensembles
of different medical picture segmentation architectures. Choosing
the structures with the highest scores reveals that DiPE surpasses
several designs and ensemble-building approaches.

3 Input dataset

The UWMadison GI tract dataset is employed in the proposed
study. The University of Wisconsin has released the dataset, which
is available on the Kaggle platform [33]. The collection contains
38,496 MRI scans of the GI tract for actual cancer patients.The
ground truth of the dataset is in RLE format (Run Length Encoding),
so the ground truth mask is created using RLE decoding. The
segmentation mask is divided into three classes: small bowel, large
bowel, and stomach. The size of the images in a dataset is not
same for all the images, so the dataset has been resized to make
all the images of same size. The input size for the images is set
to 240 × 240. Table 1 displays some dataset’s sample images and
corresponding ground truth masks. Figures 1A, B show two MRI
images. In contrast, Figures 1C, D show the ground truth masks,
with yellow representing the large bowel, green representing the
small bowel, and red representing the stomach.The dataset has been
separated in the ratio of 70:15:15 for train, testing, and validation,
respectively.

4 Proposed integrated swin
transformer U-Net model for GI tract
segmentation

The proposed Integrated Swin Transformer U-Net Model
combines the Swin Transformer design, a breakthrough in computer

TABLE 1 Different hyperparameters.

Parameters name Parameter value

Batch Size 8

Learning Rate 0.0001

Epochs 70

Processing Time 6 h 37 min 43 s

FIGURE 1
UW Madison GI Tract Dataset (A) and (B) Input Images and (C) and (D)
Respective Ground Truth Masks (yellow color shows the large
intestine, green shows the small intestines, and red meaning
the stomach).

vision [34], with the U-Net model [35], which is well-known
for its segmentation capabilities. Combining UNet with the Swin
Transformer gives the benefits from both the fine-grained spatial
resolution of UNet and the high-level context information of
the Swin Transformer. With its unique U-shaped topology, the
combination of a contracting path for context, and an extensive
method for accurate localization, the U-Net architecture captures
minute details. Conversely, the Swin Transformer retains localized
detail extraction rapidly and adds sliding windows (hence “Swin”)
to capture broader context. The Swin Transformer is advantageous
over pure transformers for vision tasks due to its hierarchical feature
learning and computational efficiency. Using shifted windows to
capture localized self-attention reduces the quadratic complexity of
processing entire images, making it more scalable and manageable
for high-resolution inputs. This “shifted window” mechanism also
enables Swin Transformers to capture fine-grained details and global
context as information flows between neighboring windows across
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FIGURE 2
Swin transformer block.

layers. This combination of localized and global attention makes
Swin Transformers particularly effective for image segmentation,
where understanding both local structures and overall context
is crucial, providing a balanced and efficient approach that pure
transformers lack.

Here, employing self-attention techniques to grasp the
global context and long-term relationships of images, the Swin
Transformer Block and U-Net model have been constructed to
combine their capabilities. Its unique feature allows it to combine
international academic content with local inference. The proposed
model includes three main components: encoder, bottleneck layer,
and decoder. In the encoder, decoder, and bottleneck part of
the U-Net model, Swin transformer blocks are used to gradually
reduce the spatial dimension while increasing the complexity of
the received data. Between the encoder’s downsampling and the
decoder’s upsampling, the bottleneck layer refines and compresses
the coding features, thus allowing us to knowhowmuch information
flows through the network. The U-Net model’s decoder component
improves features gathered during the encoding phase, enabling the
network to record fine-grained data. A detailed description of the
encoder, decoder, and bottleneck block of the proposed model is
given in the following sections.

4.1 Swin transformer

The Swin Transformer block, a vital component of the
Swin Transformer architecture, presents a shift-based windowing

technique to gather contextual information quickly while retaining
scalability. The model’s name, “Swin”, is derived from Shifted
Windows, which divides the image into non-overlapping windows
and applies the attention mechanism within them. To capture
relationships between windows, they are shifted in successive layers.
This enables the model to capture local and global context without
requiring the whole attention mechanism to cover the entire image.
Figure 2 shows the Swin transformer block arrangements. Figure 2,
comprising component 1 and component 2, leverages a hierarchical
structure for effective image processing. Component 1 initiates
with Layer Normalization (LN) to standardize input features,
followed byWindow-basedMulti-head Self-Attention (W-MSA) for
capturing local dependencies in a windowed context. Subsequent
Layer Normalization ensures stability, and aMulti-Layer Perceptron
(MLP) extracts complex features. Component 2 maintains this
pattern with LN for normalization, Shifted Window-based Multi-
head Self-Attention (SW-MSA) to capture global information with
window shifts, and LN for stability. The final MLP facilitates
further feature extraction. This dual-block architecture enables
the Swin Transformer to simultaneously consider local and
global image details, enhancing its performance across diverse
computer vision tasks. Cross-window communication incorporates
global context, layer normalization, and multi-layer perceptron
blocks process patch embeddings to ensure non-linearity and
feature transformation. This novel architecture balances local and
global context, making the Swin Transformer block particularly
successful for various computer vision tasks, including GI tract
segmentation in medical imaging.
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FIGURE 3
Proposed integrated swin transformer U-net model.

Consecutive Swin Transformer components calculated with
the shifted window partitioning technique are illustrated in
Equations 1–4:

Ŷl =WMSA(LN(Yl−1)) +Yl−1 (1)

Yl =MLP(LN(Ŷl)) + Ŷl (2)

Ŷl+1 = SWMSA(LN(Yl)) +Yl (3)

Yl+1 =MLP(LN(Ŷl+1)) + Ŷl+1 (4)

where Ŷl and Yl Denote the output features of the WMSA module
and the MLP module for block l, respectively.

4.2 Encoder (downsampling path)

The encoder of the Swin U-Net network consists of a linear
embedding block followed by a succession of Swin Transformer

blocks capturing local and global information in the image,
as shown in Figure 3. Combining the inventive token-based
architecture of the Swin Transformer with the conventional
feature extraction powers of the U-Net, the Encoder—or
Downsampling Path dividing the input image into fixed-size
patches, this transformational method treats each patch as
a “token” for self-attention computation. It compiles global
contextual data essential for exact medical image segmentation.
Every encoder layer improves token representations so the
model may understand visual content at ever-rising degrees of
abstraction. The encoder enables the Swin U-Net to excel in
complex medical image analysis, adapt to different scales, and
learn relevant features by combining self-attention mechanisms
with hierarchical feature extraction, enabling it to obtain good
results in semantic segmentation tasks, so a potent tool for
accurate and context-aware anatomical structure identification in
medical images.

Initially, the input image has dimensions 240 × 240 ×C (where C
stands for the number of channels). After that, this processed image
passes via several Swin Transformer Blocks. Swin Transformer
Block 1 generates a feature map of dimensions 60 × 60 × C; Swin
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FIGURE 4
Training and validation loss curve.

FIGURE 5
Training and validation dice coefficient curve.

Transformer Block 2 generates a featuremap of dimensions 30 × 30×
2C after that. Swin Transformer Block 3 finally creates a 15 × 15 × 4C
featuremap. Skip connections between related blocks in the encoder
and decoder help to guarantee thorough feature preservation: Skip
Connection 1/4 links between Swin Transformer Block 1 and Swin
Transformer Block 8. Skip Connection 1/8 links between Swin
TransformerBlock 2 and SwinTransformerBlock 7. Skip connection
1/16 links between Block 3 and Block 6.These links directly connect
relevant feature maps from the encoder to the decoder, minimizing
spatial information loss via downsampling. Skip connections ensure
that spatial information is maintained and enhanced throughout the
segmentation process.

4.3 Bottleneck block

In the Swin U-Net model, the encoded data is refined
through a bottleneck process consisting of two Swin
Transformer blocks (Figure 3). The bottom layer is the main point
of the network, where the regional capacity of the U-Net model
and the hierarchical features collected by the Swin Transformer
combine perfectly. Between the encoder’s downsampling and the
decoder’s upsampling, this layer compresses and improves the
coding characteristics employing two Swin Transformer Blocks
(Blocks 4 and 5), allowing more data to flow through the network.
The bottleneck layer combines the general concepts of Swin
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FIGURE 6
Training and validation IoU coefficient curve.

TABLE 2 Performance parameters.

Parameter Train Validation Test

Loss 0.0472 0.0929 0.0949

Dice Coefficient 0.9571 0.9203 0.9190

IoU Coefficient 0.9147 0.8490 0.8454

Transformer with the fine-grained data in U-Net, reducing the
complexity of the connection while ensuring that the model
preserves all information about the input image. This integration
improves Swin U-Net’s ability to accurately segment medical images
and collect comprehensive and small local data. It is the foundation
for standards of excellence in medical image analysis.

4.4 Decoder (upsampling path)

The decoder is an essential part of the Swin U-Net model and
is responsible for using the best features of the bottleneck process
and the encoder cross-connection to generate feature maps. The
decoder is a linear combination that provides the encoder process’s
fine details to reconstruct the original image’s segmentation map.
This allows the Swin U-Net to effectively capture all the collected
data and the Swin Transformer to maintain the complex regional
features. This allows the model to achieve high performance. Swin
Transformer Block 6 generates a 15 × 15 × 4C feature map, Swin
Transformer Block 7 creates a 30 × 30 × 2C feature map, and
Swin Transformer Block 8 produces a 60 × 60 × C feature map.
The patch merging layer then reconstructs the segmented image,
effectively segmenting the intestinal tract while maintaining the
original size of 240 × 240 × C. The boundary and content of
the region are preserved, which is crucial in processing medical

images. This integration allows the model to combine the global
understanding provided by the Swin Transformer with the real-time
accuracy provided by U-Net, leading to the best performance in
the semantic segmentation task where the treatment plan requires
anatomical structure information.

5 Results analysis

This research proposed an Integrated Swin Transformer U-
Net Model to segment the gastrointestinal tract with MRI data.
The model runs on the Google Colab platform using Keras and
TensorFlow framework. Table 1 describes the Swin Transformer U-
Netmodel’s training parameters proposed inGI organ segmentation
task. The selected batch size is 8 to balance the two objectives
so that it will not lose any performance and minimize memory
use. The learning rate has been set to be 0.0001, which is small
enough to ensure that convergence is stable instead of overshooting,
which is what matters most for such complex architecture deep
learning models like Swin Transformer U-Net. The model was
trained over 70 times; thus, there were more than enough iterations
to fit the dataset without overfitting. This training run took 6 h,
37 min, and 43 s, demonstrating how computer-intensive training
efficient models can be on vast amounts of medical data. The
following section presents this model’s results and showcases
how it can help segment small bowel, large bowel, and stomach
fromMRI images.

5.1 Loss analysis

The loss plot analysis for gastrointestinal tract segmentation
entails watching the convergence of loss curves unique to the
small bowel, large intestine, and stomach segmentation. These
curves represent the model’s accuracy in segmenting each area.
Monitoring the training and validation loss curves is critical to
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FIGURE 7
Visualization of results.

TABLE 3 State-of-the-art comparison.

Ref/Year Method Dice value IoU/Jaccard

[24]/2022 Transfer learning encoders ---- 0.84

[25]/2022 U-Net 0.78 ---

[26]/2022 Mask RCNN 0.51 ---

[27]/2022 U-Net and transfer learning models 0.88 0.88

[28]/2022 U-Net on 2.5 D 0.36 0.12

[29]/2022 U-Net with ResNet 50 --- ---

[30]/2022 Ensemble learning 0.91 ---

Proposed Model Proposed Integrated Swin Transformer U-Net Model 0.92 0.84

ensure the model learns properly without overfitting. Figure 4
represents the training and validation loss plots by implementing
the proposed design. In Figure 4, we can observe a sharp decline
in loss during the fifth epoch. Subsequently, the loss gradually
decreases, reaching a value of 0.0472 for the training and 0.0929
for the validation.

5.2 Dice coefficient analysis

The accuracy of segmentation for the small intestine, large
intestine, and stomach regions is assessed using Dice coefficient
plots, which illustrate how well the predicted segmentations from
the proposed Integrated Swin Transformer U-Net Model align
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with the ground truth masks. Higher Dice coefficients indicate
better alignment. Figure 5 displays the Dice curves generated by
the proposed Ensemble of Swin Transformer Block and U-Net
Model. As shown in Figure 5, the Dice value starts at 0 and rapidly
increases between epochs 0 and 10, followed by a more gradual rise.
Ultimately, the Dice coefficient reaches final values of 0.9571 for
training and 0.9203 for validation.

5.3 IoU coefficient analysis

Evaluating the Intersection over Union (IoU) coefficient
plots for gastrointestinal tract segmentation using the proposed
Integrated Swin Transformer U-Net Model involves assessing the
model’s accuracy in delineating the boundaries of the small intestine,
large intestine, and stomach regions. These plots demonstrate
how closely the model’s predicted segmentations align with the
ground truthmasks, with higher IoU coefficients indicating superior
segmentation quality. Figure 6 presents the IoU curve generated by
the proposedmodel. As depicted in Figure 6, the IoU value increases
from the 10th epoch and continues to rise gradually. Ultimately,
the IoU coefficient achieves a final value of 0.9147 for the training
dataset and 0.9203 for the validation dataset.

5.4 Performance analysis for test dataset

Table 2 shows the performance parameters of the proposed
segmentation model for training, testing, and validation datasets.
Three crucial measurements of the model’s performance are loss,
dice, and IoU. With a low loss of 0.0472, a high Dice value of
0.9571, and an IoU value of 0.99147, the model shows accurate
segmentation and significant overlap with the ground truth during
training.The model retains its segmentation quality over the testing
and validation phases with slightly higher loss values, demonstrating
constant Dice and IoU Coefficients of around 0.9190 to 0.9203 and
0.8454 to 0.8490, respectively. These results show that the model
can generalize its segmentation skills to previously encountered data
while maintaining consistent performance.

5.5 Visual analysis

Figure 7 provides a comparison of gastrointestinal tract
segmentation results on MRI images, organized into four columns:
“Original Image”, “Predicted Mask Image”, “Ground Truth Mask
Image”, and “MissMask Image”. Each row represents a differentMRI
slice. The “Original Image” column shows the raw grayscale MRI
scans. In contrast, the “Predicted Mask Image” column displays
the segmentation masks generated by the proposed model, where
different regions are color-coded for straightforward interpretation:
red represents the large bowel, green corresponds to the small bowel,
and blue indicates the stomach. This color scheme is consistent
across the “Ground Truth Mask Image” column, which shows
expert-annotated masks that serve as the benchmark for evaluating
the model’s accuracy.

The “Miss Mask Image” column highlights discrepancies
between the model’s predictions and the ground truth annotations,

using green to indicate true positives (areas predicted by the model
and present in the ground truth) and red for false negatives (areas
in the ground truth but the model missed). This layout effectively
visualizes the model’s strengths and limitations, allowing for a quick
assessment of its accuracy in segmenting the small bowel, large
bowel, and stomach within MRI scans of the gastrointestinal tract.

The proposed integration of the Swin Transformer and U-Net
architectures offers several notable advantages over existing GI
tract segmentation methods, primarily by combining the global
context-capturing capabilities of the Swin Transformer with the
spatial precision of the U-Net. Unlike traditional convolutional
neural networks (CNNs) or standalone U-Net models, which focus
on local features, the Swin Transformer’s hierarchical structure
with shifted windows allows efficient processing of local and
global information, enhancing segmentation accuracy, particularly
in complex anatomical structures. This combined approach proves
robust in handling variations in MRI data, such as differences in
organ shape and texture. It is especially effective in distinguishing
between similar tissues, where boundaries are often ambiguous.
However, themodel has limitations, including higher computational
requirements due to the transformer layers, which could restrict its
applicability in clinical settings with limited resources.

6 Comparison with state of art

Table 3 provides a comparative overview of several image
segmentation approaches assessed for their effectiveness in the
context of a given goal, most likely in medical imaging or
computer vision, in 2022.The techniques described include transfer
learning encoders, U-Net architecture, Mask RCNN, a mix of
U-Net and transfer learning models, U-Net applied to 2.5D
images, U-Net paired with ResNet 50, and ensemble learning.
The associated Dice coefficient and IoU/Jaccard scores serve
as performance measures, assessing the quality of segmentation
findings. Highlights include the proposed model, which has a
Dice value of 0.91 and an IoU/Jaccard of 0.84, and additional
algorithms with varied segmentation accuracy. In this case, the
superior performance of Swin Transformer-U-Net can be attributed
to the combination of global content and spatial accuracy.
Swin Transformer’s moving window effectively captures surface
irregularities, enabling the model to identify minor differences
between similar tissues in the colon. Furthermore, the U-Net
model refines region boundaries through cross-linking, essential for
accurate segmentation. This combination makes the model more
efficient than previous methods by evaluating local details with
global context understanding and makes it particularly suitable for
complex anatomical segmentation tasks.

7 Conclusion

This study presents an integrated Swin Transformer U-Net
model for segmenting intestinal lesions in MRI images, which is
an essential task for developing radiology in cancer treatment.
The well-designed model combines the global content learning
capabilities of Swin Transformer with the detailed feature extraction
capabilities of U-Net to provide optimal performance. Experimental
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results validated in gastrointestinal diseases at the University of
Wisconsin-Madison showed that the model has high accuracy
with low loss, high Dice coefficient, and IoU scores of 0.0949,
0.9190, and 0.8454, respectively. These results indicate that the
proposed model can improve the accuracy of GI cancer treatment
and provide radiation oncologists with a powerful tool for better
treatment planning and patient care. Integrating these principles
into clinical practice will lead to more efficient and effective
radiation therapy, ultimately improving patient outcomes. We plan
to refine the model’s architecture for future enhancements to reduce
computational complexity, allowing for more efficient real-time
applications. We also aim to explore further multi-modal data
integration, such as combining MRI with CT scans, to improve
segmentation accuracy. Beyond GI tract segmentation, this model’s
framework could be adapted to other types of cancer and areas
of medical imaging by fine-tuning its parameters to accommodate
different tissue characteristics and imaging modalities. For instance,
it could be adapted for lung or brain tumor segmentation by training
on specialized datasets, enabling broader clinical applications
across oncology.
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