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Enhanced twitter sentiment
analysis with dual joint classifier
integrating RoBERTa and BERT
architectures

Luoyao He*

Biochemical Engineering Department, University College London (UCL), London, United Kingdom

Sentiment analysis, a crucial aspect of Natural Language Processing (NLP), aims
to extract subjective information from textual data. With the proliferation of
social media platforms like Twitter, accurately determining public sentiment has
become increasingly important for businesses, policymakers, and researchers.
This study introduces the Dual Joint Classifier (DJC), which integrates the
strengths of RoBERTa and BERT architectures. The DJC model leverages
Bidirectional Gated Recurrent Units (BiGRU) and Bidirectional Long Short-Term
Memory (BiLSTM) layers to capture complex sequential dependencies and
nuanced sentiment expressions. Advanced training techniques such as Focal
Loss and Hard Sample Mining address class imbalance and improve model
robustness. To further validate the DJCmodel’s robustness, the larger TweetEval
Sentiment dataset was also included, on which DJC outperformed conventional
models despite increased training time. Evaluations were conducted on the
Twitter US Airlines and Apple Twitter Sentiment datasets to verify experiments.
The DJC model achieved 87.22% and 93.87% accuracies, respectively, and
demonstrated improvement over other models like RoBERTa-GLG, BiLSTM(P),
and SVM. These results highlight the DJC model’s effectiveness in handling
diverse sentiment analysis tasks and its potential for real-world applications.
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sentiment analysis, natural language processing, BERT, RoBERTa, Bi-GRU, Bi-LSTM, hard
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1 Introduction

Sentiment analysis, a subfield of Natural Language Processing (NLP), focuses on
extracting subjective information from text data [1, 2]. This task has gained increasing
importance with the exponential growth of user-generated content on social media
platforms [2]. Accurately determining public sentiment from this data is crucial for
businesses, policymakers, and researchers to understand public opinion, track emerging
trends, andmake informeddecisions [2]. Twitter offers a rich real-timedata source reflecting
public sentiment on various topics, making it a valuable resource for sentiment analysis
studies [1, 3].

In recent years, Bidirectional Long Short-Term Memory (BiLSTM) networks have
been widely used in NLP tasks due to their ability to capture long-term dependencies in
both forward and backward directions. Graves et al. [4] demonstrated the effectiveness
of BiLSTMs in sequence labelling tasks [4, 5]. Similarly, Bidirectional Gated Recurrent
Unit (BiGRU) networks, proposed by Cho et al. [6], have shown comparable performance

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1477714
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1477714&domain=pdf&date_stamp=2024-12-02
mailto:zcbelhe@ucl.ac.uk
mailto:zcbelhe@ucl.ac.uk
https://doi.org/10.3389/fphy.2024.1477714
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2024.1477714/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1477714/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1477714/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1477714/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


He 10.3389/fphy.2024.1477714

to BiLSTMs with a simpler structure, making them efficient for
various sequence modelling tasks. BiLSTM and BiGRU have been
effectively employed in sentiment analysis, machine translation,
and speech recognition tasks, proving their robustness in handling
sequential data [6].

The advent of transformer-based models has marked a
significant milestone in the field of Natural Language Processing.
Bidirectional Encoder Representations from Transformers (BERT),
introduced by Devlin et al. [7], uses a transformer-based
architecture to pre-train on a large corpus and fine-tune specific
tasks [7]. BERT’s bidirectional approach allows it to understand
the context from both directions, significantly improving the
performance of NLP tasks [8]. Building on the success of BERT,
researchers have continued to refine and improve its architecture.
The robustly Optimized BERT Pre-training Approach (RoBERTa)
was proposed by Liu et al. [9] and builds on BERT by optimizing
the pre-training process [9]. It uses more data and computation,
removes the next sentence prediction objective, and dynamically
changes the masking pattern applied to the training data, resulting
in substantial performance improvements over BERT [9–11].
DistilBERT, developed by Sanh et al. (2019), is a distilled version
of BERT that retains 97% of BERT’s language understanding while
being 60% faster and 40% smaller, making it suitable for scenarios
requiring reduced computational resources while maintaining
high-performance [12].

This paper presents a novel Dual Joint Classifier (DJC)
model, which integrates advanced techniques to enhance sentiment
analysis performance and robustness, particularly in scenarios with
imbalanced datasets and limited resources [13, 14]. The proposed
DJCmodel leverages the combined strengths of RoBERTa and BERT
architectures, coupled with BiLSTM, dropout layers and BiGRU
layers to capture complex sequential dependencies and improve the
model’s understanding of context in both forward and backward
directions [4, 5]. Dropout layers, introduced by Srivastava et al.
(2014) [15], are incorporated to prevent overfitting by randomly
deactivating a fraction of neurons during training [15]. Additionally,
joint training is employed to integrate these multiple architectures
listed above, ensuring that the model benefits from the strengths of
each while mitigating their weaknesses. Meanwhile, the proposed
model (DJC) also combines techniques such as Focal Loss and
Hard Sample Mining to address class imbalance and enhance
model learning. First, Focal Loss, introduced by Lin et al. [16],
addresses the issue of class imbalance by focusing onhard-to-classify
samples, reducing the impact of easy-to-classify examples [16]. In
an imbalanced dataset, classes with many samples can dominate the
loss function, causing the model to be biased towards these classes
and perform poorly on underrepresented classes [16]. Focal Loss
addresses this issue by reducing the loss contribution from well-
classified examples and putting more focus on hard, misclassified
examples, thus improving the model’s performance on minority
classes [16, 17]. This adjustment improves the model’s performance
on minority classes by dynamically scaling the loss associated
with each sample, making it particularly effective for handling
imbalanced datasets [16, 18]. Hard Sample Mining [19], proposed
in the context of computer vision by Shrivastava et al. (2016),
further augments this by identifying and re-training misclassified
samples from previous epochs [20]. This ensures that the model
learns from its mistakes and improves its accuracy on challenging

data points [19]. By focusing on the hard examples that the model
previously struggled with, this technique helps refine the model’s
understanding and handling of complex cases, thus enhancing
overall robustness and accuracy [19, 21, 22].

To evaluate the effectiveness of the proposed DJC model,
two widely used public datasets from Kaggle are selected and
extensive comparisons are conducted with a baseline BERT-based
model, recent state-of-the-art models, and traditional machine
learning models. The effectiveness of the proposed DJC model is
demonstrated through extensive experiments on diverse benchmark
datasets, highlighting its robustness and accuracy in sentiment
analysis tasks.

The contributions of this paper can be summarized as follows:

1. The Proposed model employs joint training of RoBERTa and
BERT architectures.

2. The model architecture includes additional layers such as
BiGRU, BiLSTM, and Dropout layers, which enhance the
model’s ability to capture sequential dependencies and prevent
overfitting.

3. The interaction between Focal Loss and Hard Sample Mining
(HSM) techniques enhances the model’s ability to handle
imbalanced datasets by focusing on hard-to-classify samples.

The rest of this paper is organized as follows. Section 2 reviews
related works in sentiment analysis. Section 3 details the DJC
model’s design and methodology. Section 4 evaluates the DJC
model’s performance against benchmarks. Section 5 concludes with
findings and future work.

2 Related works

Wang et al. [23] introduced a regional CNN-LSTM model for
dimensional sentiment analysis, targeting the prediction of valence-
arousal (VA) ratings in texts. Their model divides input text into
regions, using individual sentences as regions, and applies a regional
CNN to extract local affective features, followed by an LSTM to
integrate these features sequentially for VA prediction. The model
was tested on the Stanford Sentiment Treebank (SST) and Chinese
Valence-Arousal Texts (CVAT) datasets, achieving improvements
over lexicon-based, regression-based, and conventional NN-based
methods, with the best results showing RMSE values of 1.341
for valence and 0.874 for arousal on the CVAT dataset [23].
Joulin et al. [24] introduced FastText, a model designed for
efficient text classification, including sentiment analysis. FastText
utilizes a bag-of-words approach combinedwith word vectorization,
enabling rapid processing of large-scale datasets. While it offers
computational efficiency. The model demonstrated competitive
accuracy on benchmark datasets such as Amazon [25] and Yelp
reviews [26] but may struggle with the nuanced sentiment found
in social media data. Similarly, Singh et al. [27] explored the
application of various machine-learning techniques for sentiment
analysis to predict outbreaks and epidemics using health-related
tweets. They analyzed nearly one and a half million tweets
to track illness over time and measure behaviour risk factors,
symptoms of diseases, and medication usage. The study employed
supervised classification techniques such as SupportVectorMachine
(SVM), Naïve Bayes, Random Forest, and Decision Tree models.
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Their system demonstrated a high correlation with CDC data,
achieving 85% accuracy in detecting influenza-related messages
[27]. Extending the scope of sentiment analysis to multiple
languages, Can et al. [28] developed a multilingual sentiment
analysis framework using RNNs, tested on the SemEval-2016
Challenge Task 5 dataset. Their framework achieved accuracies of
84.21% for Spanish, 74.36% for Turkish, 81.77% for Dutch, and
85.61% for Russian, demonstrating the versatility and effectiveness
of their RNN-based approach in handling sentiment analysis across
different languages.

Loureiro et al. [29] introduced the TimeLMs model, a
transformer-based language model pretrained on historical Twitter
data to capture temporal changes in language. The model achieved
strong performance across various TweetEval tasks, particularly
excelling in emotion recognition and offensive language detection,
demonstrating its adaptability to evolving social media language.
Further advancing the field, Xiang et al. [30] proposed an affection-
driven neural network model for sentiment analysis by integrating
affective knowledge from the Affect Control Theory (ACT). This
approach incorporates an affective lexicon with Evaluation, Potency,
and Activity (EPA) values into Long Short-Term Memory (LSTM)
models to enhance sentiment classification.The study demonstrated
that incorporating these EPA values as numerical influence weights
significantly improved the performance of conventional LSTM
models, achieving 1.0%–1.5% higher improvements across three
large benchmark datasets (Twitter, airline customer reviews, and
IMDB movie reviews) [30]. In another recent study, Talaat [31]
explored the performance of eight hybrid models combining
DistilBERT and RoBERTa with BiGRU and BiLSTM layers for
sentiment analysis across three datasets (Airlines, CrowdFlower,
and Apple). The study utilized models such as DistilBERT-GLG,
RoBERTa-3G, and RoBERTa-LGL, evaluating their accuracy
with and without emojis. The results indicated that hybridizing
BiGRU and BiLSTM layers improved model performance.
Notably, DistilBERT-GLG achieved the highest accuracy for the
Airlines dataset (83.74% with emojis, 83.47% without emojis)
and RoBERTa-3G showed the best performance for the emoji
case (86%) [31].

3 Proposal method

3.1 Data preprocessing

The data preprocessing step involves cleaning and normalizing
the text data to prepare it for model training. This includes
replacing null values with empty strings, normalizing Unicode
characters, and removing hashtags, mentions, URLs, digits, emojis,
and non-alphanumeric characters. Additionally, leading and trailing
whitespace is stripped from the text.

The sentiment analysis models were tested using two primary
datasets fromKaggle:The Apple Twitter Sentiment Dataset [32] and
the Twitter US Airline Sentiment Dataset [33]. The Apple dataset
includes tweets about Apple products and services, categorised
into positive, negative, and neutral sentiments, offering insights
into public perception over time. The US Airline dataset involves
tweets about major US airlines, similarly categorised, detailing
reasons for negative sentiments such as delayed flights or poor

service.The TweetEval Sentiment [34] subset was also selected from
the broader, multilingual TweetEval dataset to provide additional
evaluation across diverse, balanced sentiment categories. Since
the pre-trained models in this research were initially trained on
TweetEval, using this subset allows for further validation aligned
with the training data.

3.2 Dataset overview and splitting

All datasets were simplified to contain only two columns: “text”
and “sentiment.” The “sentiment” column was standardised with
labels 0 for negative, 1 for neutral and 2 for positive sentiments.
Detailed information about the specific tweets in these datasets
is shown in Table 1.The Stratified K-Fold cross-validationmethod is
applied to split the dataset. Initially, the dataset was divided into 90%
for training and 10% for testing.Then, the training data is applied to
10-fold Stratified K-Fold cross-validation. This means that in each
fold, 90% of the training data was used for actual training and 10%
for validation. This method ensures that each fold maintains the
same class proportions as the entire dataset.

However, the distribution of the three sentiments is not
balanced, as shown in Table 1. This imbalance can result in biased
model training and reduced performance in accurately predicting
minority classes. Strategies to mitigate this issue will be discussed in
the following sections.

3.3 Combined model training approach

The sentiment analysis model utilized in this study is based on a
combined model training approach that incorporates two primary
models available on Hugging Face, referred to as Roberta and
BERTweet.

1. “CardiffNLP/twitter-roberta-base-sentiment-latest” is a
RoBERTa-base model trained on tweets from January 2018
to December 2021 and fine-tuned for sentiment analysis using
the TweetEval benchmark. It classifies English tweets into three
sentiments: 0 for Negative, 1 for Neutral, and 2 for Positive.

2. “FiniteAutomata/bertweet-base-sentiment-analysis” is
another model that leverages the BERTweet architecture and is
pre-trained on a large dataset of English tweets for sentiment
classification. It also categorizes tweets into three sentiments:
0 for Negative, 1 for Neutral, and 2 for Positive.

3.4 Proposed models- dual joint classifier
architecture

Two distinct joint components were developed and combined
into a single final model (Dual Joint classifier), as illustrated in
Figure 1.The details of these components and layers followed by the
two models mentioned in Section 3.3 are provided in Table 2 below.

3.4.1 Joint component 1 architecture
The first joint model component integrates two parallel

branches shown in Figure 1: one branch uses RoBERTa, while the
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TABLE 1 Twitter sentiment datasets overview.

Datasets Positive tweets Neutral tweets Negative tweets Total

Apple Twitter Sentiment [32] 686 801 143 1,630

Twitter US Airline Sentiment [33] 2,363 3,099 9,178 14,640

TweetEval Sentiment [35] 10,895 28,958 20,046 59,899

Total 13,944 32,858 29,367 74,702

FIGURE 1
The architecture of the proposed model integrating two joint components.

TABLE 2 Overview of joint component architectures and model abbreviations.

Component Model abbreviation Layer architecture

Joint component 1
RoBERTa-GLG Dropout → BiGRU → Dropout → BiLSTM → Dropout → BiGRU → Dropout → Classification Layer

BERTweet Dropout → Dense → Classification Layer

Joint component 2
RoBERTa-GL Dropout → BiGRU → Dropout → BiLSTM → Dropout → Classification Layer

BERTweet-GL Dropout → BiGRU → Dropout → BiLSTM → Dropout → Classification Layer

other branch uses BERTweet. The detailed layer configurations
and parameter settings for the two base models, RoBERTa and
BERTweet, are compiled in Tables 3, 4.

3.4.2 Joint component 2 architecture
Joint component 2, depicted in Figure 1, similarly integrates two

parallel branches with RoBERTa on the left and BERTweet on the

right.This structuremirrors Joint Component 1, ensuring consistent
architecture across components. Detailed layer configurations and
parameter settings for RoBERTa and BERTweet are compiled in
Tables 5, 6.

The two joint components, joint component 1 (RoBERTa-
GLG with BERTweet) and joint component 2 (RoBERTa-GL
with BERTweet-GL), are combined into a single final model by
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TABLE 3 Joint component 1—detailed architecture of RoBERTa branch.

Layer name Input dimension Hidden units Output dimension

RoBERTa Model — — 768

Dropout 768 — 768

Bi-GRU Layer 1 768 256 512 (bidirectional)

Dropout — — 512

Bi-LSTM Layer 512 256 512

Dropout — — 512

Bi-GRU Layer 2 512 256 512

Dropout — — 512

Classifier 512 — 3

TABLE 4 Joint component 1—detailed architecture of BERTweet branch.

Layer name Input dimension Hidden units Output dimension

BERTweetModel — — 768

Dropout — — 768

Classifier 768 — 3

TABLE 5 Joint component 2—detailed architecture of RoBERTa branch.

Layer name Input dimension Hidden units Output dimension

RoBERTa Model — — 768

Dropout 768 — 768

Bi-GRU Layer 768 256 512 (bidirectional)

Bi-LSTM Layer 512 256 512

Dropout 512 — 512

Classifier 512 — 3

TABLE 6 Joint component 2—detailed architecture of BERTweet branch.

Layer name Input dimension Hidden units Output dimension

BERTweetModel — — 768

Dropout 768 — 768

Bi-GRU Layer 768 256 512 (bidirectional)

Bi-LSTM Layer 512 256 512

Dropout 512 — 512

Classifier 512 — 3
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TABLE 7 Hyperparameters used in model training.

Hyperparameter Value

Optimizer AdamW

Learning Rate 1.5e-5

Weight Decay 0.01

Epsilon 1e-8

Number of Epochs 10

Batch Size 16

Dropout Rate 0.3

Loss Function Focal Loss

Alpha (Focal Loss) 1

Gamma (Focal Loss) 3

first obtaining the outputs (logits) from each component. These
logits are concatenated to form a combined representation as
represented in Figure 1, which is then passed through a meta-
classifier layer. This layer reduces the concatenated logits into a final
set of logits corresponding to the sentiment classes. To convert these
final logits into predictions, the SoftMax function is applied, which
transforms the logits into a probability distribution over the classes.
The class with the highest probability is selected as the predicted
class, indicating the model’s final sentiment classification.

3.5 Model training parameters setup

The following sections describe the hyperparameters used for
model training and the method for dataset splitting to ensure
balanced and robust training. The models are initialized with the
following predefined parameters, which are compiled in Table 7:

The hyperparameters listed above were determined through
systematic tuning. The learning rate was optimized via grid search
within 1e-5∼5e-5 for stable convergence, while batch sizes of 16 and
32 were tested to balance memory use and efficiency. AdamW was
selected for its adaptive learning rate and weight decay to reduce
overfitting. Each setting was refined based on validation outcomes
for optimal performance. The selection of Focal Loss parameters,
Alpha and Gamma, will be detailed in Section 4.1.1.

Focal Loss (Equation 1) was chosen because the samples were
imbalanced, which is mentioned in Section 3.2, making it effective
for focusing on harder-to-classify samples. The formula for Focal
Loss is given by:

FL(pt) = −at(1− pt)
γ log(pt) (1)

Where pt is the predicted probability for the true class, at is a
weighting factor for the class t, and γ is the focusing parameter that
reduces the relative loss for well-classified examples (pt > 0.5) and
puts more focus on hard, misclassified examples.

3.6 Hard sample mining technique

In the training procedure, a technique called hard sample
mining is employed to enhance the model’s training efficacy.
The dataset is first divided into training and testing sets, as
mentioned in Section 3.2, to ensure that no data from the test set
leaks into the training process. During training, special attention is
given to samples on which the model previously performed poorly,
known as “hard samples.” Specifically, hard samples refer to those
instances from the training set that were incorrectly predicted in the
previous epoch.

3.6.1 Interaction of focal loss and hard sample
mining

The core of the Hard Sample Mining technique is to focus
additional attention on samples where the model previously
performed poorly during training, by re-training on these samples
to improve the model’s performance. On the other hand, Focal
Loss already adjusts the weight of these hard-to-classify samples
at the loss function level, giving them greater significance in the
loss calculation. When combined with Hard Sample Mining, these
samples identified as difficult by Focal Loss are further emphasized
in subsequent training iterations, enhancing the model’s ability to
learn from these challenging cases.

The Hard Sample Mining process involves identifying and
focusing on “hard samples”—those incorrectly classified by the
model—across multiple training iterations. Initially, these hard
samples are identified based on their classification errors and
are given additional attention in subsequent training iterations.
As training progresses, the model adjusts to better handle these
challenging samples, resulting in improvement. Over time, a greater
portion of these hard samples are correctly classified, signifying
enhanced model performance. Throughout this process, the model
improves progressively as it re-evaluates and correctly classifies these
hard samples, moving them from amisclassified status to a correctly
classified one. Each training iteration brings the model closer to
robustness by reducing misclassifications, particularly for samples
that are difficult to categorize. This iterative process ultimately
contributes to a more accurate model that can effectively address
classification difficulties in the data.

3.7 Comparative evaluation of BERT-Based
models

To underscore the efficacy of the Proposed Model (DJC),
several widely recognized BERT-based models were employed
for comparison. These models, include RoBERTa, BERT, and
DistilBERT variants used in the sentiment analysis tasks. The
DistilBERT model used in the evaluation is “DistilBERT-Base-
Uncased-Emotion” from Hugging Face. The dataset split ratios and
the hyperparameters for these models, such as loss function and
training setup, were kept consistent with those used for the Proposed
Model (DJC). This ensures a fair comparison and accurately reflects
the Proposed Model’s effectiveness.
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FIGURE 2
Impact of Alpha and Gamma tuning on focal loss performance during model evaluation.

4 Experimental analysis and results

All experiments were conducted on a cloud server with the
following configuration: Ubuntu 20.04.2 LTS operating system,
NVIDIA Tesla V100 GPU, 64GB RAM, Python version 3.8.5, and
PyTorch 1.7.1 as the deep learning framework. Parameters like batch
size, learning rate, and optimizer settings were kept consistent to
ensure fair comparisons of training time across models.

4.1 Results and charts

4.1.1 Optimal tuning of focal loss
hyperparameters: Alpha (α) and Gamma (γ)

Alpha (α) balances sample distribution across classes, assigning
a higher weight to minority classes to improve the model’s ability
to learn from these samples. Gamma (γ) adjusts the model’s
focus on hard-to-classify samples; higher Gamma values place
more emphasis on challenging samples, enhancing robustness to
noisy or extreme cases. Through grid and progressive tuning,
Alpha and Gamma were adjusted over a practical range. The
lowest test loss was achieved at Alpha = 1 and Gamma = 3, as
highlighted in Figure 2. This optimal combination aligns well with
the key properties of focal loss by down-weighting well-classified
samples and emphasizing more challenging cases, which counters
class imbalance effectively. The test loss value was achieved on the
Twitter US Airline Sentiment dataset.

4.1.2 Impact of joint model and BiLSTM-BiGRU
on performance

The proposed DJC architecture’s innovation in combining the
outputs of these two joint components into a single final model has

led to significant improvements in performance metrics, as shown
in Table 8; Figure 3. The concatenated logits from both components
provide a richer representation of the data, which is then processed
by a meta-classifier layer to generate the final sentiment predictions.
Specifically, on the Twitter US Airline Sentiment Dataset, DJC
achieved the highest accuracy (87.22%), precision (84.67%), recall
(87.74%), and F1 score (86.03%). On the Apple Twitter Sentiment
Dataset, DJC also demonstrated superior performance with the
highest accuracy (93.87%), precision (93.10%), recall (87.84%), and
F1 score (90.08%).The interaction between the BiGRU and BiLSTM
layers in both components ensures that the model effectively
captures both short-term and long-term dependencies, leading to
superior performance across various datasets. However, there is
a slight decline in recall on the Apple Twitter Sentiment Dataset
compared to DistilBERT. This could be due to DJC’s tendency to
be more precise at the expense of missing some relevant instances,
indicating a trade-off between precision and recall. In addition to the
above datasets, the larger TweetEval Sentiment dataset was included
to further validate the robustness of the DJC model across diverse
and larger datasets. DJC achieved an accuracy of 81.67%, precision
of 70.38%, recall of 77.25%, and F1 score of 78.50% on TweetEval
Sentiment, surpassing other models tested on the same dataset
as shown in Figure 3.

However, due to the larger data volume, training times increased
significantly. Specifically, DJC’s training time was 7.50 h as shown
in Table 9, compared to 6.66 h for RoBERTa and 5.50 h for
DistilBERT, representing a 12.6% and 36.4% increase, respectively,
in training duration. These increases reflect the computational
demands of DJC’s dual architecture but are offset by its superior
accuracy and robustness, as evidenced by its performance across
all datasets. n addition to the original comparisons, RoBERTa-GL
and RoBERTa-GLG models, which incorporate LSTM and GRU
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TABLE 8 Performance metrics on twitter US airline sentiment dataset.

Datasets Models Accuracy Precision Recall F1 score

Airline Twitter

Distillbert 81.63% 76.48% 86.93% 78.88%

Bertweet 84.63% 80.80% 79.23% 79.37%

RoBERTa 85.86% 81.56% 82.17% 81.80%

DJC (proposed) 87.22% 84.67% 87.74% 86.03%

Apple Twitter

Distillbert 90.18% 93.05% 83.31% 86.83%

Bertweet 91.41% 93.86% 86.11% 89.15%

RoBERTa 90.80% 88.24% 83.73% 85.62%

DJC (proposed) 93.87% 93.10% 87.84% 90.08%

TweetEval Sentiment

Distillery 63.50% 64.64% 63.50% 63.52%

Bertweet 73.00% 70.39% 72.23% 70.63%

RoBERTa 75.50% 73.65% 70.54% 71.51%

RoBERTA-GL 78.00% 77.88% 74.51% 75.88%

RoBERTa-GLG 79.27% 75.63% 74.60% 74.84%

DJC (proposed) 81.67% 70.38% 77.25% 78.50%

FIGURE 3
Performance comparison of BERT-Based models on different datasets.

layers, demonstrated training times of 7.30 h on the larger TweetEval
Sentiment dataset. This reflects the additional computational load
introduced by sequential dependency layers. Training times can
also vary based on hardware and implementation. Modern GPUs,
like the NVIDIA Tesla V100 or A100, have high peak FLOPS but
rarely achieve full utilization due to memory bandwidth limitations,
data transfer times, and non-optimal batch processing. Studies
indicate that utilization rates are often as low as 30%–40% in real-
world settings for large models, which impacts efficiency despite

powerful hardware [36]. As such, the slightly extended training time
of DJC is a calculated investment, reflecting the model’s complexity
and its ability to deliver superior performance across diverse and
challenging datasets.

4.1.3 Performance analysis of proposed model
with hard sample mining

Table 10 llustrate the performance of the proposed model (DJC)
on different datasets with and without Hard Sample Mining (HSM).
The performance metrics indicate that incorporating Hard Sample
Mining (HSM) improves the model’s performance across both
datasets. Specifically, the Apple Twitter Sentiment dataset shows a
notable increase in Recall (from 84.63% to 87.84%) and F1 Score
(from 88.18% to 90.08%), despite a slight decrease in Precision. The
overall accuracy also improves from 92.02% to 93.87%. Similarly,
in the Twitter US Airline Sentiment dataset, the Recall and F1
Score significantly improve with HSM, suggesting that the model
becomes better at identifying true positives and maintaining a
balance between precision and recall. The Accuracy also increases
from 85.86% to 87.22%. For the TweetEval Sentiment dataset, the
inclusion of HSM results in an increase in Recall (from 77.25%
to 86.93%) and F1 Score (from 78.50% to 78.88%), though the
overall impact on Accuracy is minimal, showing a slight increase
from 81.63% to 81.67%. This indicates that while HSM enhances
the model’s performance in identifying relevant instances across all
datasets, the effect is most pronounced in datasets with a higher
imbalance, as seen in the Twitter US Airline Sentiment dataset.

The datasets exhibit significant imbalances, particularly
in the Twitter US Airline Sentiment dataset, where negative
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TABLE 9 Training time comparison (hours) across datasets and models.

Model Apple twitter Airline twitter TweetEval sentiment

DistillBERT 0.20 2.00 5.50

BERTweet 0.25 2.50 6.66

RoBERTa 0.35 2.83 7.08

RoBERTA-GL 0.35 2.90 7.30

RoBERTa-GLG 0.35 3.00 7.30

DJC (Proposed) 0.35 3.15 7.50

TABLE 10 Performance comparison with and without hard sample mining (HSM) on 3 datasets.

Datasets Accuracy Precision Recall F1 score Test loss

Airline Twitter 87.22% 84.67% 87.74% 86.03% 0.0053

Airline (No HSM) 85.86% 82.06% 81.45% 81.51% 0.0046

Apple Twitter 93.87% 93.10% 87.84% 90.08% 0.0063

Apple (No HSM) 92.02% 94.38% 84.63% 88.18% 0.0035

TweetEval Sentiment 81.67% 76.48% 86.93% 78.88% 0.0075

TweetEval (No HSM) 81.63% 70.38% 77.25% 78.50% 0.0064

TABLE 11 Performance metrics by category with and without HSM for imbalanced datasets.

Datasets Category Accuracy Precision Recall F1 score

Apple Twitter

Negative 92.64% 55.04% 87.84% 67.67%

Neutral 90.51% 92.48% 87.84% 67.67%

Positive 90.88% 90.24% 87.84% 89.03%

Apple (No HSM)

Negative 93.52% 59.15% 84.63% 69.63%

Neutral 89.58% 93.56% 84.63% 88.87%

Positive 90.27% 91.62% 84.63% 87.98%

Airline Twitter

Negative 86.59% 90.58% 87.74% 89.13%

Neutral 85.32% 60.58% 87.74% 71.67%

Positive 85.17% 52.42% 87.74% 65.63%

Airline (No HSM)

Negative 81.68% 88.41% 81.45% 84.78%

Neutral 81.93% 54.93% 81.45% 65.61%

Positive 81.96% 46.63% 81.45% 59.31%

tweets dominate. The Apple Twitter Sentiment dataset has 1,630
total tweets, with 686 positive, 801 neutral, and 143 negative
tweets. The Twitter US Airline Sentiment dataset contains
14,640 total tweets, with 2,363 positive, 3,099 neutral, and 9,178
negative tweets. Table 11 reflects these imbalances and their impact

on performance metrics. For the Apple Twitter dataset, HSM
enhances the performancemetrics, with noticeable improvements in
recall and F1 score for all sentiment categories, particularly negative
sentiment. In the Twitter US Airline dataset, where positive and
neutral tweets are significantly fewer, HSM substantially boosts
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TABLE 12 Comparative evaluation of tweet sentiment analysis models.

Dataset Used model Accuracy

Twitter US Airlines

RNN/LSTM (ULMFiT) [28] 77.8%

LSTM, CNN [23] 79.64%

MultinomialNB [27] ±80%

BiLSTM(P) [30] 82%

RoBERTa-GLG [31] 85.93%

DJC (proposed) 87.22%

Apple Twitter

SVM [31] 84.05%

DistillBERT-GLG [31] 88.04%

RoBERTa-GLG [31] 90.18%

RoBERTa-LGL [31] 90.49%

RoBERTa-3G [31] 91.72%

DJC (proposed) 93.87%

TweetEval Sentiment

LSTM [34] 58.37%

BLSTM [34] 58.34%

SVM [34] 62.91%

FastText [34] 62.98%

RoBERTa-Twitter [34] 69.14%

TimeLMs-19 [29] 73.20%

TimeLMs-21 [29] 73.70%

DJC (proposed) 81.67%

these categories' precision, recall, and F1 scores, indicating better
handling of imbalanced data. In contrast, the impact of HSM is
less pronounced in the TweetEval Sentiment dataset due to its
relatively balanced distribution, and thus, it is excluded from this
table for clearer comparative insights.

4.1.4 Comparison with other models
To benchmark the performance of the proposed DJC model,

it was compared against several existing models in the field of
sentiment analysis represented in Table 12, the bold models are the
proposed models in this research. The superior performance of the
proposed DJCmodel can be attributed to its innovative architecture
that effectively combines the strengths of multiple approaches.
Specifically, the DJC model integrates two joint components,
RoBERTa and BERTweet, using BiGRU and BiLSTM layers. This
integration allows the model to capture both short-term and long-
term dependencies in the data, leading to more accurate sentiment
predictions.

Previous models, such as those utilizing LSTM, CNN, or
MultinomialNB, focus on either sequential dependencies or
simple probabilistic methods, which may not fully capture
the complex patterns in sentiment data. For instance, the
RNN/LSTM (ULMFiT) and LSTM-CNN models leverage
sequential dependencies but may lack the depth provided by
combining multiple advanced architectures. The BiLSTM(P)
model and RoBERTa-GLG improve performance by integrating
bidirectional layers and transformer-based embeddings, yet
they still fall short of the comprehensive approach used in the
DJC model. The TweetEval Sentiment dataset highlights the
limitations of various traditional and simpler models in capturing
sentiment complexity. LSTM and BLSTM, known for handling
sequential data, struggle with long-range dependencies and may
overlook sentiment nuances, especially in larger datasets. Their
performance tends to fall short in identifying indirect expressions
common in tweets. SVM, effective for smaller datasets, suffers in
scalability with larger data like TweetEval Sentiment due to high
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computational costs, which reduces its ability to manage complex
sentiment cues and nonlinear relationships essential for accurate
sentiment analysis.

FastText, although efficient, relies on word vectorisation and
cannot capture word order or syntactic subtleties. This limitation
hampers its ability to detect sentiment in contexts where order
and subtleties shape the emotional tone, such as sarcasm or
indirect sentiment expression. RoBERTa-Twitter, fine-tuned on
Twitter data, shows an advantage over traditional models with its
transformer-based approach, achieving better accuracy; however,
it lacks additional handling of nuanced and ambiguous sentiment
due to its single-model design. The TimeLMs-19 and TimeLMs-
21 models are based on a RoBERTa architecture, pretrained on a
large corpus of tweets from 2019 to 2021, respectively.This temporal
pretraining allows them to specialize in capturing evolving language
trends specific to certain periods, such as emerging slang, hashtags,
and abbreviations on Twitter. Structurally, both TimeLMs versions
rely on the standard RoBERTa architecture without modifications
for deeper sequence modelling or class imbalance handling, which
means they performwell on temporally contextualized language but
may lack the versatility for broader sentiment analysis tasks. The
DJC model’s use of Hard Sample Mining (HSM) and Focal Loss
further enhances its ability to handle imbalanced data, a common
challenge in sentiment analysis. By focusing on hard-to-classify
samples and adjusting the loss function to prioritize these cases,
the DJC model achieves higher recall and F1 scores, as well as
overall accuracy.

5 Conclusion

The proposed Dual Joint Classifier (DJC) model demonstrates
significant advancements in sentiment analysis, attributed to its
innovative architecture and the incorporation of Hard Sample
Mining (HSM) and Focal Loss techniques. By combining RoBERTa
and BERT models with BiGRU and BiLSTM layers, the DJC model
effectively captures both short-term and long-term dependencies
in data, leading to superior performance metrics. Specifically, the
DJC model achieved the highest accuracy (87.22%), precision
(84.67%), recall (87.74%), and F1 score (86.03%) on the Twitter
US Airline Sentiment dataset. On the Apple Twitter Sentiment
dataset, it also demonstrated superior performance with the highest
accuracy (93.87%), precision (93.10%), recall (87.84%), and F1 score
(90.08%). The inclusion of the larger TweetEval Sentiment dataset
further validates the DJCmodel’s robustness across diverse datasets,
highlighting its superior accuracy and F1 score over conventional
models like LSTM, BLSTM, and SVM, which often struggle with
complex social media sentiment. Despite a 12.6% and 36.4%
increase in training time compared to RoBERTa and DistilBERT,
DJC’s enhanced performance justifies the computational cost,
particularly in handling imbalanced data effectively.The use of HSM
and Focal Loss addresses class imbalance issues, enhancing the
model’s ability to accurately identify and predict sentiments. This
comprehensive approach results in outperforming existing models
and setting a new benchmark in sentiment analysis. Future work
will explore the application of the DJC model to other domains
and languages, further enhancing its robustness and versatility.

To further improve DJC’s efficiency, future implementations could
incorporate selective weight updates and optimized parallelism
in distributed training, reducing training time and computational
resource demands.
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