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Introduction: As 5G networks become widespread and their application
scenarios expand, massive amounts of traffic data are continuously generated.
Properly analyzing this data is crucial for enhancing 5G services.

Methods: This paper uses the visibility graph method to convert 5G traffic data
into a visibility graph network, conducting a feature analysis of the 5G traffic data.
Using the AfreecaTV dataset as the research object, this paper constructs visibility
networks at different scales and observes the evolution of degree distribution
with varying data volumes. The paper employs the Hurst index to evaluate the 5G
traffic network and uses community detection to study the networks converted
from 5G traffic data of different applications.

Results: Experimental results reveal significant differences in node degree
distribution and topological structures of 5G traffic data across different
application scenarios, such as star structures and multiple subnetwork
structures. It is found that the node degree distribution of 5G traffic networks
exhibits heterogeneity, reflecting the uneven growth of node degrees during
network expansion. The Hurst index analysis discovers that the 5G traffic network
retains the long-term dependence and trends of the original data. Through
community detection, it is observed that networks converted from 5G traffic
data of different applications exhibit diverse community structures, such as high
centrality nodes, star-like community structures, modularity, and multilayer
characteristics.

Discussion: These findings indicate that 5G traffic networks in different
application scenarios exhibit complex and diverse characteristics. The
heterogeneity of node degree distribution and differences in topological
structures reflect the imbalance in node connection methods during network
expansion. The results of the Hurst index show that the 5G traffic network inherits
the long-term dependence of the original data, providing a basis for analyzing the
dynamic characteristics of the network. The diverse community structures reveal
the inherent modularity and hierarchy of the network, which helps to understand
the performance and optimization directions of 5G networks in different
applications.
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1 Introduction

With the proliferation of 5G networks and the continuous
expansion of their application scenarios, massive traffic data is
being generated. Efficient utilization of this data is crucial for
enhancing 5G technology and services [1]. Analyzing 5G traffic
data helps understand the bandwidth requirements of different
applications, providing theoretical guidance for optimizing
network resources. Classifying different applications not only aids
in delivering differentiated services to improve Quality of Service
(QoS) [2–4] but also helps in identifying abnormal traffic and
potential security threats, allowing for effective protective
measures to ensure network security [5].

As a method of time series analysis, visibility graph (VG) has
gained significant attention in recent years [6]. VG transforms time
series data into complex networks using visibility rules, making it
possible to reveal the inherent dynamic characteristics of the time
series data more intuitively. The core idea is to map data points in
the time series to network nodes and connect relevant nodes based
on visibility rules, forming a complex network structure. The VG
method not only captures the characteristics of time series but also
uncovers hidden spatiotemporal features and dynamic behaviors
through network analysis.

Introducing VG to 5G traffic data analysis provides a new
perspective. By integrating VG methods with 5G traffic analysis,
the depth and breadth of data analysis can be enhanced, providing
scientific evidence for the optimization of 5G networks and
promoting further applications of 5G technology. Specifically,
the VG algorithm can construct a 5G traffic network, analyzing
the characteristics of 5G traffic data in different application
scenarios. Observing the evolution characteristics of the
visibility network helps understand the spatiotemporal
distribution patterns of 5G traffic data, thereby better serving
the applications of 5G networks.

This paper adopts a new time series network construction
method—the VG algorithm—to establish a VG network for 5G
traffic and analyzes the characteristics of 5G traffic data in different
application scenarios using complex network theory. The main
structure of the paper is as follows: In the first section, we
introduce the necessity of this study; in the second section, we
present related work; the third section provides the model used in
this paper; the fourth section includes simulations and discussions;
finally, we conclude the study.

2 Related work

The VG, as a method of transforming time series into complex
networks, offers a new perspective for nonlinear time series analysis
[7]. Its basic idea is to map data points in a time series to nodes in a
complex network and determine the edges between nodes based on
specific visibility criteria, embedding the time series into a network
structure. Through this transformation, the topological structure of
the network can intuitively reflect the dynamic changes and inherent
relational characteristics of the time series. In recent years, VG has
been widely applied in various fields, such as economics, finance,
and biomedicine, demonstrating its powerful analytical capabilities
and versatility.

In the economic and financial fields, VG is widely used for
analyzing financial time series, such as stock prices and exchange
rates [8, 9]. Researchers use VG rules to transform financial time
series data into complex networks, utilizing complex network
metrics such as degree, degree distribution, and betweenness to
identify key nodes in financial markets, thus revealing the
underlying dynamic mechanisms of the market. For example,
researchers can use complex network analysis methods to
identify critical junctions, thereby uncovering fluctuation patterns
in stock prices and identifying key factors influencing stock price
changes [10, 11].

In the biomedical field, VG has demonstrated its unique
advantages, particularly in analyzing biomedical signals such as
electrocardiograms (ECG) [12, 13] and electroencephalograms
(EEG) [14, 15]. For instance, researchers [14] can use the VG
method to convert EEG signals into complex networks,
employing complex network research methods to analyze the
differences between seizure stages and pre-seizure stages.
Additionally, researchers can use the VG method to analyze ECG
variations [16], aiding in the detection of heart disease and providing
significant support for early diagnosis and prevention.

In earth sciences, the VG method is used to analyze complex
characteristics of earth systems, such as climate change [17] and
seismic activity [18]. For example, the VG method can transform
temperature variations into complex networks, using community
mining methods to study the intrinsic logical relationships between
temperature changes [17]. Some researchers utilize the VG method
to study seismic data, uncovering correlations between
earthquake data [18].

In summary, VG, as a novel method connecting nonlinear signal
analysis and complex networks, offers new perspectives for time
series data analysis with its effective, stable, and easy-to-implement
advantages. Therefore, it is necessary to introduce VG to analyze 5G
traffic data. This approach not only provides a new perspective for
5G traffic data analysis but also effectively alleviates some limitations
of current deep learning methods in analyzing 5G traffic data.

Compared to commonly used deep learning methods, VG has
advantages in the following aspects: Firstly, VG effectively avoids the
problem of data scarcity [19, 20]. Deep learning models typically rely
on a large amount of high-quality training data [21, 22], but
acquiring traffic data that comprehensively reflects the
complexity of 5G networks is challenging [23]. VG can construct
networks without requiring large-scale datasets, revealing
spatiotemporal patterns and dynamic features in time series.
Secondly, VG offers better interpretability. Deep learning models
are often seen as “black boxes” [24], with their internal decision-
making processes difficult to explain. By mapping time series data to
complex networks, VG intuitively reflects the structural
characteristics of the data, providing strong interpretability.
Thirdly, VG excels in handling large-scale data. In a 5G network
environment, the volume of traffic data is enormous and rapidly
changing, requiring efficient analysis and processing methods. VG
can quickly construct complex networks, offering high real-time
performance. Lastly, the widespread application of VG in various
fields has verified its applicability and effectiveness. VG has achieved
success in multiple fields [25–30], showcasing its powerful analytical
capabilities and broad adaptability, providing rich references and
insights for 5G traffic data analysis.
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For the above reasons, this paper employs the VG algorithm to
convert 5G time series data into complex networks, analyzing the
evolutionary characteristics of visibility networks using metrics such
as network topology, degree distribution, Hurst index, and
community division, to understand the features of 5G traffic data
in different application scenarios.

3 Modelling

3.1 Complex networks

A complex network is a network structure composed of nodes
and the relationships between nodes, which can be represented as a
graph G � [V, E]. In graph G , V represents the set of nodes,
indicating elements or time points in the system (as in this
paper, where nodes correspond to time points of collected data);
E represents the set of edges, indicating the relationships between
the individual elements (as in this paper, where edges indicate the
visibility between nodes). Through the graph structure, complex
networks can visually describe the intricate interactions within the
system, providing a theoretical basis for analyzing complex systems.
In the process of studying complex networks, researchers introduce
an adjacency matrix A to describe the connection relationships
between nodes i and j, defining it as an N × N matrix, where N is
the number of nodes. In this representation, the connection
relationships between each pair of nodes can be directly reflected
through matrix elements Aij, thus providing a tool for analyzing the
structural characteristics and dynamic evolution rules of the
network. The mathematical expression of the adjacency matrix is
shown in Equation 1.

Aij � 1, if there is an edge between nodes i and j
0, if there is no edge between nodes i and j

{ (1)

In complex network analysis, the degree of a node and the degree
distribution are two fundamental and important concepts that reveal
the structural characteristics of the network. The degree ki of a node
i is defined as the number of edges connected to it, and the
mathematical expression is shown in Equation 2.

ki � ∑N
j�1
Aij (2)

The degree distribution P(k) is defined as the fraction of nodes
in the network that have degree k, and the mathematical expression
is shown in Equation 3.

P k( ) � Nk

N
(3)

Where Nk is the number of nodes with degree k, and N is the
total number of nodes in the network. The degree distribution P(k)
describes the distribution of node degrees in the network and is an
important indicator for measuring the structural characteristics of
the network. In a scale-free network, the degree distribution follows
a power-law distribution. An important feature of the power-law
distribution is the long-tail effect, meaning that there are a few nodes
with very high degrees, while the majority of nodes have relatively

low degrees [31], and the mathematical expression is shown in
Equation 4.

P k( ) ~ k−γ (4)

Where γ is a constant, typically ranging between 2 and 3.

3.2 Louvain algorithm

Community detection is a significant issue in complex network
research, as it reveals the modular structure of the network, dividing
the network into several communities. This results in tighter
connections within the community nodes and sparser
connections between communities. To explore the community
structure of 5G traffic data, this paper uses the Louvain
algorithm [32]. The Louvain algorithm is an efficient community
detection method that aims to optimize modularity. It identifies the
community structure in the network through a hierarchical
clustering method. Modularity is a critical measure for evaluating
the quality of network partitioning, comparing the density of
connections within communities to a random network of the
same size. The definition of modularity is shown in Equation 5.

Q � 1
2m

∑
ij

Wij − kikj
2m

[ ]δ ci, cj( ) (5)

WhereWij represents the weight of the edge between node i and
node j, ki and kj are the degrees of node i and node j respectively,m
is the number of edges in the network, and δ(ci, cj) is an indicator
function that equals one if node i and node j belong to the same
community, and 0 otherwise.

The Louvain algorithm optimizes modularity in two main steps:
modularity optimization and community aggregation. During the
modularity optimization phase, the algorithm iteratively moves each
node to the community where it achieves the highest modularity
increase, thereby locally optimizing modularity. In the community
aggregation phase, the communities obtained from the previous
phase are treated as super-nodes, constructing a new network and
performing the modularity optimization phase again on this new
network. Through this hierarchical clustering method, the Louvain
algorithm can effectively detect the multi-level community structure
in complex networks.

3.3 Visibility graph

The VG [6] is an important method for transforming time series
data into complex networks and has been widely applied in various
fields in recent years. The basic steps of the VG method are
as follows:

Firstly, each data point in the time series is represented as a node
in the VG. For example, for a time series xt{ }, where t � 1, 2, . . . , N,
each data point xt corresponds to a node vt. Through this method,
the dynamic information of the time series is converted into the
nodes in the network.

Secondly, the connection between nodes vi and vj is determined
based on the visibility criteria. Specifically, a link between nodes vi
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and vj exists if and only if for any node vk (where i < k < j) the
following condition is satisfied in Equation 6.

xk < xi + k − i

j − i
xj − xi( ) (6)

This criterion ensures that the connection between nodes vi and
vj is not obscured by any intermediate nodes in the graphical
representation of the time series.

Finally, the adjacency matrix A of the VG is constructed. Here,
Aij � 1 indicates an edge exists between nodes vi and vj, while Aij �
0 indicates no edge exists between them.

By following these steps, the time series data are successfully
transformed into a VG, allowing the use of complex network theory
and techniques to analyze the characteristics of the time series.

Figure 1 demonstrates the process of converting 5G traffic data into
a complex network.

4 Numerical simulations

4.1 Dataset

The 5G traffic data used in this paper are sourced from the
literature [23]. The dataset has a total duration of 328 h and includes
six main categories such as Live Streaming, Stored Streaming, and
Video Conferencing, and 15 subcategories including YouTube Live
and AfreecaTV. The complete dataset contains complex
information such as source addresses and destination addresses.

FIGURE 1
The process of transforming 5G traffic data into a complex network using the Visibility Graph method. (A) shows the first 32 data points from the
AfreecaTV dataset, with the horizontal axis representing the data sequence number and the vertical axis representing the traffic volume. The data in (A) are
converted into a visibility graph according to the VG criteria, resulting in the nodes connected by blue lines in (B). (C) is the adjacency matrix A obtained
from (B), where dark cells represent Aij � 1 and light cells represent Aij � 0. (D) shows the complex network derived from the adjacency matrix A.
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However, this study only uses traffic data (the 5G data used in the
paper are shown in Table 1).

4.2 Analysis of the visibility
network structure

To comparatively analyze the characteristics of 5G traffic data
under different applications, we constructed a localized 5G traffic
network. We selected the first 200 data points from each dataset to
establish a complex network, with the results shown in Figure 2. Due
to significant noise in the first 465 data points of the GeForce Now
dataset, which greatly affected data validity, we chose data points
502 to 701 from the GeForce Now dataset for analysis, and
established the corresponding complex network, keeping other
datasets unchanged.

The construction of localized 5G traffic networks is
advantageous for visualization. Firstly, an excessive amount of
data leads to dense graphs, reducing visualization effectiveness
and making it difficult to discern data characteristics. Secondly,
although long data sequences provide more information, they
involve high computational costs, increased noise, and obscure
main features, which are seldom used in practical applications.
Finally, selecting 200 data points effectively represents some
characteristics of 5G traffic data, ensuring the accuracy of
the analysis.

As shown in Figure 2, the 15 sets of images can be divided into
four distinctly different topological structures. Figures 2A, D, E, K
exhibit a single-center dense structure; Figures 2B, N display multi-
center characteristics; Figures 2C, F, I reveal star-like network
structures; and Figures 2G, H, O demonstrate multiple branching
phenomena. Figures 2J, L, M show relatively uniform network
structures.

From the network structures on the left side of Figures 2A, D, E,
K, it is evident that the connections between nodes are dense,
indicating high traffic demand during specific periods. These

TABLE 1 5G traffic data.

Type Application Length

Live Streaming YouTube Live 82,791

AfreecaTV 72,841

Naver NOW 121,834

Stored Streaming YouTube 73,178

Netflix 88,983

Amazon Prime Video 117,550

Video Conferencing Zoom 94,374

MS Teams 101,848

Google Meet 86,501

Metaverse Zepeto 55,716

Roblox 90,251

Online Game Teamfight Tactics 49,613

Battleground 57,774

Game Streaming GeForce Now 44,781

KT GameBox 44,607

FIGURE 2
5G Traffic Network and Node Degree. To analyze the topological
characteristics of 5G traffic data, we constructed local networks using
5G traffic data and investigated the relationship between the traffic
data and the node degrees. (A–O) correspond to the datasets
AfreecaTV, Amazon Prime Video, Battleground, GeForce Now,
Google Meet, KT GameBox, MS Teams, Naver NOW, Netflix, Roblox,
Teamfight Tactics, YouTube, YouTube Live, Zepeto, and Zoom,
respectively. In each figure, the left side shows a 5G traffic network
with 200 nodes, while the right side displays a dual y-axis plot. For
consistent comparative analysis, a force layout algorithm was applied
to uniformly arrange the complex networks. In the dual y-axis plot, the
x-axis represents the data index, the left y-axis blue curve indicates the
downlink bitrate (DL_bitrate), and the right y-axis orange curve shows
the degree of the data index (node) within the complex network.
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networks feature a significant central node that connects many
peripheral nodes, with most nodes having low degrees, fitting the
characteristics of a power-law distribution. By observing the
corresponding 5G traffic data and node degrees, it is found that
significant traffic peaks correspond to central nodes. For example,
in Figure 2A, the node with the highest degree in the entire
network is node 9, with a degree of 66, followed by a node with
a degree of 38, and most nodes have degrees between 2 and 5.
Although Figures 2A, D, E, K all exhibit single-center dense
structures, their specific network topologies and node
distributions differ. The central nodes in Figures 2A, E are
more concentrated, while the peripheral nodes in Figures 2D, K
are slightly more dispersed.

The network structures in Figures 2B, N show multi-center
characteristics. That is, central nodes connect with many
peripheral nodes, forming several local dense areas. Compared
to single-center dense structures, each central node in a multi-
center network forms high-density connections within its local
area, indicating multiple significant traffic peaks in the 5G traffic
data reflected in Figures 2B, N. Analyzing the traffic data and node
degree trends on the right, the multiple central nodes in Figures 2B,
N have significantly higher traffic than other nodes, resulting in
multiple central nodes in the network. In the multi-center network
structure of Figure 2B, the central nodes are relatively dispersed,
with loose connections between central nodes, forming several
relatively independent local dense areas. Conversely, in Figure 2N,
the central nodes are relatively concentrated, with tight
connections between central nodes, forming an interconnected
node cluster. For example, in Figure 2B, there are four central
nodes numbered 8, 12, 47, and 121, with degrees of 52, 42, 37, and
37, respectively. In Figure 2N, there are six significant central
nodes numbered 3, 12, 51, 80, 111, and 197, with degrees of 78, 107,
94, 147, 86, and 104, respectively.

In Figures 2C, F, I, the network structures exhibit star-like
structures. This topological structure is characterized by a
prominent central node connected to numerous peripheral
nodes, forming a star-shaped layout. The central node plays a
core role in the entire network, connecting almost all peripheral
nodes and becoming the focal point for traffic and degree. The
traffic data and degree trends in the right-side figures clearly show
that the traffic peaks of the central node closely correspond to its
degree. Although Figures 2C, F, I all exhibit star-like structures,
their specific network topologies and node distributions differ. For
instance, the central nodes in Figures 2C, I are more concentrated,
with a larger number of connected peripheral nodes, showing a
more pronounced center-periphery structure. In contrast, the
central node in Figure 2F is relatively dispersed, forming several
local dense areas.

In Figures 2G, H, O, the network structures show clear multiple
sub-network phenomena. The connections between nodes are more
dispersed, with multiple branches in the network forming a complex
structure of multiple sub-networks. This network topology reflects
the diversity and heterogeneity among different nodes in the 5G
traffic data, indicating significant fluctuations in data traffic demand.
However, each dataset differs significantly. For example, in
Figure 2G, there are three obvious sub-networks around nodes
14, 83, and 137. In Figure 2H, there are eight sub-networks
around nodes 22, 34, 63, 75, 110, 127, 157, and 188. In

Figure 2O, there are five highly cohesive sub-networks around
nodes 19, 41, 89, 104, and 127.

In Figures 2J, L, M, the network structures show relatively
uniform characteristics. In these networks, connections between
nodes are more evenly distributed, with no significant central nodes,
making the entire network appear relatively balanced, indicating
stable traffic demand in the corresponding application scenarios.
The 5G traffic data represented by the blue line on the right show a
uniform distribution of traffic demand, while the degree represented
by the orange curve also shows a uniform variation trend. However,
there are differences between each network. Specifically, the network
structure in Figure 2J is more dispersed, with relatively loose
connections between nodes. The network structure in Figure 2L
shows a few nodes with higher degrees on the basis of uniform
distribution but still maintains an overall uniform characteristic.
The network structure in Figure 2M is tighter, with slightly more
connections between nodes.

In summary, the network structures converted from 5G traffic
data using the VG exhibit significant differences, providing new
perspectives for a deeper understanding of the characteristics of 5G
traffic data. Specifically, complex network models constructed using
the VG technique reveal notable differences in node degree and
topology under different application scenarios of 5G traffic data. For
example, when there is a single significant traffic peak, the network
shows a central node, forming a distinct star-shaped structure.
When there are multiple traffic peaks, the network presents a
multiple sub-network structure. These findings help reveal the
traffic characteristics and demand differences of 5G networks in
various application scenarios.

4.3 The degree distribution in 5G
traffic networks

To analyze the characteristics of 5G traffic time series, we
constructed visibility networks of 5G traffic data at different
scales. Specifically, this paper uses the AfreecaTV dataset as the
research subject, establishing VGs using the first 500, 1,000, 2000,
4,000, 6,000, 8,000, and 10,000 data points. By visualizing these
visibility networks at different scales (as shown in Figure 3), we can
intuitively observe the topological evolution of network structures
under varying data volumes.

In these networks, we focused on the changes in high-degree
nodes (i.e., nodes with large degrees). High-degree nodes typically
play significant structural roles in complex networks and represent
traffic peaks in 5G traffic data. By analysing the degree changes of
these nodes at different data scales, we can uncover the structural
characteristics of 5G traffic data at various scales. Table 2 presents
the variations of high-degree nodes at different scales.

From the analysis of Table 2, it can be observed that as the scale
increases, the degrees of high-degree nodes show a significant
increase, while the degrees of low-degree nodes remain
relatively unchanged.

Firstly, with the increase in data length, the degrees of high-
degree nodes consistently rise. This indicates that in longer data
sequences, these nodes gradually accumulate more connections,
exhibiting higher degrees. This phenomenon can be explained by
the fact that during the expansion of the dataset, nodes with higher
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visibility attract more connections, thereby significantly increasing
their degrees. This also reflects the “rich-get-richer” effect within the
network, where nodes with more connections are more likely to

attract new ones. For instance, the degree of node 9 increases from
85 to 108 with increasing data length, directly illustrating this
phenomenon.

FIGURE 3
Node Degree Variation at Different Scales. Figure 3 illustrates the variation in node degrees at different scales. The data for (A) consists of
10,000 points, while (B–G) correspond to datasets with 500, 1,000, 2,000, 4,000, 6,000, and 8,000 points, respectively. We focus on the changes of the
same nodes across these different figures.
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Secondly, the degrees of low-degree nodes remain relatively
unchanged as the data volume increases, indicating that the number
of connections for these nodes does not significantly vary with the
increase in data length. Low-degree nodes have lower visibility, their
number of connections is fewer and more stable, and they are less
affected by the increase in data length. For example, the degree of node
161 consistently stays at 38, and node 687, though initially absent in
smaller scales, stabilizes at a degree of 72 in subsequent data points.

Lastly, apart from extreme degree nodes, certain nodes exhibit
stability across different data scales. For instance, the degree of node
390 remains between 73 and 81 as the data length increases,
demonstrating a stable connection structure.

In summary, we observe a heterogeneity in the degree
distribution of the 5G traffic network, reflecting the uneven

growth of node degrees during network expansion. Specifically,
high-degree nodes significantly increase their connections with
the growing data volume, while low-degree nodes remain
relatively stable. This heterogeneity phenomenon is prevalent in
many complex networks, especially those with power-law
distribution characteristics. To investigate whether the 5G traffic
network exhibits a power-law distribution, we performed a power-
law function fitting on its degree distribution, resulting in
Figure 4; Table 3.

Figure 4 presents the results of the power-law distribution fitting
for the degree distribution, using 10,000 data points and fitting the
degree distribution to a power-law distribution P(k) ~ k−γ. Table 3
provides the parameters γ and the adjusted R-squared values (Adj.
R2) from the power-law distribution fitting across different scales.

From Figure 4, it can be observed that the blue dots in the log-log
scale clearly demonstrate the characteristics of the degree
distribution. The majority of nodes have relatively low degrees,
but their corresponding probability P(k) is relatively high, as shown
in the upper left part of the figure. Conversely, a few nodes have
relatively high degrees, and their corresponding probability P(k) is
relatively low, as shown in the lower right part of the figure. This
uneven distribution reveals the presence of the long-tail effect, where
a small number of nodes have very high degrees. That is, the blue
dots in the lower right part of the figure are fewer in number but
have very high degrees, and the probability of these nodes extends
far, forming a long tail.

The red fitting line accurately captures the trend of the blue dots,
especially in the mid-to-high degree regions. The slope of the fitting
line reflects the steepness of the tail; a steeper slope indicates a more
pronounced long-tail effect. The adjusted R2 value of 0.78 indicates
that the power-law distribution model explains the degree
distribution well, further confirming the existence of the long-
tail effect.

Table 3 lists the power-law distribution fitting parameters and
adjusted R-squared values (Adj. R2) for different data scales. With
changes in data scale, the value of γ fluctuates between 1.56 and 2.57,
indicating differences in the power-law characteristics of the
network structure across various data scales. Overall, a larger γ

(as in Figures 3A, F) implies a faster drop-off rate in the degree
distribution and a relatively smaller number of high-degree nodes.

TABLE 2Changes inNodeDegree at Different Scales for the SameNodes. In selecting the nodes, we chose thosewith relatively high degrees, i.e., nodeswith
higher DL_bitrate.

Node number DL_bitrate Figure 3B Figure 3C Figure 3D Figure 3E Figure 3F Figure 3G Figure 3A

9 1706516 85 92 98 106 107 108 108

161 598,067 38 38 38 38 38 38 38

390 794,724 73 81 81 81 81 81 81

687 776,914 — 72 72 72 72 72 72

918 1021295 — — 91 97 97 98 98

3,263 1,067,990 — — — 111 114 115 115

4,561 1016166 — — — — 90 91 91

6,557 1220779 — — — — — 153 158

Note: “—” indicates that the node is not present in the network at that scale.

FIGURE 4
Power-law Distribution Fitting Results. Figure 4 presents the
results of the power-law distribution fitting. The figure shows data
consisting of 10,000 points (the same dataset as used in Figure 3A),
fitted using the power-law distribution P(k) ~ k−γ. The blue dots
represent the original degree distribution P(k), and the red line
indicates the fitting curve of the power-law distribution. Both axes use
logarithmic scales, with P(k) on the y-axis and k on the x-axis, to more
clearly illustrate the characteristics of the power-law distribution.
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From Table 3, it can be seen that the Adj. R2 values for different
data scales vary significantly, ranging from 0.49 to 0.96. Notably, the
adjusted R-squared value (Adj. R2) in Figure 3E is only 0.49,
indicating a poorer fit compared to other data scales. Further
analysis reveals that the addition of node 3,263, which connects
to numerous other nodes, results in an anomaly in the network
structure, causing the overall degree distribution to deviate from the
predicted power-law distribution characteristics. Similar
phenomena are also observed in Figure 3G.

These results indicate that when studying and optimizing 5G
traffic networks, special attention should be paid to these anomalous
nodes and their impact on the network structure. By identifying and
managing these key nodes, the dynamic nature of the network can be
better understood, and the network structure can be optimized.

4.4 Hurst analysis

In the analysis of 5G traffic data, the long-term dependency and
self-similarity of time series are important characteristics, and the
Hurst exponent is a crucial metric to describe these features [33, 34].
In this study, by calculating the Hurst exponent for both the time
series and its VG network, we can reveal the long-term dependency
and self-similarity in the node degree distribution, thereby gaining a
deeper understanding of the network’s evolutionary patterns. To
evaluate the long-term dependency of the 5G traffic time series, this
paper employs the Rescaled Range Analysis (R/S) method [35] to
calculate the Hurst exponent, with the results presented in Table 3.

The Hurst exponent (H) ranges from 0 to 1, with different values
reflecting different characteristics of the time series. When 0.5<H< 1,
it indicates that the time series exhibits long-term positive correlation
(persistence), meaning that if the traffic increases over a period, it is
likely to continue increasing in the future, and vice versa. This
characteristic suggests that 5G traffic has a trend influenced by
certain stable factors. When H � 0.5, it implies that the time series
behaves like a randomwalk, with no clear trend, and the traffic changes
are random. This characteristic typically indicates that 5G traffic is
influenced by many random factors, lacking significant long-term
dependency structure. When 0<H< 0.5, it indicates that the time
series exhibits long-term negative correlation (anti-persistence),
meaning that if the traffic increases over a period, it is likely to
decrease in the future, and vice versa.

From Table 4, it can be observed that the Hurst exponent of the
original data ranges between 0.55 and 0.62, all greater than 0.5,
indicating long-term positive correlation (persistence) in the
original data. This means that the 5G traffic data at these scales
exhibit significant trend continuity; the fluctuations in traffic are
self-similar, and future fluctuations in the time series resemble those
in the past. This reflects the stability and consistency of 5G traffic
data across different time scales.

Simultaneously, the Hurst exponent of the degree in the VG
network ranges between 0.54 and 0.60, indicating that the VG
network also exhibits persistence, self-similarity, and stability.
Firstly, the Hurst exponent of the 5G traffic data generally
exceeds 0.5, suggesting that the data series has long-term positive
correlation, meaning future traffic fluctuations are likely to be
similar to those in the past. This characteristic reflects the trend
continuity in the time series, indicating that 5G traffic data exhibit
relatively stable variation patterns over a certain period. Secondly,
the fluctuations in the 5G traffic VG exhibit self-similarity, meaning
that the characteristics of traffic fluctuations remain consistent
across different time scales. Specifically, future fluctuations in the
time series are likely to resemble those in the past, a notable feature
of fractal time series. Lastly, the Hurst exponent of the degree in the
5G traffic VG remains relatively stable across different data scales.
The degree of the VG network maintains a high Hurst exponent
across all time scales, demonstrating the temporal stability and high
connectivity of high-degree nodes in the network. This stability
reflects the structural consistency of the complex network
constructed from 5G traffic data across different time scales.

The Hurst exponents in Table 5 analyze the long-term
dependence and self-similarity of 5G traffic data across different
application scenarios, calculated for both the original data and the
degree of the Visibility Graph (VG) network. The Hurst exponent
ranges from 0 to one and is used to measure the long-term memory
and trend of a time series. The data numbering in Table 5
corresponds to that in Figure 2, with 2000 data points used.

As observed in Table 5, the Hurst exponent for the VG network’s
degree is generally lower than that of the original data (e.g., Figures
2B, E, G, etc.), indicating that the volatility of node degrees is
reduced in the VG network, which suggests that the network
structure somewhat diminishes the long-term dependence of the
original data. Conversely, in other cases (e.g., Figure 2I), the Hurst
exponent for the VG network’s degree is higher than that of the

TABLE 4 Hurst exponents at different scales.

Data Figure 3B Figure 3C Figure 3D Figure 3E Figure 3F Figure 3G Figure 3A

Original Data 0.62 0.58 0.60 0.56 0.55 0.56 0.55

Degree of VG Network 0.59 0.60 0.60 0.54 0.54 0.54 0.56

TABLE 3 Fitted power-law distribution parameters γ and adjusted R2 at different scales.

Figure 3B Figure 3C Figure 3D Figure 3E Figure 3F Figure 3G Figure 3A

γ 1.59 1.82 2.38 1.56 2.57 2.0 2.53

Adj. R2 0.78 0.78 0.91 0.49 0.96 0.71 0.93
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original data, indicating that in these scenarios, the degree of nodes
in the VG network better retains the trend of the original data.
Moreover, in most application scenarios, the Hurst exponent for the
VG network’s degree is lower than that of the corresponding original
data. This suggests that after transforming the data into a complex
network using the VG method, the structural characteristics of the
network may somewhat reduce the trend and self-similarity of
the sequence.

The study results indicate that the Hurst exponent of the 5G
traffic time series and its VG network node degree effectively
evaluates the long-term dependency and trend of traffic,
providing a significant theoretical basis for performance analysis
and optimization of 5G networks.

4.5 Community analysis

To uncover the intrinsic structure and dynamic behavior of 5G
traffic data, we employ community detection methods to analyze the
community structure of the VG network. Community detection is a
technique that partitions network nodes into several subsets such
that the connections within each subset are as dense as possible,
while connections between different subsets are as sparse as possible.

In the context of 5G traffic data, traffic connections are relatively
tight within a fluctuation cycle, while connections between different
cycles are less frequent. Specifically, community detection methods
can help reveal the intrinsic structure of the time series and identify
the dynamic characteristics of the data. Firstly, by transforming the
time series data into a network, community detection methods can
identify the underlying structure of the data, such as periodic
fluctuations and abrupt changes. This is significant for
understanding the behavior of 5G traffic data over different
periods. Secondly, 5G traffic data exhibit different dynamic
behaviors under various application scenarios. Through
community detection, we can identify these dynamic behaviors,
providing valuable insights for the study of 5G traffic data. Figure 5
shows the community detection results of the 5G traffic network.

As shown in Figures 5A, B, K display more complex community
structures. The boundaries between communities are blurred due to
the significant number of inter-community links, indicating high
visibility among the traffic data in these datasets. Figures 5C, F, I, N
exhibit typical “star-shaped” community structures, suggesting that
5G traffic data have significant peaks with traffic concentrated on

key nodes. Figures 5G, H, J, L, M show distinct community
structures, reflecting clear periodic characteristics of traffic data
in these scenarios. Figures 5D, E, O present both blurred and distinct
community structures, highlighting the diversity and complexity of
5G traffic data in these contexts.

Figures 5A, B, K illustrate complex community structures with
blurred boundaries and no clear edges, indicating numerous
connections between different communities. For example, in
Figure 5A, community node one is tightly connected not only
with its internal nodes but also with nodes from other
communities. Community node nine is connected to
communities 1, 7, 8, and 10. This blurred boundary characteristic
reflects the complex visibility and diversity in 5G traffic data. These
visibility networks contain key nodes with high degree centrality.
Central nodes are located at the core of communities and act as
bridges between nodes within or between communities. In 5G traffic
data, high centrality nodes typically correspond to traffic peaks,
transforming into high centrality nodes through visibility rules.
These nodes, as key connecting nodes in the VG, characterize the
spatiotemporal features and peak phenomena of 5G traffic data.

Figures 5C, F, I, N display “star-shaped” community structures.
In these figures, the network presents a distinct star-shaped structure
where there are few or no direct connections between communities,
instead connected indirectly through central nodes. For example, in
Figure 5C, community seven is not directly connected to
communities 2, 3, 4, or 5, but rather through community 1,
forming a star-shaped community structure. The high
connectivity and centrality of these central nodes reflect the
absolute peaks in 5G traffic data. There are significant differences
between the figures; for instance, Figure 5C has one central node,
Figures 5F,I have two, and Figure 5N has three central nodes.

Figures 5G, H, J, L, M exhibit networks with clear community
structures. There are distinct boundaries between communities, with
most communities having no direct connections with each other.
For instance, in Figure 5H, community seven is not directly
connected to communities 2, 3, and 4, and even needs to connect
indirectly through communities 1, 2, 5, and four to link with
community 3. This feature indicates that nodes within each
community are tightly connected, forming high-density networks,
with clear boundaries reflecting the independence and
complementarity of different functional modules within the
network. This modular characteristic shows that the network can
be divided into several communities with dense internal connections

TABLE 5 Hurst exponents for different applications.

Data Figure
Figure2A

Figure
Figure2B

Figure
Figure2C

Figure
Figure2D

Figure
Figure2E

Figure
Figure2F

Figure
Figure2G

Original Data 0.60 0.62 0.56 0.70 0.83 0.71 0.51

Degree of VG
Network

0.60 0.55 0.55 0.52 0.70 0.61 0.46

Data Figure
Figure2H

Figure
Figure2I

Figure
Figure2J

Figure
Figure2K

Figure
Figure2L

Figure
Figure2M

Figure
Figure2N

Figure
Figure2O

Original Data 050 0.58 0.72 0.64 0.53 0.47 0.65 0.87

Degree of VG
Network

0.49 0.63 0.43 0.55 0.48 0.46 0.53 0.66
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and sparse inter-community connections. Observing the 5G traffic
data corresponding to Figures 5G, H, J, L, M, it is evident that the
distinct community structures are due to the presence of multiple

similar traffic peaks, i.e., periodic traffic peaks. These periodic peaks
lead to high-density internal connections within communities and
sparse connections between communities, forming distinct

FIGURE 5
Community Detection Results of 5G Traffic Networks. Figure 5 presents the community detection results of 5G traffic networks. (A–O) correspond
to the different datasets set in Figure 2, with 300 data points selected for analysis from each dataset. Notably, for the GeForce Now dataset, data points
from 502 to 801were selected for analysis. The Louvain algorithmwas used for community detection; each red dot represents a node in the network, and
the node numbers indicate the community to which the nodes belong. This visualization method allows us to intuitively observe the community
structures of different datasets.
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community structures. For example, this phenomenon can be clearly
observed from the degree variation curve in Figure 2H.

Figures 5D, E, O demonstrate diversified community structures.
These figures include both overlapping and distinct communities,
reflecting the presence of multifunctional nodes and the multilayer
nature of the network. For example, in Figures 5D, E, O, community
one connects directly only to community 2, showing clear community
structures. From the 5G traffic data corresponding to Figures 5D, E,O,
it can be seen that there is a primary traffic peak with several smaller
peaks, a phenomenon clearly visible in Figure 2D.

In conclusion, the community detection analysis of 5G traffic
data reveals the spatiotemporal characteristics and peak phenomena
under different applications, showcasing the relationships and
independence among various traffic patterns. Different
applications of 5G traffic data networks exhibit various
community structures, such as high centrality nodes, star-shaped
communities, modular characteristics, and multilayered networks.

5 Conclusion

This paper analyzes 5G traffic data using VG method based on
complex network theory. The findings reveal significant differences
in the dynamic characteristics and intrinsic structures of 5G traffic
data across various application scenarios, showcasing the advantages
and potential applications of VG method in traffic data analysis.

Firstly, by converting 5G traffic data into VGs, this study
successfully constructed 5G traffic visibility networks. The
research found notable differences in node degree distribution
and topological structure among 5G traffic data from different
application scenarios. Specifically, some scenarios exhibited a
clear single-center dense structure, while others presented multi-
center or star-shaped network structures. Analysis of node degree
distribution and topological characteristics revealed the nonlinear
features and hidden patterns of 5G traffic data. These discoveries
provide new perspectives for understanding the spatiotemporal
distribution patterns of 5G traffic and offer scientific bases for
5G network optimization and resource scheduling.

Secondly, this paper employed community detection methods to
analyze the community structures within 5G traffic data. The study
found diverse community structures across different application
scenarios. For instance, in some scenarios, traffic data formed distinct
community structures where nodes within each community were tightly
connected, while connections between different communities were
relatively sparse. This structure reflects the volatility and periodicity
of 5G traffic data over different time periods. Additionally, the study
discovered complex multifunctional node structures and multilayer
network structures in some application scenarios. These findings
contribute to a deeper understanding of the dynamic behavior and
change patterns of 5G traffic data, providing important references for
optimizing 5G networks and improving service quality.

Finally, the research results demonstrate that VG method offers
high interpretability and real-time capabilities in analyzing 5G traffic
data. Compared to traditional deep learning methods, VG method
effectively avoids issues of data scarcity and intuitively reflects the
structural characteristics of data through network topologies.
Furthermore, VG method excels in handling large-scale and real-
time data, quickly constructing complex networks and capturing the

dynamic behavior of traffic data. These advantages highlight the broad
application prospects of VG method in 5G traffic data analysis,
potentially offering new solutions for 5G network optimization,
traffic prediction, and anomaly detection.

In conclusion, this paper systematically analyzes 5G traffic data
from the perspective of complex networks by introducing VG
technology. The research results not only deepen the
understanding of the dynamic characteristics of 5G traffic data
but also provide theoretical support for optimizing 5G networks
and resource management. In the future, with the continuous
development of 5G technology, the application of VG method in
traffic data analysis will become more widespread, contributing to
the construction of efficient and stable 5G networks.

In future research, more advanced community detection
methods could be employed. While this study utilizes the
Louvain algorithm for community detection in 5G traffic data,
this approach may not fully capture all potential community
structures. Future studies could explore additional community
detection algorithms, such as the Leiden algorithm, graph neural
network-based methods, or other machine learning techniques, to
achieve a more in-depth analysis of the community structure and
dynamic behavior of the data. Simultaneously, it is important to
recognize that degree distribution alone does not comprehensively
reflect all structural characteristics of a network. As highlighted in
the literature [36], even networks with the same degree distribution
may exhibit significant differences in other key topological
properties, such as clustering coefficient and characteristic path
length. Therefore, future research should incorporate these
topological features for a more comprehensive network analysis,
leading to a deeper understanding of the network’s dynamics.
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