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The internal kink mode is one of the crucial factors affecting the stability of
magnetically confined fusion devices. This paper explores the key features
influencing the growth rate of internal kink modes using machine learning
techniques such as Random Forest, Extreme Gradient Boosting (XGboost),
Permutation, and SHapley Additive exPlanations (SHAP). We conduct an in-
depth analysis of the significant physical mechanisms by which these key
features impact the growth rate of internal kink modes. Numerical simulation
data were used to train high-precisionmachine learningmodels, namely Random
Forest and XGBoost, which achieved coefficients of determination values of
95.07% and 94.57%, respectively, demonstrating their capability to accurately
predict the growth rate of internal kink modes. Based on these models, key
feature analysis was systematically performed with Permutation and SHAP
methods. The results indicate that resistance, pressure at the magnetic axis,
viscosity, and plasma rotation are the primary features influencing the growth rate
of internal kink modes. Specifically, resistance affects the evolution of internal
kink modes by altering current distribution and magnetic field structure; pressure
at the magnetic axis impacts the driving force of internal kink modes through the
pressure gradient directly related to plasma stability; viscosity modifies the
dynamic behavior of internal kink modes by regulating plasma flow; and
plasma rotation introduces additional shear forces, affecting the stability and
growth rate of internal kink modes. This paper describes the mechanisms by
which these four key features influence the growth rate of internal kink modes,
providing essential theoretical insights into the behavior of internal kink modes in
magnetically confined fusion devices.
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1 Introduction

In controlled nuclear fusion research, the stability of plasma is one of the core challenges
for achieving long-term stable fusion discharges [1, 2]. The internal kink mode is a typical
magnetohydrodynamic (MHD) instability that profoundly impacts the performance and
safety of fusion devices [3, 4]. To achieve a more efficient and stable fusion reaction, it is
crucial to deeply understand and control the growth of internal kink modes [5, 6]. This
understanding not only helps to enhance the energy output efficiency of the fusion reaction
but also prevents safety issues such as plasma disruptions caused by instabilities [7–13].
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Therefore, identifying the key features influencing the growth of
internal kink modes and elucidating their physical mechanisms has
become a focal point of current fusion research [14, 15].

Existing research methods on internal kink modes mainly focus
on the construction of theoretical models and numerical simulations
[16, 17]. Theoretical models provide a fundamental explanation of
plasma behavior, while numerical simulation methods offer distinct
advantages in handling complex systems, exploring extreme
conditions, and obtaining detailed internal information of the
system [18, 19]. While these methods can simulate the dynamic
behavior of internal kink modes, they often face issues of low
accuracy or high computational complexity in determining the
specific impact of various physical parameters on mode growth
[20, 21]. Moreover, traditional methods frequently struggle to
comprehensively consider the interactions among various factors
and their combined effects on the growth of internal
kink modes [22].

To better understand which physical parameters significantly
affect the growth of internal kink modes, thereby optimizing
reaction conditions and improving fusion efficiency, this paper
employs machine learning-based methods for in-depth analysis.
As a powerful data analysis tool, machine learning excels in handling
complex multivariate relationships within intricate systems [23]. For
instance, Shakil Ahmed et al. combined Random Forest and SHAP
values to analyze feature importance in road traffic accident
prediction models and identified two critical influencing factors
[24]. Jaemin Seo et al. used deep reinforcement learning technology
and multimodal data to achieve active control of tearing mode
instabilities in the DIII-D fusion device, thus avoiding the
occurrence of tearing modes [25]. Yu-Xing Li et al. employed
Permutation to extract key features influencing ship radiated
noise [26]. K.J. Montes et al. utilized semi-supervised learning
algorithms to detect anomalous events in fusion discharges using
datasets requiring minimal labeled data [27]. Yong-Geon Lee et al.
proposed a method for calculating SHAP values incorporating the
coefficient of determination and performed feature importance
analysis for the Korean power system load forecasting model
[28]. By training models to learn the underlying patterns in the
data, machine learning techniques can accurately identify features
that significantly impact the growth rate of internal kink modes [5,
29]. In this study, two commonly used machine learning models,
Random Forest and XGBoost, were selected, and feature importance
analysis was conducted using Permutation and SHAP methods.
Ensemble learning methods like Random Forest and XGBoost can
evaluate feature importance by constructing multiple decision trees,
while methods such as Permutation and SHAP provide specific
numerical values and interpretability of feature impacts [30].

This paper first employs numerical simulation data to train
Random Forest and XGBoost models, achieving high-precision
predictions of the growth rate of internal kink modes.
Subsequently, feature importance analysis is conducted using
Permutation and SHAP methods. The results indicate that
resistance, pressure at the magnetic axis, viscosity, and rotation
are the most significant features influencing the growth rate of
internal kinkmodes. Resistance regulates the growth of internal kink
modes by affecting current distribution and magnetic field structure;
pressure at the magnetic axis creates a pressure gradient directly
related to the degree of magnetic field twist; viscosity determines

plasma fluidity, thereby impacting the stability of internal kink
modes; and rotation influences the interaction between the flow
field and the magnetic field by generating additional shear forces.
These findings not only deepen the understanding of the growth
mechanisms of internal kink modes but also provide robust data
support for optimizing fusion reaction conditions.

The paper is organized as follows: Section 2 describes the
fundamental principles of Random Forest, XGBoost,
Permutation, and SHAP, providing theoretical support for
subsequent feature analysis. Section 3 details the sources of
training data, training methods, and evaluation criteria for the
Random Forest and XGBoost models. Section 4 presents the
performance of the Random Forest and XGBoost models,
identifies the most significant features influencing the growth rate
of internal kink modes, and discusses the underlying physical
mechanisms in depth.

2 Feature importance analysis theory

In machine learning, feature importance analysis is a critical step
for understanding models and enhancing predictive performance.
Common methods for feature importance analysis include tree-based
feature importance evaluation, permutation tests, Shapley value-based
interpretation, model weight-based feature importance analysis,
statistical test-based feature selection, and mutual information
methods [31]. This study employs Random Forest and XGBoost,
both of which are tree-based models that can naturally evaluate the
importance of features by quantifying the change in impurity at split
nodes. This method is intuitive and effective. Permutation tests assess
feature importance by shuffling the values of features and observing
changes in model performance, providing a straightforward reflection
of the impact of features on model predictions. SHAP, based on
Shapley values from cooperative game theory, considers feature
interactions and offers a more detailed analysis of feature
contributions, enhancing the interpretability of the model [32].

2.1 Random Forest

Random Forest is an ensemble learning method based on
decision trees that conducts classification or regression through
building multiple decision trees and combining their outputs [33].
In a Random Forest, each decision tree is independently trained on a
randomly sampled subset of the training data and a randomly
selected subset of features. This randomness helps reduce the
model’s variance, thereby enhancing predictive accuracy and
generalization capability. For classification tasks, Random Forest
aggregates the classification results from all decision trees, selecting
the most frequent class as the last prediction. In regression works, it
typically averages the predictions from all decision trees. Due to its
exceptional performance and ease of implementation, Random
Forest has been widely applied to various machine learning tasks,
including data classification, regression, and feature selection [34].
Additionally, Random Forest can offer variable importance
assessment, aiding in the understanding of how data features
impact prediction outcomes. Overall, Random Forest is a
powerful and flexible machine learning algorithm [35].
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The pseudocode for the Random Forest algorithm is as follows:

1. Input: Training data (D � (x 1, y 1), (x 2, y 2), . . . ,{
(x n, y n)})

2. Parameters: Number of trees (T), number of features (m) to
consider for each split

3. Output: An ensemble of decision trees
4. For (t = 1) to (T):

i. Draw a bootstrap sample (D_t) from (D)
ii. Train a decision tree (h_t) on (D_t):

a. For each node in the tree:
a. Randomly select (m) features from the total

(p) features
b. Select the best feature and split point among the (m)

features based on a certain criterion (e.g., Gini
impurity for classification or mean squared error
for regression)

c. Split the node into two child nodes
b. Repeat until the stopping criterion is met (e.g.,

maximum depth or minimum number of samples in
a node)

5. End For
6. For classification:

i. Output: Majority vote of the predictions from all
decision trees

7. For regression:
i. Output: Average of the predictions from all decision trees

2.2 Extreme gradient boosting

XGBoost (Extreme Gradient Boosting) is an efficient gradient
boosting machine learning method widely used for classification and
regression tasks. It represents an optimized and enhanced version of
the conventional Gradient Boosting Decision Tree (GBDT)
algorithm. XGBoost iteratively adds new decision trees to correct
the residuals of the previous models, thereby continuously
improving model performance [36]. The core of XGBoost lies in
its optimized objective function, which includes both the training
loss and a regularization term. The objective function for the model
at the (t)th iteration can be expressed as Equation 1:

L t( ) � ∑n
i�1
l yi, ŷ

t−1( )
i + f t xi( )( ) +Ω f t( ) (1)

l represents the loss function, which surveys the discrepancy among
the model’s predicted value ŷ(t−1)

i and the true value yi ; ft denotes
the weak learner at the t iteration; and Ω is the regularization term
utilized to control the model’s complexity and guard against
overfitting. To facilitate the optimization of the objective
function, XGBoost employs Taylor expansion to approximate the
loss function, resulting in a simplified objective function expressed
by Equation 2:

L t( ) ≈ ∑n
i�1

gif t xi( ) + 1
2
hif

2
t xi( )[ ] + Ω f t( ) (2)

gi and hi are the gradient and second-order derivative of the loss
function at ŷ(t−1)

i , respectively, defined as Equation 3:

gi �
∂l yi, ŷ

t−1( )
i( )

∂ŷ t−1( )
i

, hi �
∂2l yi, ŷ

t−1( )
i( )

∂ ŷ t−1( )
i( )2 (3)

XGBoost incorporates numerous optimizations, such as
using approximate algorithms for selecting split points,
supporting distributed computing, and memory optimization,
allowing it to maintain high training efficiency even when
handling large-scale datasets [37]. Additionally, XGBoost
offers a flexible parameter tuning space, enabling users to
achieve better model performance by modifying parameters
such as learning rate, tree depth, and subsampling ratio.
Overall, XGBoost has become an indispensable tool in the
fields of machine learning and data science due to its
exceptional performance and flexibility. It has demonstrated
strong application potential and broad prospects both in
industry and academia [38].

2.3 Permutation

Permutation is a powerful feature analysis method that
quantifies the function of each feature to the model’s predictive
performance. The fundamental principle of Permutation is to
randomly shuffle the values of a special feature and observe the
change in the model’s performance. If a feature is significant for the
model’s predictions, shuffling its values will significantly degrade the
model’s performance [39]. This approach allows for ranking the
importance of each feature, thereby providing a better
understanding of the model’s decision-making process. The
importance of each feature can be quantified using the following
formula 4:

ImportanceF � 1
n
∑n
i�1

p0 − pi( ) (4)

where ImportanceF represents the score of feature F obtained
through Permutation analysis, n is the number of times the
model performance is evaluated on the dataset, p0 is the model
performance on the original dataset, and pi is the model
performance after the i permutation of feature F.

As illustrated in Figure 1, the principle of Permutation is
depicted schematically. Specifically, the implementation steps of
Permutation are as follows: First, a model is trained with the
original dataset, and its capability metrics are recorded. Then, a
specific feature is selected, and its values are randomly shuffled
while maintaining other features unchanged. Next, the model’s
efficiency is re-evaluated using the dataset with the shuffled
feature. By comparing the performance metrics before and
after shuffling, the influence of that feature on the model’s
performance can be calculated. This operation is repeated for
each feature in the dataset, resulting in a ranking of feature
importance. The advantage of Permutation lies in its
intuitiveness and generality. It can be applied to various
machine learning models and is capable of handling different
types of features, such as continuous and discrete features.
Furthermore, the results of Permutation are easy to interpret,
aiding in the understanding of the model’s decision boundaries
and the interactions between features [40, 41].
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2.4 SHapley additive exPlanations

SHAP is a feature analysis tool applied to interpret the forecast
results of machine learning algorithms. SHAP is based on the Shapley
value obtained from cooperative game theory, assigning a specific
value to each feature to represent its contribution to the model’s
prediction. The unique aspect of this method is that it considers
interactions between features and provides a fair distribution of the
prediction contribution [42]. The core idea of SHAP is to determine
the Shapley value of each feature by calculating its contribution to the
model’s prediction across all possible combinations of feature subsets.
Although this process is computationally intensive, the SHAP library
employs efficient algorithms to obtain results quickly in practical
applications. Each feature’s Shapley value reflects its marginal
contribution to the model’s prediction while accounting for the
influence of all other features [43].

Using SHAP, one can determine the specific impact of each
feature on individual predictions, aiding in understanding why the
model makes certain predictions [44]. Additionally, SHAP offers
global feature importance analysis by aggregating Shapley values
from multiple predictions, which reveals each feature’s impact on
the model’s performance across the entire dataset. The merit of
SHAP comes from its ability to provide detailed feature analysis,
considering both individual feature impacts and interactions
between features. This makes SHAP a powerful tool that helps
researchers, data scientists, and machine learning engineers better
understand and explain the prediction outcome of complex machine
learning algorithms [45].

The calculation formula for SHAP values is as Equation 5:

ϕi S( ) � 1
S| | ∑

T⊆S\{i}

f T ⋃ i{ }( ) − f T( )
T| | + 1

(5)

where ϕi(s) is the SHAP value of feature i in the feature set T, f(T)
is the model’s prediction for the feature set T, |S| is the quantity of
features in the feature set S, and T is all possible subsets of S that
exclude feature i.

The steps for computing SHAP values are as follows:

(1) Initialization: For each feature, initialize the SHAP
value to zero.

(2) Iterate Combinations: Traverse all possible feature
combinations.

(3) Compute Marginal Contribution: For each feature
combination, calculate the change in the model’s
prediction after adding the new feature.

(4) Assign Shapley Value: Distribute the marginal contribution
equally among the features in the combination based on the
Shapley value formula.

(5) Accumulate SHAP Values: Accumulate the computed SHAP
values to the total SHAP value for each feature.

3 Materials and methods

To determine the key features influencing the growth rate of
internal kink modes based on machine learning, it is necessary first
to identify the range of features to be studied. Subsequently, a dataset
comprising various features and the corresponding growth rates of
internal kink modes is constructed, followed by training the relevant
machine learning models. This section introduces the dataset
utilized for training the machine learning models, the training
process, and the evaluation methods.

3.1 Data source

The internal kink mode is the result of the combined effects of
different driving features, with the growth rate serving as a
numerical indicator of its rate of change. For convenience, this
paper collectively refers to the various features influencing the
growth rate of the internal kink mode as input features, and the
growth rate of the internal kink mode as the output feature.

3.1.1 Input features
During our simulation studies on internal kink modes based on

the magnetohydrodynamic code CLT (Ci-Liu-Ti), we identified

FIGURE 1
Schematic diagram of Permutaion.
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15 features that need to be predefined in the code [46]. These
15 features are used as input features in our analysis. The 15 input
features are as follows:

1) Central safety factor q0, dimensionless parameter, unitless,
range: 0.6–0.81.

2) Boundary safety factor qn, dimensionless parameter, unitless,
range: 2.5–3.2.

3) Derivative of the central safety factor with respect to the
magnetic flux qpof, dq/dPsi(0), unitless, range: 0.78–1.

4) Derivative of the boundary safety factor with respect to the
magnetic flux qdpo, dq/dPsi(n), unitless, range: 4–5.

5) Central pressure p0, unit: pascals, range: 0–0.99.
6) Boundary pressure pmin, unit: pascals, range: 0–e−8, tend to

zero in the research.
7) Pressure profile parameter alpha,

p � ((p0 − pmin)(1.0003 − ψnorm
β)1+α), unitless,

range: −0.75–0.25.
8) Another pressure profile parameter beta,

p � ((p0 − pmin)(1.0003 − ψnorm
β)1+α), unitless,

range: 0–0.78.
9) Resistivity resistance, unitless, range: 0–e−4.
10) Viscosity coefficient viscosity, unitless, range: e−7–e−4.
11) Diffusion coefficient diffusion, unitless, range: e−7–e−4.
12) Major radius R, unit:meter, range: 1.65–4.
13) Minor radius r, unit:meter, range: 0.4–1.
14) Perpendicular thermal conductivity coefficient thermal,

unitless, range: e−7 – e−4.
15) Rotation rotation, ]A/r, unit: rad/τa, range: 0 – 0.2.

In above formulas, Psi() and ψnorm are the magnetic flux
functions, ]A � B00/(μ0ρ00)−1/2 is the Alfvenic speed, τa � r/]A is
the Alfvenic time, B00 is the magnetic field strength at the magnetic
axis, ρ00 is the plasma density at the magnetic axis, μ0 is the
permeability of vacuum.

These 15 input features constitute the subjects of this study, and
various methods are employed to comprehensively assess which
features significantly impact the growth rate of internal kink modes.
A number of papers on the numerical simulation of internal torsion
modes have been published in the public domain, including several
papers using the CLT as a simulation tool. Aggregation of these
existing data and appropriate modifications to some of the variables
form the values of all the input parameters [47, 48]. Due to the
substantial computational resources and time needed for a single
numerical simulation of an internal kink mode instance, we have so
far accumulated data on 196 instances of input features [49]. A
subset of these feature data is shown in Table 1.

3.1.2 Output feature
Different combinations of input features ultimately yield varying

growth rates of internal kink modes [50]. In this study, the output
feature is the growth rate of the internal kink mode. The growth rate
of the internal kink mode refers to the development rate of the
internal magnetic deformation process within a tokamak device
[51]. Table 1 presents data on the growth rates of internal kink
modes under the influence of different input features. To more
effectively control the nuclear fusion reaction, it is crucial to identify
which features have a critical impact on the growth rate of internalT
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kink modes [52, 53]. By recognizing these key influencing factors,
reaction parameters such as plasma resistance, safety factors, and
pressure gradients can be adjusted to optimize reaction conditions
and improve fusion efficiency [54].

All the input features and output feature data are from the CLT
program [55, 56]. The numerical simulation programme CLT is
based on a one-fluid model and ignores mass differences between
electrons and ions as well as multi-fluid effects. It ignores plasma
displacement currents in solving the MHD system of equations and
calculates only perturbations rather than complete physical
quantities. In addition, we assume that the pressure tends to zero
at the edge of the tokamak device.

3.2 Model training

This paper employs Random Forest and XGBoost models to
analyze the importance of input features for internal kink modes. To
ensure accurate feature importance analysis, these models must first
be trained to achieve high performance. During the machine
learning model training process, appropriate model
hyperparameters must be selected, and suitable methods must be
utilized to evaluate model performance. The input and output
feature data summarized in the Section 3.1 are used to train the
Random Forest and XGBoost models. Random Forest and XGBoost
models were both trained and tested with the Scikit-learn function
library using Python programming language.

3.2.1 Data preprocess
The dataset is preprocessed to ensure there are no missing

values in either the input or output features. Ensuring the
completeness of model inputs can be achieved by imputing or
removing missing data, while detecting and handling outliers
prevents the model from overfitting to a few extreme data
points. Different features may have varying units or ranges,
which can affect the model’s convergence speed or lead to
certain features disproportionately influencing the results.
Normalization or standardization can place all features within
the same scale, thereby enhancing the efficiency and effectiveness
of model training. Since Random Forest and XGBoost are tree-
based models and are insensitive to the distances between data
points, normalization is not required.

Eighty percent of the data is employed to train the model, while
the rest of twenty percent is applied to evaluate model
performance. The training set (80%) is used during the learning
process of the model, where the model iteratively updates its
parameters to identify patterns within the data. However,
strong performance on the training set alone does not
guarantee the model will perform well on unseen data. This
phenomenon is known as overfitting, where the model excels
on the training set but performs poorly on validation or real-
world applications. Therefore, it is crucial to assess the model’s
generalization capability by testing it on previously unseen data.
The testing set (20%) is employed after the training process to
evaluate the model’s performance, allowing for monitoring of how
well the model handles new data and guiding further optimization.
Such a division helps prevent overfitting and ensures the model’s
ability to handle data beyond the training set.

3.2.2 Hyperparameters tuning
Suitable hyperparameters are chosen. Determining

hyperparameters during the training of machine learning models
is crucial, as they largely affect the model’s performance and
convergence speed. Unlike model parameters, hyperparameters
are values set before training and cannot be directly learned from
the data. Hyperparameters determine the model’s complexity,
learning ability, and generalization capacity. General
hyperparameter optimization ways include grid search, random
search, and Bayesian optimization. A proper choice of
hyperparameters can significantly improve model performance,
making their optimization a key step in enhancing the
effectiveness of machine learning models. This study selects
Random Forest and XGBoost methods as the algorithms for
feature importance evaluation, and hyperparameters are adjusted
to ensure model performance. For instance, for the Random Forest
model, parameters such as the amount of trees and their depth are
adjusted, while for the XGBoost model, hyperparameters including
learning rate, number of trees, and their depth are optimized. During
hyperparameter selection, the Optuna hyperparameter tuning tool is
used to determine the best parameter combination.
Hyperparameters of Random Forest and XGBoost are optimized
with the automated tool Optuna, which are showed in Table 2.
Optuna combines different hyperparameter configurations and uses
the training set to train the model, subsequently calculating the
prediction error. The hyperparameters used by the model with the
smallest prediction error are considered the optimal result, and the
corresponding model performance is deemed the best.

3.2.3 Model performance evaluation
Specific metrics are required for model performance evaluation;

this study uses the coefficient of determination (R2) and the root
mean square error (RMSE) to assess model performance. The
formulas for these metrics are as Equations 6, 7:

R2 � 1 −
∑n
i�0

yi − ŷ( )2
∑n
i�0

yi − �y( )2 (6)

RMSE �
�����������
1
n
∑n
i�0

yi − ŷ( )2√
(7)

Where n is the amount of data used in the validation process, yi

is the actual growth rate of the internal kink mode for the selected
data, �y is the mean growth rate of the internal kink mode for the
selected data, and ŷ is the predicted growth rate of the internal kink
mode calculated using the machine learning model. The coefficient
of determination R2 indicates the precision of the machine learning
model, with higher values representing higher precision. The root
mean square error RMSE indicates the error and concentration of
the model’s predictions, with lower values representing more
accurate and concentrated predictions.

4 Results and discussions

This paper conducts a feature importance analysis of factors
influencing the growth rate of internal kink modes using Random
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Forest, XGBoost, Permutation, and SHAP methods. This section
presents the performance of the Random Forest and XGBoost
algorithms in predicting the growth rate of internal kink modes,
identifies the features that significantly impact the growth rate, and
discusses their underlying physical mechanisms.

4.1 Model performance

The conclusions drawn from the analysis of features influencing the
growth rate of internal kink modes are only reliable when using highly
performant Random Forest and XGBoost models. The dataset compiled
from simulation data was used to train both models, which
demonstrated excellent performance. The Random Forest model

achieved a R2 of 0.9338 and a RMSE of 0.000611 on the training set;
on the test set, it achieved a R2 of 0.9507 and a RMSE of 0.000336. The
XGBoost model obtained a R2 of 0.9384 and a RMSE of 0.000589 on the
training set, and a R2 of 0.9457 and a RMSE of 0.000352 on the test set.

Figure 2 illustrates the R2 values for the Random Forest and
XGBoost models on both the training and test sets, showing that
both models achieved very high accuracy. During the training phase,
XGBoost performed slightly better, whereas, in the testing phase, the
Random Forest model excelled. Figure 3 shows the RMSE
distribution for both models, indicating that XGBoost had a
smaller RMSE during training, while Random Forest performed
better during testing. The performance differences between the two
models were minimal. Overall, both models achieved very high R2

values and very low RMSE values, indicating that they are well-
suited for feature importance analysis.

TABLE 2 Hyperparameters of random forest and XGBoost.

Model Hyperparamter Tuning range Optimized value

Random Forest n_estimators 10–500 26

max_depth 1–10 10

min_samples_split 2–10 3

min_samples_leaf 1–10 1

XGBoost max_depth 1–9 7

learning_rate 1e−8–1 0.10546891628382653

n_estimators 100–1,000 260

gamma 1e−8–1 1.6756180208087007e−8

min_child_weight 1–10 2

subsample 0.5–1 0.6364750762785549

colsample_bytree 0.5–1 0.9884882189942823

alpha 1e−8–1 1.0365361359212191e−05

reg_lambda 1e−8–1 0.17137149507120086

FIGURE 2
R2 of Random Forest and XGBoost models.

FIGURE 3
RMSE of Random Forest and XGBoost models.
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In Figure 4, the residual analysis during the training and testing
phases indicates that the residual values are largely close to zero,
demonstrating an ideal fit of the model. This suggests that both
models exhibit high accuracy in predicting the growth rate of
intrinsic kink modes, achieving an almost perfect fit to the data.
Furthermore, the near-zero residual values imply that the models are
capable of capturing the relationship between features and growth
rates well during the training phase, while maintaining similar
performance in the testing phase, reflecting strong generalization
ability. In Table 3, the analysis of the maximum and minimum
residuals in both the training and testing phases reveals a narrow
range of residual fluctuations, further confirming the model’s
robustness against outliers and noise. This is particularly critical

for predicting the growth rate of intrinsic kink modes, as this
physical phenomenon is subject to complex interactions among
multiple factors, which can introduce data noise. The residual
analysis of both the Random Forest and XGBoost models
validates their effectiveness in handling data variability, providing
a solid foundation for subsequent feature importance analysis.

Figure 5 presents the learning curves of both models during the
training phase. It can be observed that the residuals remained at a
low level throughout the training, indicating that the models were
well-fitted to the training data and effectively captured the features
influencing the growth rate of the internal kink mode. Furthermore,
the cross-validation results demonstrated that as the dataset size
increased, the model errors gradually decreased and eventually
converged to a relatively stable state. This suggests that the
models’ learning capabilities improved with the expansion of the
training dataset, enhancing their generalization performance.
During cross-validation, both Random Forest and XGBoost
exhibited a consistent trend of error reduction, further validating
the robustness and reliability of these models in addressing this type
of problem. Based on these results, it can be confirmed that the
selected model architecture and feature processing methods were
appropriate, laying the foundation for subsequent feature

FIGURE 4
(A) Random Forest model residuals during training; (B) Random Forest model residuals during testing; (C) XGBoost model residuals during training;
(D) XGBoost model residuals during testing.

TABLE 3 Residual range of Random Forest and XGBoost.

Model Training residual Testing residual

Max Min Max Min

Random Forest 0.003801 −0.002599 0.000491 −0.001472

XGBoost 0.004320 −0.002080 0.000699 −0.000853
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importance analysis using methods such as Permutation and SHAP,
and providing strong support for identifying key features
influencing the growth rate of the internal kink mode.

4.2 Key feature determination

Once the Random Forest and XGBoost models are trained, they
can be used to analyze the features that influence the growth rate of
internal kink modes. Both Random Forest and XGBoost have built-

in feature importance analysis tools, which can directly output
results once the model training is complete. During the study, it
was found that the influence of the least significant five of the
15 input features on the growth rate of internal kink modes was
negligible. Therefore, only the top 10 most important features are
presented, excluding the five features with the least impact. Figure 6
shows the feature importance analysis results from the Random
Forest model, while Figure 7 shows the results from the XGBoost
model. The results reveal significant discrepancies in the ranking of
feature importance between the two models. According to the

FIGURE 5
(A) Learning curves of Random Forest; (B) Learning curves of XGBoost.

FIGURE 6
Feature importance results from Random Forest model.
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Random Forest algorithm, the 5 features with the greatest impact on
the growth rate of internal kink modes are resistance, pressure at the
magnetic axis, viscosity, rotation, and perpendicular thermal
conductivity. In contrast, XGBoost identifies resistance, pressure
at the magnetic axis, rotation, viscosity, and the central safety factor
as the most influential. For features with a smaller impact on the
growth rate of internal kink modes, the ranking provided by the two
models also differs. The datasets for both models were split in the
same way during training and tested using the same data, indicating
that the differences in feature importance results arise from the
models themselves rather than the data. While both Random Forest
and XGBoost are tree-based models, their construction and
optimization objectives differ. Random Forest improves accuracy
and controls overfitting by averaging results from multiple decision
trees, whereas XGBoost uses a gradient boosting framework to
optimize the loss function, focusing more on the model’s
generalization ability. The inherent randomness in the models,
such as tree construction and feature selection in Random Forest,
can also contribute to the inconsistency in results.

Next, Permutation and SHAP methods are employed to analyze
the features influencing the growth rate of internal kink modes.
Since both methods need to be combined with trained machine
learning models, they are used in conjunction with the Random
Forest and XGBoost models, respectively. The results are shown in
Figures 8, 9. Figure 8A presents the feature importance obtained
from the Permutation method combined with the Random Forest
model. It indicates that resistance, viscosity, rotation, and pressure at
the magnetic axis significantly impact the growth rate of internal
kink modes, while the influence of other features is minimal.
Figure 8B shows the results of the Permutation method
combined with the XGBoost model, which are consistent with
the results in Figure 8A. Furthermore, regardless of the machine
learning model used, the final feature ranking and the scores for each
feature provided by the Permutation method remain the same. This

indicates that the Permutation method is a model-agnostic tool for
feature analysis.

Figure 9 presents the feature importance results obtained from
the SHAP study. Figure 9A shows the results from the SHAP
investigation combined with the Random Forest model,
indicating that resistance, rotation, pressure at the magnetic axis,
and viscosity have a crucial impact on the growth rate of internal
kink modes. In Figure 9B, the top four features influencing the
growth rate of internal kink modes are consistent with those in
Figure 9A; however, the results for the remaining less influential
features differ. This suggests that the output of the SHAP analysis is
not model-agnostic and is strongly influenced by the specific
machine learning model used.

Based on the above analysis, it can be summarized that the four
features with the greatest impact on the growth rate of internal kink
modes are resistance, pressure at the magnetic axis, viscosity, and
rotation. Among these, resistance has the most significant effect,
while the relative importance of the other three features requires
further investigation. The remaining 11 features have a relatively
smaller influence on the growth rate of internal kink modes, and
their rankings are not consistent.

The feature importance displayed in Figures 7–9 represents a
comprehensive evaluation of each feature’s contribution to
predicting the growth rate of internal kink modes. Subsequently,
we analyze the impact of the four key features—resistance, pressure
at the magnetic axis, viscosity, and rotation—on the growth rate of
internal kink modes from the perspective of individual data points in

FIGURE 7
Feature importance results from XGBoost model.

FIGURE 8
(A) Feature importance results from Permutation and Random
Forest; (B) Feature importance results from Permutation and XGBoost.
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the dataset. The results are shown in Figure 10. For this analysis,
SHAP values are calculated for each feature across all data points in
the dataset. With 196 data points in total, each feature has
196 corresponding SHAP values, represented as points in the
figure. A red point indicates that the SHAP value was generated
from a greater feature value, while a blue point represents a smaller
feature value. Points on the right side of the y-axis indicate a positive
contribution, suggesting that higher feature values are associated
with an increased growth rate of internal kink modes. Conversely,
points on the left side indicate a negative contribution, suggesting
that lower feature values are associated with a decreased growth rate.
The results show that the impact of each feature on the growth rate
of internal kink modes is complex, and it is challenging to assert that
a higher or lower value of a particular feature definitively correlates
with a faster or slower growth rate. However, the significant
influence of resistance, pressure at the magnetic axis, viscosity,
and rotation on the growth rate of internal kink modes is clearly
confirmed in the analysis.

4.3 Key feature description

The above experiments indicate that among all the features
influencing the growth rate of internal kink modes, resistance,
pressure at the magnetic axis, viscosity, and rotation have the
greatest impact on the final growth rate. The subsequent analysis
will focus on the reasons why these four features prominently affect
the growth rate of internal kink modes.

4.3.1 Influence of resistance to internal kink mode
In the dataset, the relevant feature is resistivity, which

fundamentally affects the plasma’s electrical resistance. In
tokamak devices, plasma carries the current, while resistance
hinders the flow of this current. The growth rate of internal kink
modes is closely related to the plasma’s resistance. When resistance
is present in the plasma, it impedes the current flow, resulting in
energy dissipation. This dissipation impacts the plasma’s dynamic
behavior, subsequently altering the growth rate of internal kink

FIGURE 9
(A) Feature importance results from SHAP and Random Forest; (B) Feature importance results from SHAP and XGBoost.

FIGURE 10
(A) Shapely value of 10 most influential features from Random Forest; (B) Shapely value of 10 most influential features from XGBoost.
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modes. During the occurrence of internal kink modes, the twisting
motion of the plasma increases the path length of the current,
thereby enhancing the resistive dissipation effect. Resistance also
influences the distribution of the electromagnetic field within the
plasma. In tokamak devices, the magnetic field is a critical factor in
confining the plasma. The presence of resistance alters the current
distribution, which in turn affects the distribution and intensity of
the magnetic field. These changes in the electromagnetic field
directly impact the stability of internal kink modes, as the growth
rate of these modes is closely tied to magnetic field strength. The
existence of resistance causes variations in the plasma’s electric and
flow fields, influencing the dynamic behaviour of internal kink
modes. Specifically, higher resistance in the plasma can lead to
slower or unstable plasma flow, thereby changing the growth rate of
internal kink modes. Plasma resistance not only affects current flow
but is also closely related to the plasma’s flow state. During the
development of internal kink modes, the presence of resistance
causes the current to preferentially flow toward regions with larger
perturbations, altering the growth of the internal kink modes.

4.3.2 Influence of pressure to internal kink mode
The pressure at the magnetic axis directly reflects the energy

density in the central area of the plasma. Higher pressure at the
magnetic axis usually indicates higher plasma temperature and
density, thus enhancing the overall stability of the plasma.
According to the MHD theory, plasma stability is closely related
to its pressure distribution. Higher central pressure helps maintain a
higher plasma pressure gradient, thereby increasing MHD stability
and influencing the formation and growth of internal kink modes.
The driving force of internal kink modes primarily originates from
the pressure gradient and current gradient within the plasma.
Higher pressure at the magnetic axis can strengthen the plasma
pressure gradient, thus altering the distribution of the driving force
for internal kink modes. Specifically, under high-pressure
conditions, the plasma pressure gradient is larger, increasing the
intrinsic energy reserve of the plasma and enhancing its ability to
resist external perturbations, thereby affecting the growth rate of
internal kink modes. Higher pressure at the magnetic axis leads to a
more concentrated plasma current in the central region, reducing
the current density at the edge region and weakening the driving
source of internal kink modes in the edge area. The pressure at the
magnetic axis also affects the plasma’s transport properties; higher
pressure at the magnetic axis enhances plasma thermal conduction
and particle diffusion, thereby reducing energy deposition from
internal kink modes within the plasma.

4.3.3 Influence of viscosity to internal kink modes
The viscosity coefficient, or viscosity, is a physical quantity that

describes the internal resistance of a fluid. It reflects the fluid’s ability
to resist shear deformation when subjected to shear forces. In
tokamak devices, the viscosity of the plasma affects its internal
dynamic behaviour and stability. The greater the viscosity, the larger
the internal frictional forces generated during shear, which imposes
a damping effect on the internal kinkmodes. The internal kinkmode
is an instable pattern within the plasma, characterized by internal
twisting deformations. Increased viscosity enhances the frictional
forces between fluid layers, making it more difficult for the fluid to
undergo shear and twist. High viscosity strengthens the shear

viscosity of the fluid, stabilizing the shear flows within the
plasma. Viscosity also affects the overall flow characteristics and
dynamic behaviour of the plasma. In a tokamak, the flow and
stability of the plasma are closely linked. Changes in viscosity
can alter the plasma’s velocity distribution and dynamic
properties such as vortex formation, thereby impacting the
development of internal kink modes. The influence of viscosity
on internal kink modes can be understood from the MHD
equations. In the MHD equations, viscous force is a crucial
component of the momentum conservation equation and is
proportional to the velocity gradient of the plasma. As viscosity
increases, the internal viscous force within the plasma also increases,
leading to slower plasma flows and consequently affecting the
development of internal kink modes.

4.3.4 Influence of rotation to internal kink mode
In tokamak plasmas, the Coriolis force generated by rotation

exerts a stabilizing effect on the plasma. When the plasma rotates at
a certain velocity, the Coriolis force can suppress instabilities
perpendicular to the rotation axis, including internal kink modes.
This suppression effect increases with the rotation speed, thereby
altering the growth rate of internal kink modes. Plasma rotation
introduces shear flow, which can significantly affect plasma stability.
Shear flow disrupts perturbations within the plasma, effectively
influencing the growth of internal kink modes. Physically, the
shear can increase the twist of perturbations, making it difficult
for them to maintain structural integrity, thus reducing the growth
of unstable modes. This effect is particularly important in tokamak
devices because shear flow can dynamically interact to suppress
instabilities caused by the plasma’s own current. The radial gradient
of the rotation speed is also a critical factor influencing the growth
rate of internal kink modes. A velocity gradient can introduce
additional hydrodynamic shear, which is especially effective in
suppressing internal kink mode instabilities. In tokamak plasmas,
if the rotation speed gradient is sufficiently large, it can hinder the
radial transport of energy and momentum, thus preventing the
spread of unstable modes. Plasma rotation also introduces an
inertial stabilization mechanism. The momentum of rotating
plasma has the ability to suppress perturbations, similar to the
gyroscopic effect, making it more difficult for disturbances to
develop rapidly. Particularly under high-speed rotation, the
plasma inertia induced by rotation can effectively impact the
internal kink modes.

4.4 Key feature discussion

Through machine learning analysis of the factors affecting the
growth rate of the internal kink mode, electrical resistivity was
identified as having the most significant impact. Its influence was
observed to be far more pronounced compared to other features.
Additionally, pressure at the magnetic axis, the viscosity coefficient,
and plasma rotation were found to have a notable but less
pronounced effect on the growth rate. These features, while
significant, exhibited a much lower level of influence compared
to resistivity. Further investigation is required regarding the
viscosity coefficient and plasma rotation, as the current machine
learning models, though able to identify their importance, could not
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provide a precise quantification of their specific impact on the
growth rate. Although the models consistently ranked these
features as impactful, their relative contribution to the growth
rate remains less clearly defined. Current findings suggest that
viscosity and plasma rotation have an observable effect on the
internal kink mode, but more detailed research is necessary to
fully ascertain their influence. The results highlight the distinct
and dominant role of resistivity, with other factors playing a
secondary but still relevant role. The uncertainty surrounding the
precise impact of viscosity and plasma rotation emphasizes the need
for additional analysis to further refine these findings and develop a
clearer understanding of their roles in the growth rate of the
internal kink mode.

Machine learning approaches, particularly ensemble methods
like Random Forest and XGBoost, offer several advantages over
traditional methods. Firstly, these methods excel in handling high-
dimensional data efficiently, enabling the simultaneous analysis of
multiple features and their complex interactions, which can be
challenging to capture through experimental measurements or
numerical simulations alone. The use of Permutation and SHAP
further enhances the interpretability of these models, providing clear
insights into feature importance. Secondly, machine learning models
can identify non-linear relationships between features and the target
variable, which may not be evident from linear analysis or simple
statistical tests often used in experimental and numerical studies.
This capability is crucial in understanding the nuanced effects of
various parameters on the internal kink mode growth rate, as
demonstrated by the disproportionate influence of resistance
identified in this study. Moreover, machine learning algorithms
can process large datasets rapidly, significantly reducing the time
required for analysis compared to detailed numerical simulations or
extensive experimental campaigns. This efficiency allows for a more
comprehensive exploration of parameter space and the
identification of trends that might be obscured by the limitations
of traditional methods.

Despite their advantages, machine learning approaches also
have limitations when applied to the study of internal kink mode
features. One significant drawback is the reliance on high-quality,
well-labeled datasets. In practice, obtaining such datasets can be
challenging, particularly in experimental settings where
measurements may be noisy or incomplete. This can lead to
biased models or reduced accuracy in predicting the growth rate.
Another limitation is the interpretability of machine learning
models, especially deep learning algorithms, which can act as
“black boxes,” making it difficult to understand the underlying
physical mechanisms driving the predictions. While methods like
SHAP and Permutation improve interpretability, they may not fully
capture the intricate physics governing the internal kink mode,
which could be better elucidated through detailed numerical
simulations or experimental observations. Furthermore, machine
learning models are sensitive to the choice of hyperparameters and
the specific training data used, which can affect the generalizability
of the results. Careful cross-validation and model tuning are
necessary to ensure robustness and reliability, but even then, the
models may not perform consistently across all scenarios,
particularly in regimes not well-represented in the training data.
In contrast, traditional experimental and numerical simulation
methods provide a more direct connection to the underlying

physics, allowing for a deeper understanding of the mechanisms
at play. Experiments can directly observe phenomena and validate
theoretical predictions, while numerical simulations can model
complex systems with high fidelity, capturing intricate details
that may be overlooked by machine learning algorithms.

Given that machine learning is inherently data-driven, the
methodology used in this study to investigate internal kink
modes can indeed be extended to other fusion devices, such as
stellarators and spherical tokamaks [57, 58]. While the current study
focuses on specific data from a particular tokamak configuration, the
same approach can be applied to any fusion device as long as
sufficient and relevant data is available. However, it is important to
note that machine learning models are sensitive to variations in the
input data. Therefore, changes in device design or operating
parameters, such as magnetic field configurations, plasma
pressure profiles, or current distributions, could significantly
affect the identified key features and their relative impacts on the
internal kink modes. The generalizability of our findings to different
types of fusion reactors, such as stellarators and spherical tokamaks,
would depend heavily on the availability of diverse datasets
encompassing a broad range of operational scenarios.
Consequently, collecting as much data as possible from various
configurations and operating conditions would improve the
robustness and reliability of the results. In future work,
expanding the dataset to include information from different
devices could provide more insights into how device-specific
factors influence key features, further enhancing the applicability
of machine learning models in plasma physics research across
different fusion reactor designs.

5 Conclusion

This study conducts a comprehensive feature importance
analysis affecting the growth rate of internal kink modes by
integrating Random Forest, XGBoost, Permutation, and SHAP
methods. By training on numerical simulation data, high-
precision Random Forest and XGBoost models were successfully
constructed, with R2 reaching 95.07% and 94.57%, respectively,
demonstrating robust predictive capabilities for the growth rate
of internal kink modes. In the feature analysis phase, multiple
methods were employed for cross-validation, ensuring the
robustness of the results. The findings indicate that resistance,
pressure at the magnetic axis, viscosity, and rotation are the most
significant features influencing the growth rate of internal kink
modes. This discovery provides critical insights into the physical
mechanisms underlying internal kink modes. Furthermore, the
study elucidates the physical mechanisms by which these key
features affect the growth rate of internal kink modes. Variations
in resistance directly influence the current distribution andmagnetic
field structure, thereby regulating the stability of internal kink
modes. Pressure at the magnetic axis affects the development of
internal kink modes by influencing the pressure gradient within the
plasma. Viscosity exerts a damping effect on internal kink modes by
altering the plasma’s fluidity. Rotation impacts the growth rate of
internal kink modes through the generation of shear flows. In
summary, this study not only identifies the key features
influencing the growth rate of internal kink modes but also
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delves into the physical mechanisms underlying these features.
While four critical features affecting the growth rate of internal
kink modes have been identified, the specific ranking of their
importance has yet to be determined. Future research could focus
on quantifying the numerical relationships between each feature and
the growth rate of internal kink modes, which would have greater
theoretical and practical significance for studying internal kink
mode instabilities.
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