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Double array system
identification research based on
LSTM neural network

Chunhua Gao, Mingyang Wang*, Yifei Sima and Zihan Yuan

College of Architecture and Civil Engineering, Xinyang Normal University, Xinyang, Henan, China

The earthquake simulation shaking table array is an important experimental
equipment with a wide range of applications in the field of earthquake
engineering. To efficiently address the complex nonlinear problems associated
with earthquake simulation shaking array systems, this paper proposes the
identification of the earthquake simulation shaking array system using the Long
Short-Term Memory (LSTM) algorithm. A dual array system model with flexible
specimen connections is established, and this system is identified using the
LSTM neural network. The LSTM neural network was validated for identifying
the dual array closed-loop system of the earthquake simulation shaking table by
using three natural waves and one artificial wave. The results demonstrated that
the similarity between the predicted output and the theoretical output of the
network identified by LSTM exceeded 0.999. This indicates that the algorithm
can accurately reproduce the characteristics of the shaking table itself and
shows good performance in time series prediction and data mining. References
for earthquake simulation shaking array system experiments are provided.
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1 Introduction

The earthquake simulation shaking table is a key laboratory tool for studying and
evaluating the seismic resistance of structures. It generates horizontal, vertical, and
multidimensional accelerations through a driven platform, simulating the impact of seismic
waves on buildings and other structures [1]. The earthquake simulation shaking table
array comprises multiple independent earthquake simulation shaking tables that work
together to simulate more realistic and complex ground motions. Each table can also
be controlled independently to achieve more accurate earthquake wave simulations [2].
Due to factors such as high investment, expensive maintenance and experimental costs,
and long construction periods, it is clearly unreasonable to infinitely increase the size
and scale of shaking table. Additionally, due to similarity ratios, simply enlarging the
shaking table cannot fully meet the requirements. For large-span structures such as
bridges, pipelines, aqueducts, and transmission lines, combining multiple small shaking
table arrays can be used for testing. The construction and research of shaking table
array systems are becoming a trend in both domestic and international research. Gao
Chunhua [3] conducted a survey and comparative analysis of various algorithms for
domestic shaking tables, summarized the construction forms and loading methods of
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FIGURE 1
The mechanical model of two-array flexible connection of specimens.

FIGURE 2
Multi-parameter generator schematic diagram.

shaking table substructure tests, as well as the construction and
control technical difficulties of shaking table array systems. Ji
Jinbao [4, 5] et al. summarized and introduced the functions and
characteristics of the shaking table array control system using
the nine sub array of Beijing University of Technology as an
example, and conducted large-span spatial structure model tests
using the equipment.They pointed out the issues and areas that need
improvement in using the shaking table array system and explored
the relevant research and development of control technology for
multi-shaking table array systems. Tao Dehuai [6] conducted a
dynamic analysis of the foundation of a dual-array earthquake
simulation shaking table and found that the impact of shaking on

the foundation remained essentially unchanged under different load
conditions. Guan Guangfeng [7] et al. conducted a detailed analysis
of different control strategies for a dual array shaking table system
and verified the effectiveness of the array system controller through
experiments.

The nonlinear influence of shaking table system has always
existed in earthquake simulation shaking table test, and has seriously
affected its reproduction accuracy and waveform reproduction
ability [8, 9]. For more complex shaking table array systems, due
to the simultaneous operation of a large number of actuators, the
existing control methods cannot meet the requirements for system
stability and synchronization [10]. This means that more advanced
intelligent control algorithms are needed. As a type of intelligent
algorithm, neural network algorithms have good adaptive and
generalization abilities, can model and handle nonlinear problems
[11–13], and perform well in the control of seismic simulation
shaking tables. Gao Chunhua [14, 15] et al. carried out parameter
optimization and parameter identification for seismic simulation
shaker by intelligent control algorithm, and simulation results
showed that the intelligent control algorithm could optimize control
parameters, identify multiple parameters, and improve the control
effect of the shaker. Yu Shipin [16] et al. used a BP neural network
to optimize the control instructions so that the control peak and
valley values reached the expected values. Byung Kwan Oh [17]
et al. proposed a new model for earthquake response prediction
of buildings based on the correlation between ground motion and
structure using neural networks. They verified the effectiveness
of the proposed neural network model by studying its response
prediction performance. A. Zeroual [18] et al. proposed an artificial
neural networkmodel, applied it to the prediction of the safety factor
for a new earth dam dataset, and compared the predicted results
with the stability calculation results of different limit equilibrium
slopes. The comparison proved that the prediction ability of the
artificial neural network model for the safety factor is satisfactory.
Long Short-Term Memory network (LSTM) is a special type of
recurrent neural network (RNN) that efficiently processes and
predicts sequence data by introducing gating mechanisms. LSTM
is designed to solve the problem of gradient vanishing or gradient
explosion encountered by traditional RNNs when processing long

FIGURE 3
Multi-parameter speed synthesizer simulation model.
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FIGURE 4
Single input single output CAR model.

sequences of data [19]. LSTM can learn long-term dependencies,
which is difficult for traditional RNNs to achieve. It is easy to
integrate into network structures and is suitable for various time
series prediction tasks. Compared with other methods for solving
long series problems (such as bidirectional RNNs), LSTM requires
fewer parameters. Zhang Wenpeng [20] et al. proposed a three-
parameter control parameter tuning algorithm for shakers based
on LSTM and adopted the gradient descent method for offline
tuning of control parameters. This was combined with the original
parameters of the control system for real machine verification. The
results showed that the proposed tuning method can achieve better
results than manual tuning, and the tuning process is completed
offline by the systemmodel without realmachine operation, offering
advantages of high efficiency and good effect. Ruiyang Zhang [21]
et al. proposed two long short-term memory (LSTM) network
schemes aimed at data-driven structural seismic responsemodeling.
The verification results show that the proposed LSTM network
is a promising, reliable, and computationally efficient method for
nonlinear structural response prediction. It has great potential in the
reliability assessment of seismic vulnerability analysis of buildings.

System identification is the process of analyzing the input
and output data of a system to obtain the mathematical model
or dynamic characteristics of the system. This process includes
determining the transfer function, state-space model, or other
mathematical descriptions of the system. Effective system
identification is the key to realize high performance control of
shaking table [22, 23]. Zhan Pengyun [24] et al. used the least
squares method to identify the model parameters of the shaking

table model for seismic simulation. The research shows that the
identified model can well reproduce the characteristics of the
shaking table system itself, and the least squares identification
method can be used to identify the hydraulic and control systems
of the shaking table for seismic simulation. Ji Jinbao [25] et al.
trained and tested a constructed LSTM network model based
on the shaking table system model. The test results show that
the LSTM network can reproduce the characteristics of a single-
axis open-loop system and can be used as the control object
for system simulation and algorithm testing. Febina Christudas
[26] et al. utilized input-output data of long short-term memory
recurrent neural networks (LSTM-RNN) to model real-time CTS.
Compared with empirical models, the LSTM-RNN model achieved
better modeling results. Wei Guo [27] et al. developed a physics-
guided long short-term memory (PhyLSTM) network for system
identification of shaking tables. After detailed hyperparameter
testing, the performance of the PhyLSTM model significantly
outperformed that of traditional transfer function models.

Based on the above analysis, this paper designs a system
identification scheme for a dual-array seismic simulation shaking
table based on LSTM neural networks.The LSTM is used to identify
the multi-parameter control closed-loop system of the dual array.
By comparing the predicted results after neural network training
with theoretical results, the feasibility and high research value of this
identification scheme are verified.

2 Shaking table two-array system
modeling

2.1 Two array system with flexible
connection of specimens

For the two-array system, the forces acting on the shaking table
platform include not only the actuator forces and the interaction
forces between the specimen and the platformbut also the additional
forces generated due to the asynchronous movement of the two
sub-shaking tables. Taking the dual-array system with a flexible
connection of the specimen as an example, Figure 1 shows a
schematic diagramof themechanicalmodel of the dual-array system
with the specimen.

The mass of the specimen in the system is Ms, the mass of the
shaking table is Mt, k is the stiffness coefficient of the connection
of the two sub-tables, c is the damping coefficient; The outputs

FIGURE 5
LSTM structure diagram.
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FIGURE 6
LSTM network identification flowchart.

of the two shaker exciter are F1 and F2 respectively, and the
displacements of the two tables are x1 and x2 respectively. Assuming
the displacement of the specimen is xs, the force balance Equation 1
of the two-array system can be obtained:

{{
{{
{

Mss
2xs + (cs+ k)(xs − x1) + (cs+ k)(xs − x2) = 0

Mts
2x1 + (cs+ k)(x1 − xs) = F1

Mts
2x2 + (cs+ k)(x2 − xs) = F2

(1)

The acceleration response of the two sub-stations can be
obtained as follows:

{{{{{{{{{
{{{{{{{{{
{

s2x1 =
F1 +

(cs+k)2

Mss2+2cs+2k
x2

Mt +
cs+k
s2
− (cs+k)2

(Mss2+2cs+2k)s2

s2x2 =
F2 +

(cs+k)2

Mss2+2cs+2k
x1

Mt +
cs+k
s2
− (cs+k)2

(Mss2+2cs+2k)s2

(2)

There is a coupling between the two expressions in Equation 2,
in other words, the displacement x1 of shaker 1 depends not only on
the parameters of the shaker itself, but also on the displacement x2 of
shaker 2. Next, because the output of the exciter meets Equation 3:

{
AppL1 = F1
AppL2 = F2

(3)

Without loss of generality, it is assumed that the parameters of
the two sub-shaker exciters are the same. In addition, pL1 and pL2 are

FIGURE 7
Time domain waveform chart of network training for the dual-array
system identification (A) Shaking table 1 training results comparison
(B) Shaking table 2 training results comparison.

FIGURE 8
Time domain waveform chart of network testing for the dual-array
system identification (EL Centro wave) (A) Comparison chart of results
for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.

used to represent the load pressure of the two shakers, QL1 and QL2
are the total oil flowof the two shakers, andE1 andE2 are respectively
the control signals of the two shakers.Then, the hydraulic continuity
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FIGURE 9
Frequency domain waveform chart of network testing for the dual-array system identification (EL Centro wave) (A) Comparison chart of results for
Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.

Equations 4, 5 can be obtained:

{
QL1 = kqE1 −KcpL1
QL2 = kqE2 −KcpL2

(4)

{{{
{{{
{

QL1 = Apsx1 +
V
4β

spL1 +CcpL1

QL2 = Apsx2 +
V
4β

spL2 +CcpL2
(5)

After simplification, we obtain:

{{{{{
{{{{{
{

AppL1 =
1
G1
(
kqE1
Ap
− sx1) = F1

AppL2 =
1
G1
(
kqE2
Ap
− sx2) = F2

(6)

Where Equation 7 is:

G1 =
V

4βA2
p
s+

Kc +Cc

A2
p

(7)

After substituting Equation 6 into Equation 2, the two-array
open-loop system model is obtained as follows:

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

[(Mts
2 + cs+ k)G1 + s−

G1(cs+ k)2

(Mss
2 + 2cs+ 2k)

]

x1 −
G1(cs+ k)2

(Mss
2 + 2cs+ 2k)

x2 =
kqE1
Ap

[(Mts
2 + cs+ k)G1 + s−

G1(cs+ k)2

(Mss
2 + 2cs+ 2k)

]

x2 −
G1(cs+ k)2

(Mss
2 + 2cs+ 2k)

x1 =
kqE2
Ap

(8)

2.2 Modeling of two-array closed-loop
system with multi-parameter control

Building on Section 2.1, a control system is introduced that
considers the second-order characteristics of the servo valve
and sensor. Additionally, based on the three-parameter control
system, the acceleration derivative, which yields the jerk, is
introduced. The multi-parameter generator and multi-parameter
velocity synthesizer are shown in Figures 2, 3. The introduction of
jerk feedforward and jerk feedback forms a multi-parameter control
closed-loop system.
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FIGURE 10
Time domain waveform chart of network testing for the dual-array system identification (Wenchuan floor wave) (A) Comparison chart of results for
Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.

In Figure 2, TD represents the differential time constant, ka、
kv、 kd represents the acceleration, velocity, and displacement
feedback gain in the multi-parameter generator, and α and β
represent the integral gain.

After applying the multi-parameter control scheme to the two-
array system, ifG4 represents themulti-parameter generator transfer
function and G5 represents the multi-parameter feedback transfer
function, then the control inputs of the two sub-stations can
be written as:

{
E1 = G4u1 −G5x1
E2 = G4u2 −G5x2

(9)

Substituting Equation 9 into Equation 8, and further
considering the characteristics of the sensors and servo valves, we
obtain the control system model. Ultimately, the two-array system
model under multi-parameters is obtained Equation 10 as follows:

{{{{{{
{{{{{{
{

s2x1 =
kq
Ap

GqG4

(GpGfas
2 −G1G

2
p1)u1 +G1G

2
p1u2

GpGfa
2s2 − 2G1G

2
p1Gfa

s2x2 =
kq
Ap

GqG4

(GpGfas
2 −G1G

2
p1)u2 +G1G

2
p1u1

GpGfa
2s2 − 2G1G

2
p1Gfa

(10)

Where Equation 11 is:

{{{{{{{{{
{{{{{{{{{
{

Gp =Mss
2 + 2cs+ 2k

Gp1 = cs+ k

Gf = G1(Mts
2 + cs+ k) + s+

kq
Ap

G5

G fa =
1
s2
G f

(11)

Assume Equation 12 is:

{{{{{{
{{{{{{
{

G11 = G22 =
kq
Ap

GqG4

(GpGfas
2 −G1G

2
p1)

GpGfa
2s2 − 2G1G

2
p1Gfa

G12 = G21 =
kq
Ap

GqG4

G1G
2
p1

GpGfa
2s2 − 2G1G

2
p1Gfa

(12)

Write it in the form of a matrix like Equation 13:

{
s2x1
s2x2
} = {

G11

G21

G12

G22
}{

u1
u2
} (13)

where: G11 is the transfer function of the input signal of shaker 1 to
the acceleration s2x1 of shaker 1, G12 is the transfer function of the
input signal of shaker 2 to the acceleration s2x1 of shaker 1;G21 is the
transfer function of the input signal of shaker 1 to the acceleration
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FIGURE 11
Frequency domain waveform chart of network testing for the dual-array system identification (Wenchuan floor wave) (A) Comparison chart of results
for Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.

s2x2 of shaker 2, G22 is the transfer function from the input signal of
Shaker 2 to the acceleration s2x2 of Shaker 2.

The basic parameters of the hydraulic and control
system of the two-array seismic simulation shaker
are shown in Supplementary Table 1, and the relevant parameters of
the shaker table are also listed.

3 LSTM neural network system
identification principle

3.1 Principles and steps of system
identification

The principle of system identification is based on the analysis of
system input and output data, with the aim of inferring the intrinsic
structure and parameters of the system from this data. Using the
Controlled Auto-Regressive (CAR) model as an example, the basic
principle of system identification can be explained.

Typically, a single-input single-output CAR model can be
represented as Equation 14:

A(z−1)y(k) = z−dB(z−1)u(k) + ξ(k) (14)

where, y(k) is the system output, u(k) is the system input, ξ(k) is
a random disturbance, d is pure delay, A(z−1) and B(z−1) can be

expressed as Equation 15:

{
A(z−1) = 1+ a1z−1 + a2z−2 +…+ apz−p

B(z−1) = 1+ b1z−1 + b2z−2 +…+ bqz−q
(15)

The model structure of the system is shown in Figure 4, which
assumes without loss of generality that C(z−1) = 1.

Furthermore, the above equation can be written as
Equation 16:

y(k) = φT(k)θ+ ξ(k) (16)

where, ϕ(k) = [−y(k− 1),…,−y(k− p),u(k− d),…,u(k− d− q)]T is a
vector constructed from input and output observations, and θ =
[a0,…,ap,b0,…,bq]

T is the parameter vector to be solved.
During the experiment, by collecting the input and output data

of the system, the input data is the control input signal, and the
output data is the system’s response signal, that is, obtaining vector
ϕ(k). For systems that can be modeled, such as the CAR model, the
system identification problem can be transformed into a parameter
estimation problem, that is, finding the optimal parameter θ estimate
by minimizing the error between the model’s predicted values and
the actual output.

System identification generally includes the following stages:

(1) Experimental Design: According to different practical
requirements, clarify the purpose of model identification,
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FIGURE 12
Time domain waveform chart of network testing for the dual-array system identification (Traf wave) (A) Comparison chart of results for Shaking Table 1
(B) Comparison chart of results for Shaking Table 2.

determine the object of system identification, select
appropriate input signals, and collect output response
data. Generally, suitable input signals should have a
certain spectrum and energy distribution to cover the key
characteristics of the system and maintain its stability.
Moreover, for nonlinear systems, random signals are usually
more suitable because they have better excitation performance.
The quality of the experimental design directly affects the
accuracy of the subsequent model.

(2) Data Collection and Preprocessing: Conduct experiments
and collect the input and output data of the system. This
includes recording the responses measured by sensors and
generating control input signals. Ensure that the experimental
environment and measurement errors are considered during
data collection. Additionally, preprocess the collected data
by performing operations such as denoising, filtering, and
sampling to improve the quality and identifiability of the data.

(3) Establish a mathematical model: Use the collected data to
create a mathematical model of the system, such as in the
form of difference equations, state-space equations, or transfer
functions, and estimate the model parameters.

(4) Parameter identification: This typically involves fitting
techniques, such as the least squares method, to minimize
the error between the model’s predictions and the actual
observations.

(5) Model validation and optimization: Use data not involved
in the identification process for new tests to verify the
accuracy and reliability of the obtained model. Ensure that the
model can correctly predict the system’s response under new
input conditions. Additionally, analyze the obtained model
to understand the dynamic characteristics of the system.
Optimize the model as needed to enhance its performance and
adaptability.

3.2 LSTM frame structure and model
building

LSTM is a special type of neural network structure that
is designed to address the problems of gradient vanishing and
gradient explosion encountered by traditional neural networks
when handling long-term dependencies. The LSTM unit consists of
a cell state and three gating components (input gate, forget gate, and
output gate).The forget gate is used to determine which information
should be discarded from the cell state; the input gate controls the
extent to which the current input affects the cell state; and the output
gate decides how the cell state influences the next layer. In the context
of controlling a seismic simulation shaking table, the aim is to
reproduce the input earthquake waves as accurately as possible, with
a one-to-one correspondence between input and output. Therefore,
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FIGURE 13
Frequency domain waveform chart of network testing for the dual-array system identification (Traf wave) (A) Comparison chart of results for Shaking
Table 1 (B) Comparison chart of results for Shaking Table 2.

a one-to-one LSTM model was ultimately chosen as the controller
for the shaking table in this study. The LSTM structure diagram is
presented in Figure 5.

In the establishment of the LSTM model, data processing is
first conducted to standardize the input seismic wave data to fit
the LSTM input format. The dataset is then divided into training
and testing sets. Due to the dynamic computation graph utilized
in PyTorch, a more intuitive and flexible approach is enabled
during themodel construction and debugging process. Additionally,
the simple and intuitive APIs provided by PyTorch make the
construction, training, and evaluation of deep learning models
easier. Therefore, the PyTorch framework is employed in this study.
In the LSTM used in this research, the model structure is defined
using the Sigmoid activation function. The Sigmoid function can
independently control the opening and closing states of each gate
and possess good gradient propagation characteristics, effectively
preventing the problem of gradient vanishing during the training
process, thereby achieving selective information transfer.

Then, the Mean Squared Error (MSE) loss function is chosen,
and the Adam optimizer is used for backpropagation gradient
optimization in this paper.The expression for theMSE loss function
is as follows Equation 17:

MSE = 1
m

m

∑
i=1
(yi − f(xi))

2 (17)

From the above equation, it can be seen that the loss function
MSE represents the sum of the squared differences between the
predicted value f(x) of the model and the true value y of the
sample. The smaller its value, the smaller the error and the higher
the accuracy.

Finally, the input seismicwave dataset is used formodel training,
and the testing set is employed to evaluate themodel’s generalization
capability. At the same time, the performance of this approach is
assessed using the correlation between the actual results and the
predicted results, as well as the root mean square error.

Based on the above, the algorithm flowchart for identifying
LSTM network is shown in Figure 6:

4 Identification results and analysis of
the LSTM dual-array closed-loop
system

The LSTM network structure used in this paper specifically
includes: an input layer, a hidden layer with 15 neurons, and an
output layer. The momentum factor is set to 0.0005, the initial
weights of the network are randomly chosen within the range
[−1,1], and the learning algorithm employed is the “gradient descent
algorithm.” The maximum number of training iterations is set to
20,000, and the loss function is calculated using the MSE formula.
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FIGURE 14
Time domain waveform chart of network testing for the dual-array system identification (Artificial wave) (A) Comparison chart of results for Shaking
Table 1 (B) Comparison chart of results for Shaking Table 2.

The training process for system identification is conducted offline.
In the results presented below, the curve labeled “Actual Result”
represents the output of the shaking table, which serves as the
network’s label. The curve labeled “Forecast Result” represents the
output of the neural network. The smaller the deviation between
the forecast results and the actual results, the better the training
performance of the neural network and the higher the accuracy
of the system identification. We will first present intuitive result
display graphs, and finally evaluate the performance of this method
for system identification using the similarity between the actual
and forecast waveforms. Assuming the two waveforms are denoted
as x and y, their correlation coefficient can be expressed as
Equation 18:

corr(x,y) =

N

∑
n=1
(xn − x)(yn − y)

√
N

∑
n=1
(xn − x)

2
N

∑
n=1
(yn − y)

2

(18)

We used different seismic waves as input waveforms, with a
sampling time of 0.02 s, corresponding to a sampling frequency of
50 Hz. The simulation time is set to 40 s, resulting in two input
datasets each containing 4,000 data points. The first 2000 data
points are used as the training set, and the remaining 2000 data

points are used as the test set. For the dual-array system, the output
data is modeled as a two-dimensional matrix, corresponding to
the response waveforms of Shaking Table 1 and Shaking Table 2,
respectively. We obtained the output of the dual-array closed-
loop system through simulation, which serves as the labels for
neural network training. Using the EL Centro wave to analyze the
training set, the training results of the dual-array closed-loop system
are shown in Figure 7.

Figures 7A, B are comparison charts of the output waveforms
and network training results for Shaking Table 1 and Table 2,
respectively. After calculation, the root mean square error
(RMSE) between the network output waveform and the actual
waveform is −52.9 dB for Table 1 and -52.8 dB for Table 2. The
correlation coefficients are 0.9998 for Table 1 and 0.9998 for
Table 2. The network training results match the actual results
very well.

For the test set, we used three different seismic waves and
one artificial wave for analysis, performing both time domain and
frequency domain analyses. First, we analyzed the EL Centro wave,
with the time domain chart shown in Figure 8.

The calculated root mean square error (RMSE) between the
network output waveform and the actual waveform is −60.4 dB
for Table 1 and -60.9 dB for Table 2. The correlation coefficients
are 0.9998 for Table 1 and 0.9998 for Table 2. After performing
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FIGURE 15
Frequency domain waveform chart of network testing for the dual-array system identification (Artificial wave) (A) Comparison chart of results for
Shaking Table 1 (B) Comparison chart of results for Shaking Table 2.

a Fourier transform on the waveform data, the frequency
spectrum characteristics of the seismic wave can be obtained,
as shown in Figure 9. It can be seen that the frequency domain
performance of the network output waveform also almost perfectly
replicates the actual frequency domain waveform.

Next, we performed time and frequency domain analyses of the
Wenchuan surface wave, as shown in Figures 10, 11. The calculated
results indicate that the root mean square error (RMSE) between
the network output waveform and the actual waveform is −42.3 dB
for Table 1 and -56.2 dB for Table 2. The correlation coefficients are
0.9996 for Table 1 and 0.9997 for Table 2.

Next, we performed time and frequency domain analyses using
the Traf wave, as shown in Figures 12, 13. The calculated results
indicate that the root mean square error (RMSE) between the
network output waveform and the actual waveform is −51.74 dB for
Table 1 and -51.20 dB for Table 2. The correlation coefficients are
0.9988 for Table 1 and 0.9986 for Table 2.

Finally, we performed time and frequency domain analyses
using the artificial wave, as shown in Figures 14, 15. The calculated
results indicate that the root mean square error (RMSE) between
the network output waveform and the actual waveform is −49.62 dB
for Table 1 and -49.43 dB for Table 2.The correlation coefficients are
0.9996 for Table 1 and 0.9996 for Table 2.

Based on the analysis of these four waveforms, the root
mean square error (RMSE) and correlation coefficients between
the network output waveforms and the actual time domain

waveforms are summarized in Supplementary Table 2. Both
the time domain and frequency domain waveform correlations
exceed 0.99, indicating that the output closely matches the
actual waveforms. This demonstrates that the identification
scheme has excellent performance, and the network trained with
LSTM can achieve the dual-array system identification task with
high accuracy.

5 Conclusion and discussion

This paper primarily designs an identification scheme for a
dual-array closed-loop system based on an LSTM network. First,
the dual-array system of a seismic simulation shaking table is
modeled. Then, a dual-array system identification method based
on LSTM is proposed. Using the dataset from the constructed
Simulink simulation model, the neural network is trained and
tested. The LSTM network is modified to adapt to the system
output, considering the characteristics of the dual-array system.
This identification scheme is highly applicable, efficient in terms of
parameters, and reflects the true characteristics of the system. The
main conclusions drawn are as follows:

(1) In training the neural network model, the gradient descent
algorithm is highly efficient and adaptable. It effectively
handles the nonlinear problems in seismic simulation shaking
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tables and has broad application prospects in optimizing
control systems.

(2) After identification using the LSTMneural network, the output
of the seismic simulation shaking table dual-array closely
matches the theoretical output, with a low mean square
error and a waveform correlation coefficient exceeding 0.99.
This verifies that the identification scheme has high accuracy
and good convergence, providing a theoretical basis for
performance control of the seismic simulation shaking table.

The research work in this paper is based on closed-loop system
and single-degree-of-freedom structure. The subsequent research
may consider verifying the applicability of the proposed LSTM
neural network identification to open-loop system and multi-
degree-of-freedom structure, and further improve the efficiency and
accuracy of system identification by combiningwith other intelligent
control algorithms.
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