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3D point clouds collected by low-channel light detection and ranging (LiDAR) are
relatively sparse compared to high-channel LiDAR, which is considered costly. To
address this, an outdoor large-scene point cloud reconstruction (LSPCR) technique
based on transformer is proposed in this study. The LSPCR approach first projects the
original sparse 3D point cloud onto a 2D range image; then, it enhances the
resolution in the vertical direction of the 2D range image before converting the
high-resolution range imageback to a 3Dpoint cloud as thefinal reconstructed point
cloud data. Experiments were performed on the real-world KITTI dataset, and the
results show that LSPCR achieves an average accuracy improvement of over 60%
compared to non-deep-learning algorithms; it also achieves better performance
compared to the latest deep-learning algorithms. Therefore, LSPCR is an effective
solution for sparse point cloud reconstruction and addresses the challenges
associated with high-resolution LiDAR point clouds.
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1 Introduction

Light detection and ranging (LiDAR) entails sensing the environment by emitting
pulsed laser beams and receiving the reflected beams using echo detection equipment. The
point cloud data obtained thus can provide information on spatial coordinates, shapes, and
contours [1]. Given its high measurement accuracy and real-time response speed, LiDAR is
widely used in high-precision applications such as autonomous driving and simultaneous
localization and mapping (SLAM) [2]. However, the raw 3D point cloud data collected by
most low-channel LiDAR are often sparse with high levels of noise and structural
differences, whereas high-resolution LiDAR hardware involve significant costs.
Therefore, reconstructing high-resolution point clouds from low-resolution point clouds
has substantial value in engineering applications [3].

Outdoor large scenes often feature complex 3D point cloud structures, and these point
cloud data are characterized by disorder, permutation invariance, and sparsity [4]. Unlike
the adjacency relationships present in 2D images, point clouds are discrete and lack spatial
continuity among the 3D points, making it impossible to directly apply existing deep-
learning methods for point cloud enhancement or reconstruction [5]. Thus, 3D point cloud
data must be converted to 2D images, such that 2D deep-learning networks can be used to
achieve super-resolution. Range images differ significantly from optical images in terms of
the pixel value representations, resolutions, and feature extraction directions [6]. Range
image pixels represent depth information and typically have a lower resolution, whereas
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optical image pixels represent the intensities of red, green, and blue
colors as well as have a higher resolution. These differences
necessitate unique designs for point cloud super-resolution [7].

Currently, the methods available for reconstructing low-
resolution point clouds can be categorized into traditional and
deep-learning approaches. Among the traditional methods,
interpolation algorithms (such as bilinear interpolation [8] and
cubic interpolation [9]) are fast but are prone to overfitting
problems in regions with significant curvature changes [10].
Subsequent methods based on Voronoi diagrams [11], locally
optimal projections (LOPs) [12], and edge-aware point cloud
enhancement [13] have been shown to be effective but require
strong assumptions or manual parameter selection, making them
unsuitable for most practical applications.

Deep-learning methods are shown to have significant advantages
for predictions [14,15] as they do not requiremanual feature design and
can implicitly describe the characteristics of images with different
resolutions. Early research efforts on point cloud upsampling were
mostly based on convolutional neural network (CNN) architectures,
such as SR-ResNet [16], PU-Net [17], ILN [18], and self-supervised
learning methods [19,20,21]. These methods primarily use encoder
networks with convolutional and deconvolutional layers but are prone
to edge-smoothing issues owing to regularization effects when
processing range images. Since the proposal of ViT, transformer
models have been used to achieve breakthroughs in computer vision
applications [22]. The Swin transformer alleviates the computational
burden of self-attention by partitioning images [23,24]. Accordingly,
numerous works were proposed, such as the height-aware lidar super-
resolution (HALS) framework [25], PU-transformer [26], Swin-T-NFC
conditional random fields [27], and PU-Dense [28], which have
significantly enhanced point cloud reconstruction performances
through multihead self-attention structures, position fusion blocks,
and sliced Wasserstein distance techniques.

The present work proposes a point cloud reconstruction method
specifically designed for LiDAR range images, named large-scene point
cloud reconstruction (LSPCR). This method utilizes a U-shaped
network structure similar to that of U-Net and skip connections as
in ResNet to connect the encoder and decoder parts. Given a low-
resolution range image and its features on the vertical information
distribution, we used row patches instead of square patches to tokenize
the range image. Additionally, by drawing inspiration from the Swin
transformer design, we introduced cross-shaped window self-attention
(CSwin) to design the core components for LSPCR. CSwin computes
the self-attention in cross-shaped windows formed by horizontal and
vertical stripes, making it suitable for vertical-direction super-
resolution tasks of range images. Experiments were conducted with
the KITTI dataset, and the results demonstrate that LSPCR offers the
latest advancements for outdoor data.

2 Methods

2.1 Problem statement

Each point pi in a LiDAR system is represented using the three-
dimensional coordinates (xi, yi, zi). A LiDAR point cloud in a single
frame comprises multiple pi, denoted as P � {p1, . . . , pn}, where n is
the total number of points equal to the product of the vertical

resolution H and horizontal resolution W. Our objective here is to
reconstruct a high-resolution point cloud Ph from a low-resolution
point cloud Pl, such that the number of points in the high-resolution
point cloud is nh � λ × nl, where λ represents the difference in the
number of LiDAR beams. Although Pl and Ph share the same field of
view (FoV), Ph has a higher resolution in the vertical direction.
Therefore, given nh � Hh × Wh and nl � Hl × Wl, it follows that
Hh � λ × Hl andWh � Wl. In the reconstruction process, we follow
the standard method of converting LiDAR point clouds into range
images, as illustrated in Equation 1.
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The coordinates u and v on the left side of the equation represent the
row and column indices of the range image, while Λmax and Λmin

denote the maximum and minimum vertical angles of the LiDAR’s
FoV, respectively. Through these steps, the point cloud reconstruction
problem is transformed into a super-resolution problem for 2D
images. Specifically, it involves forecasting a high-resolution range
image Ih ∈ R1×Hh×W using a low-resolution range image
Il ∈ R1×Hl×W. Subsequently, by combining Ih with the inverse of
Equation 1, we can compute the high-resolution point cloud Ph.

2.2 Network structure overview

The LSPCR method employs a U-shaped network architecture
and integrates information from the encoder and decoder modules
through skip connections, as shown in Figure 1. The network is
composed of multiple CSwin blocks with different parameters.
Initially, LSPCR concatenates the input and maps it to a high-
dimensional feature space. To accommodate the fact that the width
of the range image is much larger than its height, we adopt a row-
based patching approach in the tokenization phase using a 1 × 4
dimension for the range image, which has the advantage of
compressing the horizontal information while retaining the
vertical information as is. This aligns with our goal of preserving
and extending the vertical information in the range image.

The encoder is designed to generate featuremaps through a series of
stages, each of which includes a CSwin transformer block and a patch
merging layer. This configuration reduces the resolution by a factor of
4 while increasing the dimensionality by a factor of 2. At each stage,
multiple CSwin instances are executed locally in parallel while being
interspersed with two multilayer perceptron layers and residual
connections from the input. The decoder, which is responsible for
upsampling, operates in reverse to the encoder and is designed
symmetrically. Initially, the dimensionality of the feature map is
reduced by a factor of 2 and the resolution is expanded; here, skip
connections are employed to retain the existing geometric information.
At the final stage, a single-channel range image with high resolution is
obtained. The final part of the network includes a 1 × 1 convolutional
layer followed by a leaky rectified linear unit (ReLU) activation layer and
a pixel shuffle layer. Then, another 1 × 1 convolutional layer is used to
obtain the final projection. The pixelwise L1 loss is used as the loss
function for training the LSPCR model.
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2.2.1 CSwin transformer block
CSwin offers several advantages for processing range images, as

depicted in Figure 2A. By calculating the self-attention in both
horizontal and vertical directions, CSwin captures the local details
and integrates the global information effectively. It is particularly well-
suited for range images, which have unique geometric and depth
characteristics, as it can extract features in the high-resolution vertical
direction finely while maintaining the efficiency in the horizontal
direction. CSwin accurately captures the edges of sharp objects while
avoiding smoothing issues as well as preserving the fine structures and
geometry. Its multiscale feature extraction capability allows handling
different depths and distances to enhance the reconstruction accuracy
and robustness of complex scenes.

This method involves initial partitioning of the input feature map
into horizontal and vertical stripes of equal widths. These vertical and
horizontal stripes form cross-shaped windows, from which the self-
attention is computed. The computations within these stripes are
performed in parallel. Initially, the input features X ∈ R(H×W)×C are
linearly projected onto K heads in the CSwin self-attention
mechanism. Local self-attention is then calculated for each head

within the horizontal or vertical stripes. The input features X are
divided intoM non-overlapping horizontal stripes [X1, X2, . . . , XM]
of equal widths sw for horizontal self-attention, where each stripe
contains sw × W tokens. The queries, keys, and values for the k-th
head are denoted as Qk,Kk, andVk, respectively, with dk dimensions.
The output of the self-attention for the horizontal stripes for the k-th
head is given by Equations 2, 3 as follows:

Yi
k � Attention XiW

Q
k ,XiW

K
k , XiW

V
k( ) (2)

H − Attentionk X( ) � Y1
k, Y

2
k, . . . , Y

M
k[ ] (3)

where Xi ∈ R(sw×W)×C, M � H
sw, and WQ

k ,W
K
k ,W

V
k ∈ RC×dk . The

process of self-attention calculation for the vertical stripes is
similar to that for the horizontal stripes. The output for the k-th
head is denoted as V − Attentionk(X). The stripe width sw is a
crucial parameter in CSwin. Based on the depth of the network,
smaller widths may be used for the shallow layers, while larger
widths are applied to the deeper layers.

We also use the relative positional encoding (RPE) method, which
enhances positional encoding by incorporating relative positional

FIGURE 1
Network architecture details of the proposed LSPCR method employing symmetric designs for the encoder and decoder. The basic unit of the
encoder consists of two CSwin transformer blocks and a patch merging layer to reduce the spatial resolution of the feature map. The basic unit of the
decoder includes a patch splitting layer and two subsequent blocks to restore the resolution. The image sizes are 16 × 256 × 96,8 × 128 × 192,4 × 64 ×
384, 2 × 32 × 768 corresponding to height × width × number of channels. Additionally, for better data adaptability, the range images are
preprocessedwith a logarithmic transformation before being input to the network. The figure shows the original sparse point cloud, low-resolution range
image, high-resolution image, and reconstructed dense point cloud. The elliptical dashed lines directly highlight the details of the point cloud
reconstruction.

Frontiers in Physics frontiersin.org03

Tang et al. 10.3389/fphy.2024.1474797

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1474797


information directly in the self-attention calculation. RPE captures the
spatial structure and relative positional relationships among image
data, which are crucial for visual tasks. The method entails application
of a relative position bias to the attention mechanism to improve the
model’s ability to generalize to images of different sizes and resolutions.
Given the input features X ∈ R(H×W)×C, let Q,K, and V be the linear
projections for the queries, keys, and values, respectively. Then,
Q � XWQ, K � XWK, and V � XWV, where WQ, WK, and
WV ∈ RC×dk are the linear transformation matrices for the queries,
keys, and values, respectively. In the RPE method, a relative position
bias matrix Γ ∈ Rn×n is calculated, in which each element Γij represents
the relative position bias between positions i and j. The attention score
matrix is given byA � QKT��

dk
√ + Γ. The attention output is then computed

by normalizing the score matrix with the softmax function as
Attention(Q,K,V) � softmax(A)V. Specifically, the attention
output is obtained by Equation 4.

Z � softmax
QKT��
dk

√ + Γ( )V (4)

The relative position bias Γij is typically computed using a learnable
relative position bias vector r as Γij � rj−i. This means that the bias
depends only on the relative position difference j − i and effectively
captures the relative position information when calculating
attention weights.

2.2.2 Monte Carlo dropout
Monte Carlo (MC) dropout is an uncertainty estimation technique

used to simulate different model parameters by retaining the dropout
layers during the inference phase and performing the predictions T
times. The model parameters follow a Bernoulli distribution, and the
final prediction is obtained by averaging theT predictions [29]. Letf be
the model output when given an input x with parameters θ. For the
input x, T forward passes are performed with the dropout enabled each
time as ŷt � f(x, θt), for t � 1, . . . , T (T � 40 in our work); here, θt
represents the model parameters with dropout applied during the t-th
forward pass. The final prediction result is the average of these outputs,
as expressed in Equation 5.

�y � 1
T
∑T
t�1

ŷt. (5)

The uncertainty estimate can be obtained by calculating the variance
or standard deviation of these prediction results as given by
Equation 6.

σ̂2 ŷ( ) � 1
T
∑T
t�1

ŷt − �y( )2. (6)

For the LiDAR point clouds, we can interpret uncertainty as the
noise in the estimation of the 3D coordinates. Therefore, by employing
a predefined threshold parameter λ, the noisy points can be eliminated
to acquire the final prediction †based on the decision rule specified in
Equation 7. This performance is shown in Figure 2B.

† � �y, if�σ < λp�y
0, otherwise

{ (7)

3 Experiment

3.1 Setup details

Experiments were conducted on the real-world KITTI dataset to
evaluate the performance of the proposed method. The data used for
training and testing were generated by creating randomly positioned
range images from raw LiDAR data. Here, 30,000 samples were
selected for training, and 3,000 samples were used for testing. The
16-line LiDAR point cloud data were extracted uniformly from 64-
line LiDAR point clouds to prevent spatial overlap as sequential
images were not employed in this study. The experiments were
conducted with the PyTorch framework on an NVIDIA GeForce
RTX 4090 graphics processing unit. All experiments involved 4 ×
point cloud data augmentation (from 16-channels to 64-channels), a
batch size of 16, and a default of 650 training epochs. AdamW was
chosen as the optimization method with a learning rate of 5e − 4 and
weight decay factor of 0.01.

FIGURE 2
(A) CSwin transformer block and (B) Monte Carlo dropout performance.
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The mean absolute error (MAE) was evaluated for all pixels in
a generated 2D range image using Equation 8. The performance
was also assessed on the basis of the 3D points reconstructed by
the neural network using the Chamfer distance (CD) to measure
the Euclidean distance between two point clouds, as shown in
Equation 9. Additionally, the point cloud was voxelized with a
voxel size of 0.1m. A given voxel was classified as occupied if it
contained at least one point cloud. The intersection over union
(IoU) was then computed based on the occupancy rate.

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (8)

where yi is the i-th true value, ŷi is the i th predicted value, and n is
the number of samples.

dCD Ω1,Ω2( ) � 1
|Ω1| ∑

x∈Ω1

miny∈Ω2‖x − y‖22 +
1

|Ω2| ∑
y∈Ω2

minx∈Ω1

‖y − x‖22
(9)

where Ω1 and Ω2 are two point cloud sets; |Ω1| and |Ω2| are the
numbers of points inΩ1 andΩ2, respectively; ‖x − y‖2 indicates the
distance between the points x and y.

3.2 Experiments

3.2.1 Results
We selected nine state-of-the-art (SOTA) methods for comparison

with the proposed approach, and the quantitative results of our
experiments are presented in Table 1. It is noted that LSPCR
achieves the best performance for all three metrics. Traditional
interpolation methods perform worse than deep learning, which also
indicates that the non-adjacency in point cloud data is difficult tomodel

directly. In addition, it is worth noting that the MAE for the 2D image
does not exactly correlate directly with the 3D metrics; for example,
LIDAR-SR has better MAE results but performs worse in terms of the
IoU andCD. This suggests that there are a large number of invalid noise
points between real objects.

To evaluate the complexity of the models, we elaborated the
model parameter numbers and inference times for single samples.
Table 2 summarizes the specific values of the numbers of parameters
for the different models and their inference times for a single sample.
Swin-IR has fewer parameters as its decoding part is referenced to
ResNet. LiDAR-SR’s network design is more similar to that of
LSPCR. ILN has the least number of parameters because of the
learned interpolation weights. In addition, the inference speeds are
as expected, with ILN demonstrating the fastest inference, LiDAR-
SR and LSPCR showing similar inference speeds, and Swin-IR
having the slowest inference.

3.2.2 Ablation studies
Table 3 shows the results of our ablation experiments. We

observed the effects of CSwin by replacing the CSwin module
with the ViT module and deleting the MC module. The table
clearly shows the superior performance with the CSwin and MC
modules, which is in line with our expectation. Compared to RGB

TABLE 1 Quantitative comparisons between state-of-the-art LiDAR and image super-resolution methods. Identical data splits were used for training and
evaluation of all methods.

Model MAE IoU CD

Bilinear 2.0892 0.1035 0.5934

Cubic 2.8580 0.0957 0.8307

Super-resolution neural operator (SRNO) 0.8350 0.1986 0.4368

Hybrid Attention Transformer (HAT) 0.6856 0.1992 0.2483

Image Restoration Using Swin Transformer (SWIN-IR) 1.2972 0.2685 0.7244

SR-ResNet 1.5493 0.2365 0.8032

Implicit LiDAR Network (ILN) 1.0528 0.3289 0.2756

Local Implicit Image Function (LIIF) 0.6143 0.3186 0.1891

Lidar Super-resolution (LIDAR-SR) 0.5674 0.1020 0.2141

LSPCR (Ours) 0.4143 0.4133 0.1253

TABLE 2 Computational complexity of the proposed LSPCR.

Model Swin-IR LiDAR-SR ILN LSPCR(Ours)

Number of parameters 11.8 M 34.6 M 1.3 M 33.1 M

Inference time 0.91 s 0.72 s 0.52 s 0.61 s

TABLE 3 Ablation study results.

Blocks MC MAE IoU CD

CSwin × 0.4196 0.4095 0.1306

CSwin ✓ 0.4143 0.4133 0.1253

ViT × 1.4796 0.2796 0.2765

ViT ✓ 1.4698 0.2895 0.2568
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datasets, LiDAR datasets usually have low volumes, and ViT lacks
the ability to focus on local features; this weakens ViT’s performance
on LIDAR datasets. In addition, the use of MC dropout shows some
improvements in all metrics, indicating its effectiveness.

3.3 Discussion

Figure 3 depicts the results of different methods. We selected
five types of scenes (vehicles, walls, empty street, road signs, and

FIGURE 3
Detailed comparisons with images from the KITTI dataset demonstrate the performances of the LSPCR and state-of-the-art methods. Different
types of point cloud details (vehicles, walls, empty street, road signs, and trees) were selected for comparison. The results show that the point clouds
obtained through LSPCR are more accurate and have significantly fewer noise points.
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trees) to demonstrate the performance of the LSPCR method. The
red dashed lines show the details that we focus on. For instance, in
the case of vehicles, LSPCR significantly restores a better profile,
particularly around the A-pillar. It is clear in Figure 3 that the
direct interpolation approach of traditional methods leads to
large amounts of invalid noise, which are mitigated well by
deep-learning methods owing to their implicit modeling
capabilities; among the deep-learning methods, LSPCR achieves
the best visual effects. Additionally, LSPCR clearly recovers
the outline of the vehicle, details of the wall, shape of the
road sign, and the tree. Meanwhile, the point cloud noise
reconstructed by LSPCR is significantly less than those of other
deep-learning methods, which is also consistent with the
performance for the 3D evaluation metrics. We counted the
point clouds with more distinct features and provide specific
evaluation results in Table 4; the data in the table show that
the LSPCR method produces stable reconstruction results under
different conditions.

4 Conclusion

This work addresses the problem of enhancement of 3D point
cloud data by transforming reconstruction into a super-resolution
task for 2D range images. A novel LiDAR point cloud
reconstruction method called LSPCR is proposed here, which
converts 3D point clouds to 2D range images before
upsampling them. LSPCR is designed on the basis of the Swin
transformer by optimizing the patch partitioning and attention
modules to better accommodate the features of range images.
Experiments were performed with images from the real-world
dataset KITTI, and the results demonstrate that LSPCR
outperforms traditional interpolation methods while achieving
better performance over extant deep-learning methods.
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