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Introduction: This paper investigates the impact of differential rotation on the
bulk properties and onset of rotational instabilities in neutron stars at finite
temperatures up to 50 MeV.

Methods: Utilizing the relativistic Brueckner-Hartree-Fock (RBHF) formalism in
full Dirac space, the study constructs equation of state (EOS) models for hot
neutron star matter, including conditions relevant for high temperatures. These
finite-temperature EOS models are applied to compute the bulk properties of
differentially rotating neutron stars with varying structural deformations.

Results: The findings demonstrate that the stability of these stars against bar-
mode deformation, a key rotational instability, is only weakly dependent on
temperature. Differential rotation significantly affects the maximum mass and
radius of neutron stars, and the threshold for the onset of bar-mode instability
shows minimal sensitivity to temperature changes within the examined range.

Discussion: These findings are crucial for interpreting observational data from
neutron star mergers and other high-energy astrophysical events. The research
underscores the necessity of incorporating differential rotation and finite
temperature effects in neutron star models to predict their properties and
stability accurately.
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1 Introduction

Neutron stars provide a unique, naturally occurring laboratory for studying matter at
extreme pressures and densities not reproducible by experiments in terrestrial laboratories
(see, for instance, [1–3]). The cold, highly isospin asymmetric matter within the core of a
massive neutron star can reach densities up to an order of magnitude higher than nuclear
saturation density. During a binary neutron star merger event, the resulting matter may
promptly collapse into a black hole or form a remnant neutron star. If formed, the remnant
star is characterized by a highmass, extreme temperatures on the order of 50–100MeV, and
rapid differential rotation [4–7]. These massive, differentially rotating remnant stars may
also deviate from spherical or axial symmetry by exhibiting extreme triaxial deformations.
The structural deformation, thermal pressure, and differential rotation allow the remnant to
remain stable on short, dynamical timescales, for masses that would be otherwise unstable
in the static and uniform-rotation cases.

Differential rotation in neutron stars has been explored in the literature through
numerical simulations [8–11], with more recent studies incorporating finite temperature
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equation of state (EOS) models [12, 13]. The inclusion of
temperature when modeling the EOS of neutron star matter,
however, is a formidable task. Theoretical modeling of neutron
star matter as a dense, many-body system can be done in a
phenomenological or ab initio framework [3, 14–16, 16–18, 20].
Phenomenological models employ density functional theories with
effective nucleon-nucleon (NN) interactions to reproduce the
empirical saturation properties of symmetric nuclear matter while
adhering to constraints extracted from nuclear physics and
astrophysics [19, 21–23]. In contrast, ab initio methods use
realistic NN interactions determined by nucleon-nucleon
scattering data and the properties of the deuteron. Relativistic ab
initio methods, such as the relativistic Brueckner-Hartree-Fock
(RBHF) approximation, closely reproduce the saturation
properties of empirical data [24–29]. The RBHF approximation
couples the propagation of baryons to the many-body background
and encapsulates dynamical correlations between baryons,
computed using a relativistic scattering (T) matrix. Importantly,
the RBHF method does not involve adjustable parameters,
distinguishing it from many phenomenological models.

While most studies using the RBHF approximation are
conducted at zero temperature, our previous work [30] extended
the approximation to model nuclear matter at finite temperatures,
where EOS models were derived in different temperature regimes.
The nuclear EOS models incorporate finite temperatures in a self-
consistent manner, unlike previous studies that added thermal
effects to models of cold nuclear matter [31–33]. This framework
ensures a more comprehensive and accurate representation of the
thermodynamic properties of dense nuclear matter. In previous
work, these EOS models were used to determine bulk properties of
non-rotating, uniformly rotating, and differentially rotating
neutron stars.

In this paper, we expand on previous work by exploring more
deformed stars and dynamical rotation instabilities. This paper is
organized as follows: Section 2 describes the theoretical framework
for deriving EOS models at finite temperatures using the RBHF
approximation and for constructing equilibrium models of
differentially rotating stars. Section 3 presents the calculated
results, where Section 3.1 shows stellar sequences over ranges of
structural deformation, Section 3.2 discusses the stability of
calculated models to dynamical bar mode excitation, Section 3.3
presents density and frequency profiles for stars with high degrees of
differential rotation and structural deformation, and Section 3.4
discusses how various approximations introduced in the numerical
calculations may influence the presented results. Section 4 gives a
summary of the work presented.

2 Theoretical framework

This section discusses the theoretical framework for
constructing equation of state (EOS) models for neutron star
matter at finite temperatures using the relativistic Brueckner-
Hartree-Fock (RBHF) theory. The EOS models are used as input
to construct equilibriummodels of differentially rotating objects, for
which the theory is described below.

2.1 Relativistic Brueckner-Hartree-Fock
theory at finite temperatures

The essential structure of modeling nuclear matter using RBHF
theory is outlined in this section. A more detailed explanation of the
approach can be found in Poschenrieder and Weigel [24]; Weber
[14], with finite temperature extensions given in our previous work
[30, 34]. Nuclear matter at supranuclear densities can be described
as a complex, many-body system whose dynamics are governed by
the Lagrangian density:

L � LN +∑
M

LM + LMN( ),

where LN denotes the Lagrangian of non-interacting nucleons, LM

is the Lagrangian density of different free meson fields, and LMN

describes the interaction between nucleons and mesons. In the
relativistic framework, nucleons are treated as effective Dirac
particles, which are described by the relativistic Dirac equation.
The equations of motion for the various particle fields within the
many-body system are derived from the Euler-Lagrange equation
and solved using the Martin-Schwinger hierarchy of coupled
Green’s functions [35].

The formal structure of the RBHF approach is to solve a system
of highly nonlinear, coupled equations, which include the Dyson
equation for the two-body Green’s function G1, a Bethe-Salpeter
type integral equation for the scattering matrix T, and the equation
for the self-energy Σ. In this formalism, the Dyson equation is used
to determine the two-body Green’s function G1 for all nucleons as:

p/ −m − Σ p( )[ ]G1 p( ) � 1,

where p/ � γμpμ � γμgμ]p] � γ0p0 − ∑3
i�1γipi and γ0 and γi are the

Dirac matrices. Following the determination of the G1, the in-
medium scattering matrix T is determined with Bethe-Salpeter
type integral equation:

T P;p, p′( ) � V p − p′( )
+ ∫ d4p′′

2π( )4 V p − p′′( )Λ P

2
+ p′′,

P

2
− k′′( )T P;p′′, p′( ),

(1)
where Λ is the intermediate nucleon-nucleon propagator and V
represents the repeated sums of two-particle interactions given by a
one-boson-exchange (OBE) potential, which describes the
interaction among two nucleons in terms of the exchange of
scalar, pseudo-scalar, and vector mesons. In this work, we use
the so-called Bonn B potential [36] to describe the OBE
interaction, which employs a pseudoscalar type of pion-nucleon
coupling. This potential is widely used in high-density nuclear
matter studies due to its reliability and numerical stability,
particularly in RBHF theory. While newer relativistic OBE
potentials have been proposed (e.g., in [37]), the Bonn-B
potential has been extensively tested in dense nuclear
environments, making it a robust and reliable choice for
modeling the equation of state under extreme conditions.

The final coupled equation in the formal scheme is for the self-
energy Σ, written in momentum space as:
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Σ p( ) � i

2π( )4 ∫ d4p′ 〈p − p′
2

∣∣∣∣∣∣∣∣T p + p′( ) p − p′
2

∣∣∣∣∣∣∣∣ 〉 −〈p − p′
2

∣∣∣∣∣∣∣∣T p + p′( ) p′ − p

2
〉

∣∣∣∣∣∣∣∣[ ]G1 p′( ).

The self-consistent calculations are carried out using a complete
basis of particles (Φλ) and antiparticles (θλ) to decouple the integral
equations and make the two-body propagator Λ diagonal, where
λ � ± 1/2 are the helicity eigenvalues.

The particle propagator Λ in Equation 1 takes the form of the
Brueckner propagator, which is defined as the following at finite
temperatures:

Λ �p, �p′;P0( ) � 2π
f | �p|( )f | �p′|( )

P0 − ω1 | �p|( ) − ω1 | �p′|( ),
where f signifies the Fermi-Dirac distribution functions, given by:

f1 �p( ) � 1

eβ ω1 �p( )−μ( ) + 1
,

f2 �p( ) � 1

eβ −ω2 �p( )+μ( ) + 1
,

where “1” indicates the positive energy states and “2” indicates the
thermally-excited negative energy states. We recall here that at finite
temperatures, the behavior of nuclear matter undergoes important
modification, attributed to thermal baryonic excitations surpassing
the Fermi surface. As T → 0, the Fermi-Dirac distribution for
positive energy states becomes:

f1 �p( ) → Θ μ − ω1 �p( )( ),
and for negative energy states, f2 → 0.

An elegant technique used to make the many-body equations
numerically tractable and to calculate the key quantities of many-
body systems is to utilize the spectral representation of the G1

function [24]. G1 can then be defined in Fourier space at finite
temperatures as [14, 38]:

G1 p0, �p( ) � ∫ dω
Ξ ω, �p( )

ω − p0 − μ( ) 1 + iη( )
− 2iπsign p0 − μ( )Ξ p0 − μ, �p( )

eβ|p0−μ| + 1

where Ξ represents the spectral function which is dependent on the
single-particle energy ω, μ is the nucleon chemical potential, and η is
used to circumvent a singularity occurring as integrals are carried
out in the complex plane. The temperature inclusion arises through
β � 1/kBT, where kB is the Stefan-Boltzmann constant and T is the
temperature.

Once a self-consistent solution to the coupled system of
equations is found, the self-energy Σ and spectral function A are
used to determine the EOS. The number density ρ of the system
follows from:

ρ � 4

2π( )3 ∫ d3pΞ0 ω, �p( )f p( ),
where Ξ0 is the time-like component of the spectral function and f
denotes the Fermi-Dirac distributions. The pressure of the system at
finite temperatures is determined from the free energy per nucleon,
denoted as F, which is defined as:

F ρ, T( ) � U ρ, T( ) − TS ρ, T( ),

where U is the internal energy, T is the temperature, and S is the
entropy ter Haar and Malfliet [39]. In this approach, T is held
constant and S is determined by:

S ρ, T( ) � −1
2π( )3ρ∫ d3p 1 − f( )ln 1 − f( ) + f ln f( )[ ]. (2)

Both particles and antiparticles contribute to S, but the antiparticle
contribution is very small (f2 ≪f1). Therefore, Equation 2 can be
approximated with only the particle contribution, f � f1. Once the
entropy S, and subsequently the free energy F, are calculated, the
pressure is derived as:

P ρ, T( ) � ρ2
∂F ρ, T( )

∂ρ
.

Using the outlined theory, two models for the EOS of neutron
star matter are constructed at temperatures T = 10 and 50 MeV,
shown visually in Figure 1. As shown in previous work Farrell and
Weber [30], the maximum mass of each EOS for non-rotating and
uniformly rotating stellar sequences at their mass-shedding limit is
over 2 M⊙, as required by observational constraints. These models
will be used as input to determine equilibrium models for
differentially rotating objects, of which the formalism is
discussed below.

2.2 Differential rotation

The theoretical framework for modeling differential rotation in
neutron stars described in this work follows from the framework
laid out by Komatsu et al. [40], which was then modified in Cook
et al. [8] (referred to as CST throughout the text). The equations
shown in this section directly follow the modifications
introduced in CST.

FIGURE 1
Pressure as a function energy density for the two EOS models at
T � 10 and 50 MeV.
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To model differentially rotating neutron stars, we begin with the
definition of the line element [8]:

ds2 � −eγ−ρdt2 + e2α dr2 + r2dθ( ) + eγ−ρr2 sin2 θ dϕ − ωdt( )2, (3)
where the metric potentials ρ, γ, α, and ω are dependent on both the
radial r and polar θ coordinates. For both uniform and differential
rotation, Equation 3 models neutron stars as stationary,
axisymmetric configurations of a (self-gravitating) perfect fluid
[8]. Under the assumption of neutron star matter as a perfect
fluid, sources of non-isotropic stresses such as magnetic fields or
heat transport are ignored [41]. This assumption also allows neutron
star matter to be described by the energy-momentum (or stress-
energy) tensor given by:

Tκσ � ϵ + P( )uκuσ + gκσ P,

where u is the fluid’s 4-velocity, κ and σ are indices ranging from 0 to
3, and ϵ and P are given by the underlying EOS. Equilibrium models
for neutron stars must obey the equation of hydrostatic equilibrium
as Einstein’s field equation, given as:

Rκσ − 1
2
Rgκσ � 8πTκσ ,

where Rκσ is the Ricci tensor, R is the curvature scalar, and gκσ is the
metric tensor.

Equilibrium models for neutron stars must obey the equation of
hydrostatic equilibrium, which has the form:

h P( ) − hp � ∫P

Pp

dP

ϵ + P
� ln ut − ln ut

p − ∫Ω

Ωc

F Ω( )dΩ,

where h(P) is enthalpy as a function of the pressure, ut is the
time-like component of the 4-velocity uμ, and the subscripts p
and c denote the variable’s value at the pole or center,
respectively. The integrand of the final integral term, F(Ω), is
the function that defines the rotation law of the matter in the case
of differential rotation. Following CST, we define F(Ω) as a linear
rotation law:

F �Ω( ) � A2 �Ωc − �Ω( ), (4)
where A is a parameter that dictates the degree of differential
rotation within the star. In the case of uniform rotation,
Equation 4 disappears as the value for the frequency at the
center of the star is constant throughout (i.e., Ωc � Ω). It is
important to note that the choice of rotation law directly impacts
the maximum mass for a given EOS. While many implementations
of CST use the linear rotation law in Equation 4 (see, for example,
[42, 43]), other studies of differential rotation have explored the
impact of using either modified versions of the linear law or non-
linear rotation laws, as shown in Galeazzi et al. [10]; Hanauske et al.
[11]; Zhou et al. [44].

Using the linear rotation law in Equation 4, the equation of
hydrostatic equilibrium can be integrated to give:

h P( ) − hp � 1
2

γp + ρp − γ − ρ − ln 1 − v2( ) + Â
2 Ω̂ − Ω̂c( )2[ ], (5)

where Â is the rotation parameter scaled as Â � A/�re. The matrix
of angular frequency Ω̂ can be derived using the
following equation:

Ω̂c − Ω̂( ) � 1

Â
2

Ω̂ − ω̂( )s2 1 − μ2( )e−2ρ
1 − s( )2 − Ω̂ − ω̂( )2s2 1 − μ2( )e−2ρ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

As the rotation parameter A appears throughout the numerical
scheme scaled and inverted, we follow the lead of previous work
which parameterized calculated sequences of differentially rotating
stars by values of Â

−1
= 0.3, 0.5, 0.7, and 1.0 [8, 10]. Uniform rotation

is obtained in the limit Â
−1 → 0, and an upper bound of the scaled

rotation parameter in this study is Â
−1 � 1.0.

In the numerical scheme, the metric potentials (ρ, γ, ω̂, and α)
are used to determine a value for the radius at the equator, re of
the star:

�r2e �
2 h �P �ϵc( )( ) − hp[ ]

γ̂ + p + ρ̂p − γ̂m − ρ̂m
, (6)

which is equivalent to Equation 5 evaluated at the location of the
maximum (denoted by subscript m) density of the star. In CST,
this location is assumed to be at the star’s center. The equation for
updating re changes when the maximum density within the star is
not in the center, which is the case in very deformed
configurations. We modify the original CST algorithm by
instead fixing the maximum interior density, thus redefining
Equation 6 as:

r2e �
2 h Pm( ) − hp( ) + ln 1 − v2m( ) − Â

2 Ω̂m − Ω̂c( )2
γ̂p + ρ̂p − γ̂m − ρ̂m[ ] ,

where the subscriptm denotes the quantity’s value at the coordinates
of the maximum density.

3 Results

Equilibrium models of differentially rotating stars at finite
temperatures are computed using the theoretical formalism
described in the sections above. For the two EOS models at T �
10 and 50 MeV, both stellar sequences and individual stellar models
are constructed to explore the impact varying degrees of differential
rotation has on bulk properties and structural deformation.
Computed models are tested for stability against the dynamical
bar-mode instability. It is important to note that while the core is
treated at finite temperatures, the crust of the neutron star is
nevertheless treated at zero temperature, which may impact the
properties of neutron stars at the high-temperature end of this
study.Additionally, approximations are introduced both in the
determination of the finite temperature EOS models using RBHF
theory and when numerically modeling differential rotation in
neutron stars. These approximations, which may introduce some
level of uncertainty in the results presented in this section, are
discussed in detail below in Section 3.4.

3.1 Stellar sequences: Varying the ratio of
polar to equatorial radius

In this section, stellar sequences are constructed over a range
of constant central densities for the two EOS models at
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temperatures of 10 and 50 MeV. These sequences are calculated
with a fixed value for the rotation parameter set the degree of
differential rotation; as mentioned in Section 2.2, sequences are
parameterized by fixing Â

−1
to be 0.3, 0.5, 0.7, or 1.0. When

assuming the maximum density of the star is no longer in the
center, more extreme configurations with lower values of rratio
can be calculated. Sequences presented in this section are also
calculated over a range of rratio values to demonstrate the
parameter’s impact on the maximum mass for a given EOS.

For each EOS, sequences over a range of constant central
densities are computed for varying values of rratio. These
sequences are shown for the EOS model with temperature T �
10 MeV in Figure 2 and for T � 50 MeV in Figure 3. In both
figures, a sequence of stars rotating uniformly at their mass-
shedding limit is plotted for comparison. As echoed in previous
work, more extreme differential rotation (Â−1 → 1.0) paired with
more extreme structural deformation (rratio → 0.0) results in
higher masses at lower central densities, which then taper off
to the Kepler limit at higher central densities. This trend is also
encountered in Morrison et al. [43], who make similar
modifications to the CST algorithm.

3.2 Dynamical bar-mode instability

Rotating neutron stars formed from a core-collapse suprenova
(CCSN) or binary stellar mergers may experience nonaxisymmetric
instabilities that directly impact their rotation rates and overall
stability. Previous studies (see [45, 46]) in Newtonian gravity
have shown rotational instabilities arise from non-radial toroidal
modes, i.e., eimϕ (m � ± 1, 2, . . .), which result in the stability
parameter, or the ratio of rotational (T) to gravitational (W)
energy β � T/|W|, exceeding some critical value βc. These
rotational instabilities are likely to impact a star’s gravitational
radiation signal, making the study of such instabilities an
important topic in the wake of new gravitational wave detectors.
In this section, we will focus on determining if calculated stellar
models are subject to the so-called bar-mode instability, where
m � ± 2, which is expected to be the fastest-growing mode and
the subject of many instability studies for both uniformly and
differentially rotating neutron stars.

Twomechanisms cause rotating stars to be unstable to bar-mode
deformation: secular and dynamical instabilities. In Newtonian
theory, uniformly rotating incompressible neutron stars become

FIGURE 2
Mass vs. central density of sequences of differentially rotating neutron stars constructed using the EOS model at T � 10 MeV. The four panes show
values for four instances of the rotation parameter Â

−1
over a range of central densities and rratio values compared to a sequence of uniformly rotating stars

at the respective Kepler limit (see text for more details).
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secularly unstable to bar-mode deformation at a critical value of
βc ≥ 0.14 with similar findings in studies of post-Newtonian theories
[47]. In general, the secular instability grows only in the presence of a
small dissipative mechanism like viscosity or gravitational radiation
at lower rotation rates [48]. The secular instability usually has a
longer growth time when compared to the dynamic timescale of the
system. A similar critical value of βc has been observed in numerical
studies of relativistic stars but is also dependent on the compaction
(M/R) of the star and the dissipative mechanism. For example,
viscosity-driven secular instability has been shown to occur at
βc > 0.14 in more compact configurations with higher rotation
rates, but gravitational radiation-driven instabilities occur at
βc < 0.14 at lower rotation rates. A more in-depth review of this
topic is given by Paschalidis and Stergioulas [49].

The dynamical bar-mode instability occurs independent of any
dissipative mechanism and with a growth rate determined by the
dynamical timescale of the system, which is generally faster than the
timescale of growth for secular instabilities. Therefore, numerical
simulations of hydrodynamical equations are necessary to
determine the onset threshold of the dynamical bar-mode
instability. Many simulations have been carried out in Newtonian

theory, the consensus of which gives the critical value βc ≥ 0.27 [4].
Simulations of the dynamical bar-mode instability in general
relativity are less common, as solving the nonlinear
hydrodynamical equations in full relativity is more complex.
However, there have been reliable studies carried out by Shibata
and Uryu (2000); Saijo et al. [50] for uniformly rotating stars and by
Bodenheimer and Ostriker [51]; Shibata et al. [52, 53]; Camarda
et al. [54]; Di Giovanni et al. [55] for differentially rotating stars.

The relativistic simulation of differentially rotating stars carried
out by Shibata et al. [52] finds that the critical value of the stability
parameter for the dynamic bar-mode instability is βc ≈ 0.24 − 0.25,
slightly lower than the Newtonian limit. These simulations were
carried out using the same linear rotation law as in this chapter (and
the proceeding one) for similar values of rratio. Therefore, we adhere
to their specified threshold of β to determine whether differentially
rotating stars are stable or unstable to the dynamical bar-mode
deformation. Specifically, we use the upper limit for the critical
threshold, so stars deemed unstable in this section will have a
stability parameter βc ≥ 0.25.

A visual representation of stable and unstable models using this
criterion at T � 50 MeV for two degrees of differential rotation is

FIGURE 3
Mass vs. central density of differentially rotating neutron stars constructed using the EOSmodel at T � 50 MeV. The four panes show values for four
instances of the rotation parameter Â

−1
over a range of central densities and rratio values compared to a sequence of uniformly rotating stars at the

respective Kepler limit (see text for more details).
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shown in Figure 4. The two panels in each row show the same
information, mass vs. central density for a range of rratio values,
where the figures in the right column categorize each stellar model as

stable with a blue square or unstable with a red dot based on the
calculated stability parameter for each stellar model. The top row
presents a lesser degree of differential rotation (Â−1 � 0.3), where
81.6% of calculated stellar models are considered stable against
dynamical bar-mode deformation. In contrast, the bottom row has
the highest degree of differential rotation (Â−1 � 1.0), and the
increase in differential rotation decreases the percentage of stable
models to 67.2%. For both cases of differential rotation, the majority
of the unstable configurations have small values for rratio, a trend
that will be echoed in the next section.

Table 1 gives the percentage of unstable models and the average
rratio of those unstable models for four degrees of differential
rotation for both temperatures of 10 and 50 MeV. The general
trend shows the percentage of unstable models decreases as
temperature increases. For both temperatures, �rratio generally
tends to fall between 0.4 and 0.5. Stars with rratio ≤ 0.5 are
extremely deformed and thus likely vulnerable to dynamical
instabilities. These findings imply temperature plays less of a role
when compared to the star’s deformation on its stability against
dynamical bar-mode excitation.

FIGURE 4
Mass vs. central density of differentially rotating stellar sequences using the EOS at T � 50 MeV. The top row shows a lesser degree of differential
rotation, characterized by the rotation parameter Â

−1 � 0.3, and the bottom row shows a higher degree of differential rotation, characterized by Â
−1 � 1.0.

The left plots showmass vs. central density for various values of rratio as shown in Figure 3, while the right plots show the same values color-coded based
on the value of the star’s stability parameter β � T/|W|. Stars are deemed “unstable” if β≥0.25 (see text for more details).

TABLE 1 The percentage of unstable models and the average rratio, �rratio, of
unstable models for four degrees of differential rotation EOS models at
10 and 50 MeV.

EOS Â
−1

% unstable �rratio

T = 10 MeV 0.3 23.2 0.47

0.5 27.6 0.46

0.7 25.5 0.51

1.0 27.0 0.52

T = 50 MeV 0.3 18.4 0.43

0.5 21.4 0.43

0.7 21.7 0.49

1.0 32.8 0.47
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3.3 Structural deformation

In this section, we examine density and frequency maps of
individual stellar models. For each temperature, two models are
computed: the first with a lesser degree of differential rotation (Â

−1
=

0.3) and the second with a larger degree of differential rotation
(Â

−1
= 1.0). All four models are computed with an rratio = 0.4, a

significant degree of structural deformation. Information on the
stars’ masses, radii, and stability parameters are given in Table 2.

The density and frequency maps for T � 10MeV are shown in
Figure 5, where the top row shows results for Â

−1
= 0.3 and the

bottom for Â
−1 � 1.0. The lesser degree of differential rotation is

shown very clearly in the frequency map, where the difference of
frequency values in the star only spans 320 Hz. In contrast, the
star with a higher degree of differential rotation sees a span of
5,600 Hz from the highest to lowest frequency values. The density
maps show an interesting depiction of the overall structural
deformation. For Â

−1 � 0.3, the star takes an ellipsoid-like
shape, but for Â

−1 � 1.0, the star instead takes a quasi-toroidal
shape. While each star was initialized with the same central
density of 400 MeV/fm3, the star with Â

−1 � 1.0 experiences
much higher densities outside of the center of the star. A

TABLE 2 Bulk properties of highly deformed neutron stars, all with rratio = 0.4, at two temperatures: 10 MeV and 50 MeV. For both temperatures, results are
presented for a small degree of differential rotation (Â−1 � 0.3) and a large degree of differential rotation (Â−1 � 1.0). Calculated properties include the
gravitational mass MG, baryonic mass MB, equatorial radius re, polar radius rp, the ratio of central to equatorial frequency Ωc/Ωe, and stability parameter
T/|W|. The T � 10 MeV entries correspond to Figure 5 and the T � 50 MeV entries correspond to Figure 6; see text for more details.

EOS Â
−1

rratio MG (M⊙) MB (M⊙) re (km) rp (km) Ωc/Ωe T/|W|
T � 10 MeV 0.3 0.4 1.69 1.84 20.41 8.16 1.13 0.01

1.0 0.4 1.91 2.61 12.94 5.18 5.88 0.63

T � 50 MeV 0.3 0.4 1.78 1.93 22.25 8.90 1.13 0.01

1.0 0.4 2.08 2.84 13.65 5.19 5.95 0.75

FIGURE 5
Energy density (left) and frequency (right) contours for individual stellar models at two degrees of differential rotation, constructed using the EOS
model at T � 10 MeV. The top row has a lower degree of differential rotation (Â−1 � 0.3) and the bottom has a higher degree (Â−1 � 1.0).
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similar story is seen for T � 50 MeV in Figure 6 but with even
higher densities observed at the higher temperature.

As shown in Section 3.2, the stability of the star depends not
only on the deformation characterized by rratio but also on the
degree of differential rotation. In Table 2, all four models have the
same value of rratio. For both temperatures, the stars computed
with Â

−1 � 0.3 have stability parameters T/|W| well below the
critical limit of 0.25. However, the stars with Â

−1 � 1.0 are well
above the critical limit for β, where the stability parameter is
0.64 for T � 10 MeV and 0.75 for T � 50 MeV. These stars are
well beyond the threshold for the dynamical bar-mode instability
and thus likely unphysical.

The timescale over which the dynamical bar-mode instability
develops, also known as the dynamical timescale, is proportional to
R3/2

M1/2. While this is not a definite indication of the growth time of the
instability, which would instead require a full simulation in both
time and space (see Ref. [52] for a good example), for extremely
unstable configurations the dynamical timescale can provide some
idea of how long these stars may exist with the bar-mode instability
excited before collapse. For the unstable configuration at T � 10
MeV, the dynamical timescale is ∝ 35.8 s, and for the unstable
configuration at T � 50 MeV, the dynamical timescale is ∝ 34.9 s.

3.4 Key approximations

The preceding sections present results dependent on the the
underlying theoretical frameworks discussed in Section 2, which
employ important approximations, discussed below.

The finite temperature EOS models at T � 10 and 50 MeV are
derived from calculations utilizing the RBHF approximation,
described in Section 2.1. While this method offers significant
improvements over other approaches to modeling relativistic
numerical matter, it still involves key approximations [36]. For
instance, nucleon-nucleon interactions are modeled using OBE
potentials, with the Bonn-B potential selected in this paper for
stability at high densities. Although RBHF theory does not require
adjustable parameters, which is an advantage, it omits higher-order
quantum corrections [56, 57]. One of the most important higher-
order effects missing in RBHF is the inclusion of three-nucleon
forces, which are known to significantly influence high-density
matter [58]. Other potentially influential effects excluded in the
RBHF approximation include higher-order relativistic many-body
corrections, ring diagrams, vertex corrections, self-energy insertions,
and medium polarization effects; a more complete discussion of
these effects can be found in [14, 59, 60].

FIGURE 6
Energy density (left) and frequency (right) contours for individual stellar models at two degrees of differential rotation, constructed using the EOS
model at T � 50 MeV. The top row has a lower degree of differential rotation (Â−1 � 0.3) and the bottom has a higher degree (Â−1 � 1.0).
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Variations in the choice of OBE potential and omission of
quantum corrections, such as three-body forces, can introduce
errors in the RBHF EOS of up to 10%, as demonstrated in
Brockmann and Machleidt [36]. Using chiral effective field
theory, Hebeler and Schwenk [61] and Tews et al. [62]
concluded that including three-body forces affects neutron star
radius and mass predictions by 5%–10%.

In addition, the EOS models include finite temperatures
(10 MeV and 50 MeV), which are essential for modeling
neutron stars formed in extreme events like supernovae or
binary neutron star mergers Steiner et al. [63]. However, as
mentioned before, the neutron star crust is assumed to be at
zero temperature, while the core is modeled at finite
temperatures. This approximation may introduce
inconsistencies in the determination of properties like neutron
star mass and radius, especially in higher temperature regimes. In
particular, the radius increases due to thermal pressure in the
crust, potentially making the star slightly larger.

When modeling differential rotation in neutron stars, the
rotation profile, given in Equation 4, is parameterized by Â

−1
,

representing the degree of differential rotation. This profile, while
consistent with the original CST algorithm discussed in Section 2.2,
is chosen for mathematical convenience rather than based on
astrophysical observations, potentially limiting its accuracy for
real neutron stars. Uncertainties in the choice of the rotation
profile may cause errors of 5%–15% in star mass and radius
predictions; for more on uncertainties related to differential
rotation profiles and their impact on neutron star stability and
mass limits, see Baumgarte and Shapiro [64]. Additionally, the
assumption of axial symmetry is a simplification. In reality,
neutron stars may exhibit more complex geometries, especially
under differential rotation and dynamical instabilities.

For a comprehensive review discussing EOS uncertainties,
neutron star mass-radius relationships, and the challenges of
matching theoretical models with astrophysical data, see Lattimer
and Prakash [65].

4 Discussion and conclusion

In this paper, we present a comprehensive investigation into the
properties of differentially rotating neutron stars at finite
temperatures up to 50 MeV. In Section 2.1, we detailed the
process of constructing models for the equation of state of
neutron star matter at two temperatures, 10 and 50 MeV, using
the relativistic Brueckner-Hartree-Fock (RBHF) formalism
modified to include thermal effects, utilizing the Bonn-B
potential for the one-boson exchange (OBE) interaction. The
inclusion of temperature is essential for the realistic modeling of
extreme astrophysical events, such as binary neutron star (BNS)
mergers or core-collapse supernovae, where differential rotation
is prevalent.

The RBHF approach goes well beyond standard relativistic
mean-field (RMF) calculations and relativistic Hartree-Fock
(RHF) methods. The RBHF formalism includes the relativistic
scattering (T) matrix, which accounts for dynamical correlations
among nucleons that are ignored in RMF and RHF. Furthermore, in
sharp contrast to RMF and RHF, there are no adjustable parameters

in the RBHF approach, making it a more fundamental and
predictive theory compared to RMF and RHF models.

The two EOS models were used as input to the numerical
scheme to determine the bulk properties of differentially rotating
compact objects, focusing on heavily deformed objects characterized
by the ratio of their polar to equatorial radii, rratio. In Section 3.1, we
constructed stellar sequences with varying rratio values (0.8–0.3) over
a range of central densities for all four finite temperature EOS
models. Our results are consistent with previous literature at zero
temperature, demonstrating that a higher degree of differential
rotation (Â−1 → 1.0) results in higher mass stars at lower central
densities compared to lower values of Â

−1
, especially as

rratio decreases.
In Section 3.2, we explored the stability of the calculated stellar

models against rotational instabilities, specifically the dynamical
bar-mode instability. At a temperature of 10 MeV, the average rratio
value for stars unstable against dynamical bar-mode excitement is
0.49. For the higher temperature of 50 MeV, the average rratio for
unstable stars is 0.455. These results highlight that deformation,
characterized by rratio, has a more significant impact on the star’s
stability against dynamical instabilities compared to temperature.

In Section 3.3, we presented individual stellar maps of density
and frequency distributions for two degrees of differential rotation
for each EOS model. As expected, the frequency range for higher
degrees of differential rotation (and higher values of Â

−1
was much

wider. Higher values of Â
−1

also resulted in more pronounced
structural deformations, indicating a strong dependence of the
rotational profile on the degree of differential rotation.Finally, in
Section 3.4, key approximations and their influence on calculated
results are discussed. Variations in the choice of OBE potential and
omission of quantum corrections like three-body forces can
introduce errors in the RBHF EOS of up to 10%, which can, in
turn, affect neutron star radius and mass predictions by 5%–10%.
Additional uncertainty may be introduced by the choice of a linear
rotational profile described in Section 2.2, on the order of 5%–15%
in star mass and radius predictions.In conclusion, our study
underscores the necessity of incorporating differential rotation
and finite temperature effects in neutron star models to predict
their properties and stability accurately. The stability of differentially
rotating neutron stars against bar-mode deformation, a key
rotational instability, is only weakly dependent on temperature.
Differential rotation significantly affects the maximum mass and
radius of neutron stars, and the threshold for the onset of bar-mode
instability shows minimal sensitivity to temperature changes within
the examined range. These findings are crucial for interpreting
observational data from neutron star mergers and other high-
energy astrophysical events (see, for instance, [66–74]).

The insights gained from this research are particularly relevant in
the context of observations from current and future gravitational wave
detectors such as LIGO [75], Virgo [76], KAGRA [77], and the
upcoming Einstein Telescope [78]. Moreover, X-ray and radio
telescopes, including the Chandra X-ray Observatory [79], XMM-
Newton [80], the Very Large Array (VLA) [81], the Square
Kilometre Array (SKA) [82], and the Five-hundred-meter Aperture
Spherical Radio Telescope (FAST) [83] provide crucial observational
data that can further constrain the models presented here.

Future work should extend these models to include additional
physical effects, such as magnetic fields and more sophisticated
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treatments of thermal transport processes, to provide an even more
comprehensive understanding of neutron star dynamics and
stability under extreme conditions.
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