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Introduction: In response to the challenges of small target size, slow
detection speed, and large model parameters in PCB surface defect detection,
LPCB-YOLO was designed. The goal was to ensure detection accuracy
and comprehensiveness while significantly reducing model parameters and
improving computational speed.

Method: First, the feature extraction networks consist of multiple CSPELAN
modules for feature extraction of small target defects on PCBs. This allows
for sufficient feature representation while greatly reducing the number of
model parameters. Second, the C-SPPF module enables the fusion of high-
level semantic expression with low-level feature layers to enhance global
feature perception capability, improving the overall contextual expression of
the backbone and thereby enhancing model performance. Finally, the C2f-
GS module is designed to fuse high-level semantic features and low-level
detail features to enhance the feature representation capability and model
performance.

Results: The experimental results show that the LPCB-YOLOmodel reduces the
model size by 24% compared to that of the YOLOv8 model while maintaining
high precision and recall at 97.0%.

KEYWORDS

printed circuit board, lightweight network, ELAN, defects detection, tiny target
detection

1 Introduction

In recent years, the field of computer vision has witnessed significant advancements in
deep learning techniques and their extensive utilization [1, 2]. Deep learning has proven to
be highly effective in image analysis within the medical domain. Notably, it has successfully
been employed in tasks such as the automatic detection of knee joint synovial fluid [3]
and the identification of human induced pluripotent stem cell-derived endothelial cells
[4]. Similarly, in the realm of industrial automation, the detection of defects on workpiece
surfaces using computer vision has emerged as a crucial research area that has garnered
considerable attention. This technology significantly reduces manual labor costs and offers
advantages such as stability, efficiency, and high accuracy compared to traditional manual
detection methods. Due to the extremely limited size of tiny defects on PCBs (printed
circuit board) and blurry pixel information, accurately and quickly identifying such defects
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poses a major challenge in industry [5]. To meet the real-
time detection requirements of production lines while ensuring
high accuracy and low computational costs, researchers have
continuously explored and designed a series of efficient PCB defect
detection algorithms.

[6] proposed the diagonal feature pyramid (DFP) [7] to enhance
the accuracy of detecting tiny defects while reducing computational
resource consumption. They designed a multiscale neck network
and an adaptive localization loss function to optimize the detection
performance. However, their model was large (69.3M), which
increased the detection accuracy but also required substantial
computational resources. Chen et al. [8] developed a Transformer-
YOLO fusion network model. This algorithm uses an improved
clustering algorithm to optimize anchor generation and adopts
the Swin [9, 10] instead of convolutional neural networks to
capture global dependencies. Moreover, it combines convolution
and attention mechanisms [11] to adjust feature map channels
to highlight key information. However, this algorithm, while
improving accuracy, also has a large number of parameters.
Liao et al. [12] proposed the YOLOv4-MN3 [13] algorithm
for PCB defect detection. By specifically enhancing the core
components of YOLOv4 (You Only Look Once) and training on a
customized dataset, the researchers achieved specific optimizations
in computational efficiency. However, there is still significant
potential for parameter reduction and optimization in their
approach, and further exploration is needed for deep optimization
at the model architecture level.

Ling et al. [14] proposed an improved YOLOv8 model for
identifying dense PCB components. By introducing the C2Focal
module to enhance the backbone network, combining Ghost
convolution to reduce computational costs, and employing the Sig-
IoU loss function to improve bounding box regression, the model
achieved a mean Average Precision ( mAP@0.5) of 87.7% in PCB
component identification. Additionally, the model possesses real-
time detection capabilities with a frame rate of 110 frames per
second. Although the algorithm shows improvements in real-time
performance, the decline in model performance is also noticeable.
Joo et al. [15] proposed the SOIF-DN model to improve small
object detection. By introducing the concept of centrality, the
model enhances the accuracy of bounding box prediction and
adopts an anchor-free approach to simplify the training process,
thereby reducing computational costs. This model significantly
improves the detection accuracy of small objects. However, it does
not show a clear advantage in the task of detecting defects on
PCB surfaces. Chen et al. [16] introduced the NHD-YOLO model,
which optimizes YOLOv8 for product surface defect detection by
incorporating a Selective Feature Pyramid Network (SFPN) and an
Adaptive Decoupled Head (ADH). The improved model enhances
feature transmission and classification-location alignment, making
it particularly suitable for small object detection. However, the
complex architecture increases both training and inference time.

The above studies either focused solely on improving accuracy
leading to large model parameters or aimed at lightweight model
designs resulting in performance degradation. Therefore, achieving
high-precision detection while maintaining efficient inference
speeds remains a pressing challenge. This article proposes a
lightweight design based on the YOLOv8 model and introduces the
Lightweight printed circuit board YOLO (LPCB-YOLO) model to

enhance inference speedwhilemaintainingmodel performance.The
specific improvements are as follows:

1. The generalized efficient layer aggregation network (GELAN)
architecture [17] with the CSPELAN (Cross Stage Partial
Networks Generalized Efficient Layer Aggregation Network)
module consisting of many cross-stage partial (CSP) modules
[18, 19] reconstructs the feature extraction network to make
a lightweight design. This module utilizes CSP’s ability to
reduce redundant computations and efficient semantic feature
utilization to reduce the model size of the backbone network
while obtaining sufficient primary semantic information.

2. The contextual spatial pyramid pooling-faster (C-SPPF)
module was designed. The module is designed to integrate
rich contextual information captured by dynamic context
matrix into the spatial pyramid pooling-faster (SPPF) [20]
process. This integration guides and optimizes the learning
process of the dynamic attention matrix, aiming to strengthen
the ability of the backbone network to express and perceive
global features. This enhancement significantly improves the
feature extraction efficiency of the backbone network on
input data, providing more precise and comprehensive feature
representations for subsequent deep learning tasks.

3. TheCSP layerwith two convolutions (C2f)module is improved
using ghost convolution [21] and self-similarity weights [22],
creating the C2f-GS module. Ghost convolution’s resource
efficient design approach helps maintain model performance
while significantly reducing computational resource
consumption and the number of model parameters,
thereby reducing the number of parameters of the module.
Additionally, self-similarity attention weights enhances the
model’s focus on key regions by leveraging the correlation
between neighboring pixels. These improvements enable
the C2f module to achieve lightweight design while better
integrating high-level semantic features, thereby assisting the
model in better localization and classification tasks.

2 Algorithm description

2.1 YOLOv8 algorithm

YOLOv8 is a state-of-the-art (SOTA) model that builds on
the historical versions of the YOLO series and introduces new
features and improvement points to further enhance performance
and flexibility, making it the best choice for tasks such as target
detection, image segmentation, and pose estimation.

In the preprocessing stage, adaptive image scaling is utilized
to resize input images, while mosaic data augmentation enhances
the robustness of the model. The backbone network incorporates
several key components: the CBS module, C2f module, and
SPPF module. The CBS module stabilizes the model, accelerates
convergence, and mitigates issues related to gradient vanishing.
The C2f module includes skip connections and split operations,
which improve gradient flow and information propagation. The
SPPF module combines features through pooling and convolution,
effectively integrating multi-scale feature information to enhance
feature extraction. The neck utilizes the PAN [23] and FPN [24]
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FIGURE 1
YOLOv8 original network.

structures to process features from the backbone network. These
mechanisms enable comprehensive feature integration through
cross-layer connections in both upward and downward pathways.
For the head, a decoupled structure separates the detection and
classification tasks, with positive and negative samples determined
using scores weighted by classification and regression metrics.
This approach significantly enhances detection accuracy. YOLOv8
significantly improves the detection of small targets and fine
defects. This is especially important for the detection of defects
on PCB surfaces.The structure diagram of the YOLOv8 model
is shown in Figure 1.

2.2 Improved model

To address the issues of large model parameters and high
computational resource consumption encountered during defect
detection with the original model, this paper refines and improves
the network structure to enhance algorithm processing speed and
reduce computational costs. The overall network architecture of the
LPCB-YOLO is illustrated in Figure 2.

First, to address the issue of large model parameters in the
feature extraction part of YOLOv8, this paper introduces CSPELAN
in the backbone section. By leveraging the ability of the GELAN
to be insensitive to depth (where parameters, computations, and
accuracy maintain a linear relationship) and to be lightweight,

sufficient primary semantic information can be ensured while
adhering to the goal of lightweight design. The specific design ideas
and details of the backbone are detailed in Figure 2. Next, the
dynamic context semantics is employed to enhance global context
information using local features, assisting C-SPPF in extracting
higher-level semantic features.

Simultaneously, it captures fine-grained details and coarse-
grained contextual information in the image, aiding in improving
the model’s ability to predict defect locations, sizes, and categories,
thereby enhancing comprehensive defect detection. Finally, to
reduce the computational cost, ghost convolution is used to
reconstruct the C2f module to take advantage of its high resource
utilization, and local self-similarity is used to enhance the feature
focusing capability. This allows the C2f-GS module to focus more
on salient features relevant to the target, assisting the algorithm
in better attending to target areas and thereby improving defect
detection accuracy.

2.3 Improved backbone

The backbone network is a core component in deep learning
models used to extract image features, aiming to find more global
and abstract primary semantic information in image data. In the
YOLOv8 algorithm, the backbone network centers around the C2f
module and is designed following the construction approach of
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FIGURE 2
The overall network structure of YOLOv8 was improved.

CSPDarkNet, which balances model performance, efficiency, and
flexibility but overlooks parameter and computational requirements.
Therefore, this paper reconstructs the backbone network using the
CSPELANmodule as a key building element to address these issues.
The specific details of the module are illustrated in Figure 3.

The ELAN module enhances the backbone network by
controlling the shortest and longest gradient paths, allowing it
to learn more comprehensive primary semantic information. By
employing dense residual structures, the algorithm can delve
deeper to extract more detailed feature representations, providing
the model with greater optimization potential. GELAN extends
and enhances ELAN by redesigning the internal structure to
smooth internal gradients and expending ELAN [25,26] to be
embeddable in any module, thereby increasing its flexibility
and offering more design choices for the backbone. This
paper aims to design a lightweight, high-precision PCB defect
detection model. Considering parameter and computational
constraints, this study combines the CPS module with the
GELAN structure to achieve lightweight feature extraction in
the network.

This study aims to develop a lightweight, high-precision,
comprehensive PCBdefect detectionmodel. Considering the critical
importance of controlling model parameters and computational
complexity for model performance and practical application [27],
this paper integrates the CSP module into the GELAN structure.
This integration aims to leverage the advantages of the CSP module

in reducing computational redundancy and enhancing feature
utilization, along with the strengths of the GELAN structure in
capturing subtle defect features using local attention mechanisms
[28, 29]. This approach ensures that the model combines compact
size with efficient operational characteristics while accurately
identifying surface defects on PCBs.

2.3.1 Improvement of the SPPF module
Spatial pyramid pooling (SPP) effectively avoids image

distortion caused by image region cropping and scaling operations
through multi-scale spatial pooling, thus avoiding the impact on
the final detection results. The SPPF module is a variant of SPP
that replaces multiple image scaling and forward propagation
steps with pooling operations, significantly reducing computational
complexity and time overhead. During this process, SPPF seamlessly
integrates local detail feature representations with global context
information, enhancing themodel’s ability to precisely predict target
locations, sizes, and categories.

Both convolution and pooling operations have fixed-size
receptive fields, meaning that they can only capture information
from local regions matching the filter size. This limitation in the
understanding of the global context of the SPPF module may
restrict the model’s expressive power. Although this limitation can
be addressed by increasing network depth or enlarging filter sizes
to expand the receptive field, it does not fully solve the problem
of global context understanding and can introduce additional
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FIGURE 3
Detailed composition diagram of CSPELAN and CPS modules.

computational overhead. To address this, the study uses dynamic
context matrix, the core idea of the Contextual Transformer (CoT)
module, to enhance the global context understanding capability of
the SPPFmodule and improve its ability to represent global features,
resulting in the C-SPPF module. The detailed architecture of this
module is illustrated in Figure 4.

The dynamic context matrix is mainly derived from contextual
transformer [30]. The contextual transformer integrates contextual
mining between keys and self-attention learning on 2D feature
maps within a single architecture, avoiding the need for additional
contextual mining branches, and obtaining both global and
local dynamic feature representations to form a dynamic and
comprehensive feature representation. The contextual transformer
utilizes a 3× 3 convolution to capture static contextual information
between keys, addressing the limitations of traditional self-
attention mechanisms that overlook rich contextual information
between adjacent keys. This approach helps enhance the model’s
understanding of critical regions and their interrelations within
feature matrices.

By concatenating the encoded Key with the Query and applying
two consecutive 1× 1 convolutions to learn a dynamic multi-head
attention matrix, the method can dynamically adjust attention
distributions based on input content, thereby enhancing its ability
to model long-range dependencies within the feature space. The
combination of static and dynamic contextual representations yields
the final output. This fusion strategy preserves local spatial features
while considering global interactions, ensuring that the model

can capture both local details and understand overall layouts,
thereby enhancing the comprehensiveness and accuracy of visual
representations.

Given an input (X) of size H×W×C (where H is height,
W is width, and C is the number of channels), we transform X
into Query (Q = XWq), Key (K = XWk), and Value (V = XWv)
through embedding matrices (Wq,Wk,Wv), respectively. In the
construction process of the CoT block, we first convolve the
features adjacent to each key (k× k) to systematically capture local
positional information, allowing the learned context keywords
K1 ∈ RH×W×C to contain both local positional information and
static contextual information. Then, based on the concatenation
of K1 and Q, we implement the attention matrix through two
consecutive 1× 1 convolutions, as shown in Equation 1,where
Wθ has an ReLU activation function and Wδ has no
activation function.

A = [K1,Q]WθWδ (1)

Based on the obtained context attention matrix A, we aggregate
all the value vectors V to generate the dynamic context K2,
which contains rich interaction information.This process essentially
involves a refinement redistribution from the global to the local
in the original feature space. Based on the weight coefficients at
each position in the attention matrix A, we calculate a weighted
sum of all the value vectors V to construct a new feature map
K2, as shown in Equation 2. Therefore, the final output (Y) is
represented as the fusion [31] of the static context K1 and the
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FIGURE 4
Detailed structure of the C-SPPF module.

dynamic context K2.

K2 = V⊛A (2)

Despite the incorporation of supplementary context processing
mechanisms, the efficient parallel computing properties inherent in
the transformer architecture persist.This feature enables themodule
to maintain contextual sensitivity without markedly increasing
computational complexity or compromising training velocity,
facilitating expeditious training and inference.

The C-SPPF module organically integrates the dynamic context
matrix with the SPPF module. Leveraging the strengths of the
transformer structure in capturing contextual information between
input keys and dynamic attention learning, as well as the SPPF
module’s proficiency in extracting multi-scale features, it not only
compensates for the deficiency of the SPPFmodule in global context
perception but also promotes the fusion of local fine-grained features
with global coarse-grained semantic representations. Consequently,
this approach enhances the accuracy and comprehensiveness of the
model in predicting the position, size, and category of defects.

2.4 Improving the C2f module

The C2f module draws inspiration from the C3 module, which
divides the featuremaps into two parts along the channel dimension.

This design approach aids in enhancing the model’s nonlinear
representation capability, thereby facilitating better handling of
complex image features while ensuring reduced parameters and
acquiring richer gradient flow information. One branch of the C2f
module comprisesmultiple bottleneck blocks, each consisting of two
convolutional layers. These layers transform the input feature maps
to extract higher-level feature representations. The other branch
solely utilizes convolutional layers to extract semantic information
of higher granularity, rendering the semantic information of this
branch relatively coarse and unable to focus on more meaningful
feature representations.

To balance the acquisition of high-level semantic information
between the two branches, mitigate the risk of overfitting, and
further alleviate the computational burden, this study introduces
a novel C2f-GS module by redesigning the C2f module using
SimAM and ghost convolution. The C2f-GS module employs only
one bottleneck structure to extract features from one branch.
Additionally, to reduce the number of parameters, the ordinary
convolution in the bottleneck module is replaced with ghost
convolution, which offers higher computational efficiency and fewer
parameters. The other branch introduces self-similarity weights,
which incurs relatively lower computational costs, to focus on
higher-level feature representations from the feature matrix. The
specific structure of C2f-GS is depicted in Figure 5.

The self-similarity weights are inspired by the Simple
Attention Module (SimAM). SimAM computes an attention weight
independently at each feature map location and then multiplies this
weightwith the original feature values to enhance or suppress certain
features. It allows the model to pay more attention to significant
local features, thus improving its overall performance. In this paper,
we also use the self-similarity of features to compute the attention
weights but multiply them with the Bottleneck branch and the
residual branch to achieve the effect of focusing on high-level
semantic features.

The ghost convolution module initially employs a small number
of convolutional kernels to extract features from the input feature
map. Subsequently, it further applies grouped convolution to this
subset of feature maps. Finally, the identity transformation part is
concatenated with the grouped convolution part to form the final
feature map.

Assuming the input feature map is C×H×W (where H is
the height, Wis the width, and C is the number of channels),
after one convolution, the output is N×H′ ×W′ (where N is the
number of channels). The ratio rs of the computational effort of the
ordinary convolution to the ghost convolution, and the ratio r of the
parameters are shown in Equations 3, 4.

rs =
N ⋅H′ ⋅W′ ⋅C ⋅ k ⋅ k

N
s
⋅H′ ⋅W′ ⋅C ⋅ k ⋅ k+ (s− 1) ⋅ n

s
⋅H′ ⋅W′ ⋅ d ⋅ d

= C ⋅ k ⋅ k
1
s
⋅C ⋅ k ⋅ k+ s−1

s
⋅ d ⋅ d
≈ s ⋅C
s+C− 1

≈ s
(3)

rc =
N ⋅C ⋅ k ⋅ k

N
s
⋅C ⋅ k ⋅ k+ (s− 1) ⋅ n

s
⋅ d ⋅ d
≈ s ⋅C
s+C− 1

≈ s (4)

Therefore, theoretically, ghost convolution reduces the
computation time, inference time, and parameter count by a
factor of s compared to regular convolution. Since the equivalent
mapping and linear transformation are parallel in ghost convolution,
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FIGURE 5
Design concept and detailed structure diagram of the C2f-GS module.

maintaining the original feature map, ghost convolution possesses
the same feature extraction capability as regular convolution. Hence,
in one branch, the C2f-GS module has fewer parameters and
less computational burden than the C2f module but yields the
same performance. In the other branch, self-similarity enhances
feature representations from multiple aspects, such as pixel space
and feature channel dimensions, effectively improving the model’s
understanding and utilization efficiency of input data without
introducing additional parameters.

C2f-GS leverages the ghost convolution and self-similarity to
redesign the C2f module, as depicted in Figure 5. On the one
hand, it employs ghost convolution and SimAM to alleviate the
computational burden of the module, achieving a lightweight
design. On the other hand, it utilizes the outstanding feature-
focusing capability of SimAM to precisely allocate attention
based on the similarity between features, highlighting critical
features for the task. In C2f-GS, self-similarity attention weights
and GhostBottleneck are employed in different branches to
enhance both branches’ local information extraction capability,
thereby improving the model’s ability to locate and recognize
targets. For small targets such as PCB defects, increased and
higher-level local semantic expressions significantly enhance the
detection accuracy.

3 Experiment

3.1 Data analysis

The Human-Computer Interaction Open Lab at Peking
University has released a PCB defect dataset named PKU-Market-
PCB, which was designed for object detection and classification
tasks. The dataset aims to provide researchers and engineers in
relevant fields with rich materials to promote the development of
PCB defect detection technology. This dataset encompasses six
typical defect categories, detailed as follows:

1. Missing hole: The described defect refers to the phenomenon
where the positions intended for holes on the circuit
board are left empty due to process errors or design flaws

during manufacturing. Such defects may result in electrical
discontinuity or difficulties in installation and fixation.

2. Mouse bite: The described defect pertains to circular or
semicircular indentations and cracks that occur near the
through-holes or solder pad edges of the circuit board due
to mechanical stress, tool wear, or other factors during
the manufacturing process. This minor damage may result
in decreased solder joint reliability or abnormal signal
transmission.

3. Open circuit: The described defect involves interruptions in
conductive pathways due to factors such as loose connections,
wire breakage, or poor soldering. These issues disrupt the
expected flow of current, directly impacting the normal
operation of the circuit.

4. Short: The described defect involves unintended electrical
connections formed between circuit nodes that were not
intended to be connected. This deviation from the intended
current path may lead to short circuits, functional disruptions,
and even safety hazards in devices.

5. Spur: The described defect refers to protrusions or raised
portions formed on the surface of the circuit board due
to material defects or processing issues. These protrusions,
which should not exist, may interfere with component
installation, affect the flatness of the circuit board, or even
cause short circuits.

6. Spurious copper: The described defect arises from unintended
copper impurity deposition during the manufacturing
process due to errors in operation, chemical reactions, or
environmental pollution. This includes unplanned copper
conductive layer formation.These foreign substances may lead
to abnormal circuit functionality or deteriorated electrical
performance.

The PKU-Market-PCB dataset comprises a total of 1386 high-
resolution images, each of which are meticulously annotated
to precisely identify the specific locations and categories of the
six aforementioned defects. To further enrich the diversity and
practicality of model training, the original images underwent
meticulous processing. They were cropped into 320× 320-
pixel subimages, resulting in a total of 10,668 subimages.
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FIGURE 6
PCB surface defect example diagram.

This ensured the preservation of a relatively high resolution
while accommodating the input requirements of common deep
learning models. During the cropping process, special care was
taken to ensure that each subimage contained partial pixel
information from adjacent subimages. This maximized the
retention of the complete context environment of the defects,
aiding the algorithm in understanding the complete morphology
of the defects and their surrounding correlations during the
training process.

In Figure 6, the six categories of small target defects
exhibit extremely high morphological similarity between certain
defects. This similarity is so pronounced that even through
visual observation, confusion easily arises, exacerbating the
challenge of identification. Specifically, “mouse bite” and
“spur” defects demonstrate significant similarities in edge
details, making it difficult to clearly distinguish between
subtle differences in their features. Similarly, the “open-
circuit” and “short” defects exhibit high consistency in overall
shape construction, further complicating defect recognition.
Given this, the high similarity among these small target
defect types poses a severe challenge to the accuracy and
comprehensiveness of defect recognition by the model. These
two characteristics are the key evaluation criteria for assessing
the effectiveness of detection systems in industrial production
processes.

This paper carefully analyzes the dataset to adjust the
hyper-parameters and thus achieve better modeling results.
Figure 7A shows that the samples are relatively evenly distributed
there is no category imbalance. Figure 7C shows that the
distribution of target locations is relatively uniform. The real
targets in the sample are typically dominated by small targets

(as shown in Figures 7B,D). These small targets make up a
very small proportion of the image and are not only limited in
expressing their own features, but also susceptible to interference
from other irrelevant information in the background. This
situation undoubtedly increases the difficulty of the algorithm in
terms of classification and accurate localization. On one hand,
small targets may be challenging to recognize correctly due to
their inconspicuous features. On the other hand, the complex
background environment may introduce noise, which interferes
with the algorithm’s accurate judgment and localization of the
target, thereby further reducing the performance of detection and
classification.

Based on the analysis above, which reveals that the
defect image distribution is uniform but that there is a
potential need for enhancement, the following strategies
were implemented:

1. Random rotation was applied to 30% of the images to cover
different perspectives of the defects.

2. MaxUp augmentation was applied to 30% of the images
to reinforce the model’s ability to learn complex and easily
misjudged samples.

3. Considering the phenomenon of edge aggregation of detection
boxes, translation augmentation was performed with a
probability of 35% to eliminate position bias.

4. Due to the small and concentrated size of the cropped images,
35% of the images were enlarged to enrich the model’s
understanding of defects at different scales.

These targeted data augmentation techniques aim to increase
data diversity, prevent overfitting, and enhance the accuracy and
stability of defect recognition in various practical scenarios.
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FIGURE 7
Distribution of dataset labels; (A) Statistical plot of the amount of data for the 6 types of defects. (B) Distribution plot of the target detection frame size.
(C) Distribution plot of the position of the target detection frame relative to the whole figure. (D) Scale distribution graph of the target frame relative to
the whole diagram.

3.2 Model training

This study utilized a combined approach of Grid Search and
Bayesian Optimization for the purpose of hyperparameter tuning.
The focus was on key parameters such as initial learning rate, weight
decay, and data augmentation strategies. The hyperparameter space
was defined by considering other models and prior knowledge in
order to efficiently search for optimal combinations of parameters.

To ensure consistency in batch size across algorithms, the batch
size was set to utilize approximately 50% of memory during
training, with YOLOv8 serving as a reference. Additionally, a Cosine
Annealing Schedule was implemented to adjust the learning rate,
thereby promoting smoother training and preventing overfitting.

In terms of data augmentation, a staged dynamic strategy
was employed. Basic augmentations were applied during the early
training phase to enhance data diversity, while more complex
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FIGURE 8
Training process and training loss maps.

augmentations were gradually reduced in later stages to allow the
model to focus on critical features. These strategies had a significant
positive impact on the model’s convergence, robustness, and ability
to adapt to complex detection scenarios.

Specifically speaking, the experiment utilized an NVIDIA
RTX 4090 graphics card equipped with 24 GB of memory and
powerful single-precision (82.58 TFLOPS) and half-precision
(165.2 Tensor TFLOPS) computing capabilities, providing a solid
hardware foundation for deep learning tasks. In terms of training
configuration, the learning rate was initialized to 0.001 to ensure
that the model could sensitively capture complex data features in
the early stages of training. The batch size was set to 256 to balance
computational efficiency and model convergence speed, effectively
utilizing GPU parallel computing while preventing excessive
smoothing of gradient information. The AdamW optimizer was
chosen, leveraging gradient smoothing to optimize the process
and accelerate convergence while using weight decay to mitigate
overfitting and enhance model generalization capabilities.

During the training process, the model underwent 400
iterations. The learning rate followed a predetermined strategy,
increasing to 0.01, aimed at refining the model’s depiction of data
details in the later stages to enhance performance, as shown in
Figure 8. Here, “box_loss” represents the bounding box regression
loss, “cls_loss” represents the classification loss, and “dfl_loss” [32]
represents the focal loss, which is used to quickly focus the network
on values near the labels, maximizing the probability density at the
labels. After each iteration, the model underwent a performance
evaluation using the current weights, and the best weights were
continuously recorded and updated to ensure optimization along the
optimal training trajectory. To enhance the model’s robustness and
generalizability, all data augmentation operations were abandoned
in the final 15 epochs of training. This encouraged the model to
focus on a deep understanding of the intrinsic features of the
original dataset, reducing its reliance on specific augmentation
techniques and thereby enhancing model robustness. To avoid
experimental randomness, multiple random seeds (0, 42, 10328)
were selected, and each random seed underwent three experiments
to avoid randomness. The experimental results were averaged over
9 experiments.

From Figure 8, it can be observed that when the number
of epochs reaches approximately 300, the LPCB-YOLO model
converges, and the losses tend to stabilize. Due to the small number
of classes, the “cls_loss” converges more rapidly, stabilizing at
approximately 170 epochs. Overall, all loss values remain stable
without significant fluctuations, indicating that the model steadily
learns useful feature representations from the dataset, gradually
converges to the optimal solution during the training process, and
thus acquires better generalizability. The stable convergence of the
model eliminates the need for frequent parameter adjustments
and retraining, significantly reducing computational resources and
time costs.

3.3 Module ablation experiment

Module ablation experiments, as crucial experimental
techniques, play an important role in machine learning and deep
learning research. They involve systematically dissecting and
analyzing a completed and functionally sound model or algorithm
to delve deeper into the impact and interdependencies of individual
modules on overall performance. To validate the effectiveness and
importance of each improvement module and their impact on
the PCB defect detection task, this paper conducted experiments,
as shown in Table 1. The data for each item were controlled within a
0.6% error margin through multiple experiments.

In Table 1, the performance changes after three significant
improvements were made to the baseline model are clearly
displayed. After replacing the backbone network of the YOLOv8
model with the CSPELAN module, the F1 score decreased from
0.98 to 0.94.Thismodule did not demonstrate effective performance
improvement, but it significantly reduced the number of parameters
in the backbone network. With the addition of the C-SPPF module
to the backbone network, the precision and recall increased to
97.2% and 97.4%, respectively, and the mAP improved to 96.7%.
The combination of C-SPPF with the new backbone network
significantly enhanced the model’s performance. Finally, the C2f-GS
module was added on top of the existing new backbone network and
the C-SPPF module. Although the precision slightly decreased, the
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TABLE 1 Module ablation experiment results.

Model CSPELAN C-SPPF C2f-GS Precision (%) Recall (%) mAP (%) F1 score

YOLOv8 - - - 97.5 98.0 99.0 0.98

YOLOv8 Y - - 96.1 96.3 95.4 0.94

YOLOv8 Y Y - 97.2 97.4 96.7 0.97

YOLOv8 Y Y Y 97.0±0.6 98.0±0.6 98.4±0.6 0.97

TABLE 2 Comparison of the performance capabilities of different algorithms.

Model Precision (%) Recall (%) mAP (%) Param(M) GFLOPs FPS(f/s) Memory (MB)

YOLOv8s 97.6 98.0 99.0 11.2 28.7 185 384

YOLOv5s 97.1 97.4 98.1 16.3 44.2 185 521

YOLOv6s 97.5 97.8 99.9 9.1 24.1 188 292

YOLOv9s 97.4 97.4 98.9 9.6 38.7 222 308

YOLOv10s 97.4 96.5 98.5 8.0 24.5 243 257

LPCB-YOLO 97.0 98.0 98.4 8.5 21.9 208 272

C2f-GS module improved the recall and mAP, bringing the model
closer to the performance of the baseline YOLOv8. Therefore, C2f-
GS has a positive impact on the overall performance of the LPCB-
YOLO. Most importantly, recall remains at a high level, enabling
the model to detect more comprehensive target information in PCB
defect detection tasks and better adapt to industrial production.

This paper improved the feature extraction network of the
YOLOv8 model using the CSPELAN module and C-SPPF module,
achieving a lightweight model design. To provide a clearer
comparison of the feature extraction capabilities of the twobackbone
networks, this paper utilized Grad CAM [33] to generate heatmaps,
visually demonstrating the differences in attention areas of the
backbone networks for input images, as shown in Figure 9. After
lightweighting by the CSPELAN module and enhancing global
semantic attention by the C-SPPF module, the feature extraction
network of LPCB-YOLO achieved a level of primary semantic
acquisition capability close to that of the YOLOv8 backbone
network. Although the attention levels of the two backbones may
vary in certain areas, their focus areas are generally consistent. This
allows both backbone networks to provide rich and comprehensive
semantic representations for their respective models, laying a solid
foundation for subsequent models to obtain higher-level semantic
representations. Therefore, the new backbone constructed in this
paper achieves the original design intent of lightweighting the
model, improving network computational speed, and ensuring
feature extraction.

From the perspective of lightweight modules, this paper
designed and implemented the C2f-GS module based on the
C2f module to enhance the feature fusion and feature focusing
capabilities of the network’s Neck section. As shown in Figure 10,
the C2f-GS module demonstrates stronger feature extraction
capabilities. On the one hand, compared to the C2f module, the

C2f-GS module can extract and utilize semantic information more
delicately and comprehensively, enabling rapid classification and
localization in PCB defect detection tasks. On the other hand, the
features extracted by the C2f-GS module are more focused and
contain more useful information, thereby further improving the
overall performance of the LPCB-YOLO model.

The precision-recall (PR) curve visualizes the relationship
between precision and recall at different thresholds, providing
a detailed assessment of the model’s overall performance.
As shown in Figure 11, the LPCB-YOLO model maintains high
precision while also maintaining a high recall rate. Therefore, the
LPCB-YOLO model exhibits excellent performance and is capable
of performing well in industrial PCB defect detection tasks, fully
meeting the requirements of practical applications.

The paper achieves a significant reduction in model parameters
and computational complexity by lightweighting and enhancing the
backbone of the YOLOv8model while preserving feature extraction
capabilities. Additionally, it improves the feature fusion capability
of the C2f module and appropriately reduces the model’s parameter
count. These three improvements lead to a substantial reduction in
model parameters and computational load, ensuring both detection
performance and enhanced operational efficiency and deployment
feasibility.

3.4 Performance comparison of
mainstream algorithms

To validate the effectiveness and superiority of the LPCB-
YOLO algorithm, this paper systematically compares a group
of representative deep learning object detection algorithms (As
shown in Table 2). Not only does it cover algorithms such
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FIGURE 9
Comparison of the expressive power of the C2f-GS and C2f modules.

FIGURE 10
Comparison of the feature extraction capabilities of backbone networks.

as YOLOv8, YOLOv5 [34], YOLOv6 [35], YOLOv9 [36], and
YOLOv10. Furthermore, in-depth analysis and objective evaluation
of the performance of the LPCB-YOLO algorithm across various key
performance indicators are conducted.

Comparative analysis of the performance of several algorithms
with LPCB-YOLO shows that in Table, the number of parameters
of LPCB-YOLO is only 8.5M, which is 47.9% less than the 16.3M

of YOLOv5s, and 24.1% less than that of YOLOv8s, and it is one
of the lesser among all the models. Meanwhile, the GFLOPs of
LPCB-YOLO is 21.9, further emphasizing its lightweight design
with minimal computational requirements. In addition, its memory
usage is 272MB, second only to YOLOv10s′ 257MB, which is
smaller than most algorithms, and its FPS reaches 208, which is
slightly lower than the latest algorithms. Despite a marginally lower
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FIGURE 11
Model detection capability assessment map.

precision of 97.0%, the recall is 98.0%, tied with YOLOv8s for the
highest. In terms of speed, LPCB-YOLO still falls slightly short of
the YOLOv9s and YOLOv10 algorithms, but the YOLOv9s model
is over-parameterized and similar to the YOLOv6s; the YOLOv10
model again falls a little short of the YOLOv10 model in terms
of recall, which is 1.5% lower, and this highly impacts on the
comprehensiveness of the detection of defects on the PCB surface.

The main advantages of LPCB-YOLO lie in its high recall rate,
lightweight design, and fast processing speed, making it suitable
for applications requiring efficient and rapid processing. To further
enhance its performance, optimizing network architecture and
hyper-parameters can better balance model depth and algorithm
parameters and integration with hardware acceleration techniques
can also achieve higher performance.

3.5 Algorithm robustness and
generalization analysis

3.5.1 Robustness analysis
When evaluating and ensuring model performance, robustness

is a critical factor. It refers to the model’s ability to maintain stable
and accurate predictions when faced with abnormal inputs, extreme
conditions, data biases, or environmental changes. This aspect is
crucial not only for the reliability and generalization ability of the
model in practical applications but also for distinguishing between
robust and fragile models. Therefore, devising a rigorous and
comprehensive testing scheme to improve the model’s robustness
is an indispensable component of the model development and
optimization strategy.

To validate the robustness of the algorithm, a test set
comprising 1000 images has been prepared. Six sample images

are shown in Figure 12. This set includes images captured
under three specific conditions—Defocus, Underexposure, and
Reflection—and three categories of synthesized PCB images.
Defocus, Underexposure, and Reflection are common challenges
encountered in real-world image acquisition. These issues typically
arise due to prolonged instability of the light source or equipment
vibrations, which can cause shifts in camera focus and angle.

Additionally, the test set includes three types of synthesized
images—Medium light, High light, and Gray—designed to simulate
diverse lighting conditions and background environments. Medium
light images are generated by applying a linear offset of 50 to
the original pixel values, while High light images use an offset
of 100. Gray images, on the other hand, are designed to assess
the impact of varying background colors on detection accuracy.
This comprehensive test set ensures better representation of diverse
scenarios encountered in real production environments.

As depicted in Table 3, LPCB-YOLO exhibits a commendable
balance of performance in terms of accuracy, mAP, and recall.
With a precision rate of 91.2%, it performs admirably in scenarios
involving intricate lighting variations and reflection scenes,
effectively reducing false detections to a significant extent. Notably, it
outperforms YOLOv3 (90.3%) and YOLOv8s (85.3%) in this regard.
However, despite its high precision, LPCB-YOLO achieves a mAP of
only 64.4%, which falls slightly short when compared to YOLOv10s
(90.8%) and YOLOv9s (78.6%).This suggests that there is still room
for improvement in terms of achieving a better balance between
precision and recall.

In terms of recall, LPCB-YOLO achieves a rate of 57.9%, which
is inferior to that of,YOLOv10s (86.9%) and YOLOv9s (72.0%) [37],
but superior to that of Gold-YOLO (56.2%),YOLOv5s (53.7%)
and YOLOv8s (50.6%). This indicates that LPCB-YOLO maintains
better robustness in optimizing complex backgrounds (e.g., gray
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FIGURE 12
The test dataset includes 6 categories of image presentations. Defocus, Underexposure, and Reflection are actual captures; Medium light, High light,
and Gray are composites.

TABLE 3 Comparison of the performance capabilities of different
algorithms on the test dataset.

Model Precision (%) Recall (%) mAP (%)

YOLOv3 90.5 59.0 72.7

YOLOv5s 91.7 53.7 62.8

YOLOv6s 95.8 55.0 63.9

Gold-YOLO 93.8 56.2 61.6

YOLOv8s 85.3 50.6 57.0

YOLOv9s 94.1 72.0 78.6

YOLOv10s 94.8 86.9 90.8

LPCB-YOLO 91.2 57.9 64.4

backgrounds), making it more adaptable and capable of effectively
handling dynamic production environments.

LPCB-YOLO exhibits high accuracy and environmental
adaptability, rendering it particularly suitable for deployment
in settings characterized by unstable lighting conditions and
complex backgrounds. However, while it excels in specific tasks,
its mAP and recall rate still have potential for improvement
when compared to top-performing models such as YOLOv10s
and YOLOv9s. Additionally, it may not perform as well as other
models in applications that demand extremely low leakage detection

rates. Thus, LPCB-YOLO effectively balances performance and
environmental adaptability, making it well-suited for coping with
complex and variable production environments. However, there is
still scope for enhancement in tasks that require very high accuracy.

In order to further enhance the adaptability of the algorithm
in complex scenes, the following measures can be implemented:
utilizing data augmentation to improve the resilience of the model,
particularly by increasing the number of training samples for
focus shift, underexposure, reflection enhancement, and other scene
variations, to further explore the potential of LPCB-YOLO in
specialized environments. Additionally, dynamic parameter tuning
can be employed to adjust the detection threshold in real-time and
dynamically optimize the model for changes in light intensity (such
as highlights or a grey background), thereby enhancing the model’s
performance under different lighting conditions. Furthermore, an
integration approach can be adopted as another strategy to improve
performance by combining LPCB-YOLO with other high-recall
models (such as YOLOv10s) to form an integrated detection
framework, which can ensure high precision and address the issue
of leakage detection.

In conclusion, LPCB-YOLO, with its high precision and
optimized design for complex backgrounds, is a reliable performer
among the mainstream models, and is particularly suitable for
real production environments that encounter variations in lighting
and complex backgrounds. Although its recall and mAP may
be slightly lower than those of the top models, LPCB-YOLO
demonstrates excellent resilience and adaptability in changing light
and background environments, making it a worthwhile subject for
exploration and optimization in practical applications.
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TABLE 4 Comparison of the performance capabilities of different
algorithms on the DeepPCB dataset.

Model Precision (%) Recall (%) mAP (%)

YOLOv3 94.5 91.6 96.2

YOLOv5s 92.6 88.6 95.0

YOLOv6s 94.1 89.3 94.7

YOLOv8s 92.6 92.4 96.8

YOLOv9s 94.8 94.6 97.8

YOLOv10s 87.6 85.9 93.1

LPCB-YOLO 93.6 91.1 95.1

3.5.2 Generalization analysis
In order to verify the generalization of the LPCB-YOLOnetwork

for detecting PCB surface defects, the DeepPCB [38] dataset was
also selected for testing in this paper. All images in this dataset
were obtained from a linear-scan CCD (Charge-coupled Device)
with a resolution of about 48 pixels per 1 mm. The original size of
the template and test images was approximately 16k× 16k pixels.
They were then cropped into many sub-images of size 640×
640 and aligned by template matching technique. A threshold is
then carefully chosen for binarization to avoid light interference.
DeepPCB dataset contains 1,500 pairs of printed circuit board
images covering six types of printed circuit board defects.

Similarly, to demonstrate the generalization performance of the
improved algorithm in detecting small-sized objects, this study
compares the LPCB-YOLO algorithm with YOLOv3, YOLOv6,
YOLOv5, YOLOv8, YOLOv9, and YOLOv10. The comparison
results are shown in Table 4.

Based on the experimental data presented in Table 4, LPCB-
YOLO demonstrates a favorable trade-off between recall (91.1%)
and precision (93.6%) when applied to various datasets, indicating
a relatively low miss rate. Furthermore, its mAP of 95.1%
remains consistent, comparable to YOLOv5s and YOLOv6s, thereby
showcasing its strong overall detection capability. However, it
should be noted that its generalization ability is slightly inferior
to that of YOLOv9s and YOLOv3. As a lightweight model, LPCB-
YOLO effectively balances detection performance and resource
requirements, making it particularly suitable for deployment in
resource-constrained industrial environments and scenarios that
demand real-time processing and computational efficiency.

3.6 Comparison of experimental results

To validate the stability and adaptability of the LPCB-YOLO
algorithm in practical applications, we selected an independent test
set consisting of 2000 images to evaluate the detection performance
of the new model. In that experiment, the improved model at each
stage was carefully compared with the YOLOv8 algorithm in a
variety of single-category defect detection tasks. The experimental
results are shown in Table 5, where CSPELAN represents only the

Backbone part was changed and the rest of the Backbone part was
not changed in any way, CSPELAN and C-SPPF represents that the
C-SPPFmodule was added on the basis of CSPELAN, and the actual
detection results are depicted in Figures 13, 14. The aim is to reveal
and quantify the superiority and improvement of the improved
algorithm in the context of circuit board defect detection scenarios.

According to the performance evaluation results shown inTable 5,
the LPCB-YOLOalgorithmdemonstrates outstanding performance.
Particularly in the “missing-hole” and “short” categories, LPCB-
YOLO exhibits precision and recall rates very close to those of
YOLOv8, even reaching the same level of recall as YOLOv8 at
99.4% in the “missing-hole” and “spurious-copper” categories.
Additionally, it demonstrates good balance in the “short” category.
Although YOLOv8 has a slight advantage in terms of precision
in the “mouse-bite” category, LPCB-YOLO has a relatively higher
recall rate in the “spur” category, reflecting its strong ability to
capture complex detail features. Overall, LPCB-YOLO achieves
a performance comparable to or even surpassing YOLOv8
in most cases, especially in maintaining high recall rates to
ensure no omission of defects while maintaining high precision,
demonstrating its robustness in the field of circuit board defect
detection.

Specifically, the algorithm’s overall detection performance does
not significantly decrease after the introduction of the CSPELAN
module. In the “mouse-bite” category, the mAP is increased to
98.9%, demonstrating its advantage in improving the extraction of
small target features. However, in the “spur” category, the mAP is
slightly lower than that of YOLOv8, indicating that the module
still has room for improvement when dealing with complex texture
defects. Subsequently, the algorithm’s overall performance slightly
improves after the introduction of the C-SPPFmodule.This suggests
that the C-SPPF module enhances the fusion of global context
information, leading to more accurate detection of large defects.
Finally, the introduction of the C2f-GS module to the algorithm
achieves comprehensive optimization across multiple categories. In
the “open-circuit” category, the mAP is increased to 99.0%, which
is 0.4% higher than that of CSPELAN and C-SPPF alone. This
indicates that the C2f-GS module further enhances the detection of
local details.

The CSPELAN module reduces the number of model
parameters primarily through lightweight design, while still
maintaining high detection accuracy for most categories. The C-
SPPF module enhances the capability of global feature fusion,
resulting in some improvement in the detection of complex defects,
but it may interfere with certain local details. The C2f-GS module
optimizes the feature extraction process and improves adaptability
to small targets and complex backgrounds. The LPCB-YOLO
algorithm achieves an overall improvement in performance, making
it suitable not only for real-time industrial inspection tasks, but also
demonstrating better robustness and generalization ability while
maintaining high accuracy.

From Figures 13, 14, it can be observed that the actual
detection performance of the LPCB-YOLO algorithm is similar
to that of YOLOv8. However, the confidence level of the LPCB-
YOLO algorithm is slightly higher than that of YOLOv8, fully
demonstrating the superiority of the algorithm in detecting small
targets. In terms of multi-object detection, the actual performance
of it is better than that of the original algorithm, although the
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TABLE 5 The performance of each stage of the algorithm is compared.

YOLOv8 CSPELAN

Category Precision (%) Recall (%) mAP (%) Precision (%) Recall (%) mAP (%)

missing-hole 97.2 99.4 99.2 97.1 99.4 99.1

mouse-bite 98.2 98.5 98.7 97.1 97.3 98.9

open-circuit 97.0 98.2 99.1 98.5 94.8 98.8

short 97.6 98.7 99.4 97.1 98.2 98.6

spur 98.2 96.8 98.9 96.3 95.1 97.1

spurious-copper 97.2 96.3 98.5 96.6 95.5 98.4

CSPELAN and C-SPPF LPCB-YOLO

missing-hole 97.1 99.4 99.3 97.7 99.4 98.9

mouse-bite 98.0 98.6 99.2 96.8 97.7 98.9

open-circuit 98.0 94.1 98.6 96.1 96.9 99.0

short 97.4 98.4 99.2 97.9 97.9 98.4

spur 95.4 94.8 97.4 97.1 96.3 97.5

spurious-copper 97.1 96.9 98.6 96.3 97.4 97.9

FIGURE 13
LPCB-YOLO test results.
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FIGURE 14
YOLOv8 test results.

FIGURE 15
Comparison of algorithms’ single-class detection capabilities.

confidence level is slightly lower. In particular, it exhibits better
comprehensiveness, especially in detecting “spur” defects, where
no missed detections occurred. Therefore, in terms of practical
performance, the proposed the algorithm not only achieves a

detection performance similar to that of the original algorithm but
also surpasses it in terms of comprehensiveness.

By comparing the model’s detection performance in a
single category, it can be seen (as depicted in Figure 15) that
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FIGURE 16
The flowchart of the detection system.

LPCB-YOLO’s performance is relatively balanced across all
categories, especially the combined performance of Precision and
Recall in defect detection, which is more stable, and ensures the
model’s reliability in multiple types of defect detection, even though
there is a slight gap between the model and the other algorithms in a
certain category. In contrast, YOLOv10 performs well in individual
categories, but its apparent deficiency in the “mouse-bite” category
is a short-coming. YOLOv9s performs very well overall but falls
slightly short in individual categories. Taken together, LPCB-YOLO’s
balanced performance in precision and recall makes it highly useful
in practical applications.

3.7 Discussion of the experimental results

Many of the above experiments show that LPCB-YOLO
exhibits notable advantages, particularly in industrial application
scenarios. Through the incorporation of the CSPELAN and C-SPPF
modules, the model parameters are reduced by 24% compared to
YOLOv8. This reduction significantly decreases the computational
complexity, resulting in a more lightweight model that is well-suited
for resource-constrained environments. Additionally, the feature
extraction network has been optimized using the C2f-GS module,
and the integration of high-efficiency modules further enhances
computational efficiency. These improvements enable LPCB-YOLO
to achieve a harmonious balance between high accuracy and
real-time performance, meeting the need for rapid processing in
industrial scenarios.

In the task of detecting PCB defects, LPCB-YOLO exhibits
excellent detection capability, particularly in detecting small targets.
Its precision and recall are comparable to or even surpass
YOLOv8. LPCB-YOLO achieves a balanced performance in terms
of mAP, precision, recall, and other key metrics, ensuring reliable
detection of a wide range of defect types. Additionally, LPCB-YOLO
demonstrates strong robustness in complex imaging conditions
and effectively addresses image quality issues in real production
environments. Experiments conducted on the DeepPCB dataset
further confirm its ability to generalize, as LPCB-YOLO maintains
consistent detection performance across different datasets and
application scenarios. These advantages establish LPCB-YOLO as
an efficient and dependable solution for industrial automated
inspection, with significant practical application value.

Despite the excellent performance of LPCB-YOLO in PCB
defect detection, there are still some potential shortcomings that
need further optimization. In the case of complex background
interference, its detection performance may be slightly inferior to
some of the top models (e.g., YOLOv9, YOLOv10), which limits
its use in certain demanding application scenarios. Additionally,
LPCB-YOLO has a slightly higher leakage rate in specific categories
of defect detection, which can pose a challenge for applications
with very high precision requirements. Furthermore, several
innovative modules introduced by LPCB-YOLO improve the
detection performance but also increase the complexity of the
model, making debugging and optimization during the training
process more difficult. To achieve optimal performance, LPCB-
YOLO requires fine hyperparameter tuning, which places higher
demands on experimental and time costs. Therefore, it is important
to further improve its detection stability and optimization efficiency
in future studies.

LPCB-YOLO offers notable benefits in terms of its lightweight
design, accuracy, and robustness. However, it does have some
limitations in terms of its detection capability andmodel complexity
in certain extreme cases. These distinctive features and potential
drawbacks present opportunities for future research to enhance and
refine the performance of LPCB-YOLO.

4 Industrial deployment

In this study, the LPCB-YOLO algorithm, which is based
on deep learning, is utilized for the detection of defects in
PCBs. The algorithm is implemented and tested in an industrial
production environment. The system comprises a programmable
logic controller (PLC) that operates a crawler to transport the PCBs
through an industrial camera. The images captured by the camera
are transmitted in real-time to the inspection unit. The inspection
unit analyzes the images and provides feedback on the detection
results to the PLC. The PLC then controls a robotic arm to sort
the PCBs and outputs the coordinates and types of defects to the
central control system. This process enables a highly efficient and
automated defect detection and processing system.The flowchart of
the detection system is shown in Figure 16.

To ensure that the captured images are free from distortion, the
industrial camera is positioned at a fixed 45-degree angle on top of
the track. One side of the camera is connected to the center console
for capturing raw images, while the other side is connected to the
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inspection unit for the purpose of classifying and locating defects.
The detection unit utilizes a development board that is equipped
with an NPU (Neural Network Processing Unit). This NPU greatly
enhances the inference speed and real-time performance of the
deep learning model due to its CUDA (Compute Unified Device
Architecture) acceleration capability. The NPU development board
runs a pre-trained deep learning model that has been carefully
trained using a large number of samples of specific defect types.
This model is capable of achieving high-precision classification and
localization. Furthermore, the acquired image data can be utilized
to further optimize and refine the LPCB-YOLO model, thereby
continuously improving its detection performance.

5 Conclusion

This paper proposes the LPCB-YOLO lightweight defect
detection algorithm. The algorithm reconstructs the feature
extraction network of the YOLOv8 model using the CSPELAN
module and enhances the global contextual feature perception of
the backbone using the C-SPPF model. Additionally, it redesigns
the C2f module to propose the C2f-GS module, which is more
conducive to feature fusion andmulti-aspect feature focusing, aiding
the model in more accurate classification and target localization
within advanced semantic expressions. The experimental results
demonstrate that the LPCB-YOLO algorithm exhibits performance
comparable to that of the YOLOv8 algorithm in PCB defect
detection tasks and even outperforms the YOLOv8 model in terms
of comprehensiveness, while having fewer parameters and faster
inference speed. Compared to other popular algorithms such as
YOLOv5 and YOLOv6, it has significant advantages.

The proposed LPCB-YOLO algorithm achieves remarkable
results in PCB defect detection tasks, realizing both lightweight
model design and maintaining the original detection performance
as much as possible. Although the model’s parameter count
and computational speed have improved, its confidence in target
recognition still needs enhancement. Future work will continue to
explore improving themodel’s recognition confidence and balancing
the challenging issues of model parameter count and performance.
To improve the transparency and reproducibility of scientific
research, the analysis code for this study has been made available on
GitHub (https://github.com/Yishilinyuan/LPCB-YOLO) under the
Apache 2.0 license.
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