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To better understand the pattern phase transition of both physical and biological
systems, we investigate a two-dimensional spin particle lattice system using
statistical mechanicsmethods together with XYmodel governed by Hamiltonian
equations of motion. By tweaking the coupling strength and the intensity of
the generalization field, we observe phase transitions among four patterns of
spin particles, i.e., vortex, ferromagnet, worm and anti-ferromagnet. In addition,
we analyze the effect of space boundaries on the formations of vortex and
worm. Considering the inherent dynamics of individual particles, we revealed the
formingmechanism of such phase transitions, which provides a new perspective
for understanding the emergence of phase transition of spin particles systems.
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1 Introduction

Various types of phase transition are appealing features of both physical and biological
particle systems, which have been extensively studied during recent decades. In general,
pattern phase transitionmeans a system composed of a large number of interacting particles
undergoes a transition from one pattern phase to another responding to the change of
one or more external parameters. There are abundant pattern phase transitions in natural,
biological, chemical and physical systems, such as bird flocks [1–4], insects [5–7], bacterial
colonies [8–10], fish schools and shoals [11–13], groups of mammals and crowds [14–16],
crystals and superfluids [17, 18], etc. Researchers in the fields of physics, control engineering,
system science, artificial intelligence and computer science recently have become more and
more interested in the appealing pattern phase transition for such abundant particle systems.

Revealing the mechanism of phase transition is fairly helpful to understand complex
physical and biological collective behaviors. The various pattern phase inspired by self-
propelled particle systems are highly dependent on the interaction between particles, but
the interaction mechanism of the phase transition is unknown, and one of the difficulties
is the lack of the ability to predict the final equilibrium state and its stability only through
the interaction between self-driven particles. In biological, physical and engineering multi-
agent systems, researchers have discovered a large number of phase transitions between
different modes. Among these investigations, Carrillo et al [19] researched the formation
conditions of single and double rotatingmills. Single-vortex configurations can be observed
under generally random initial conditions, however, double-vortex configurations (i.e.,
half of the particles rotating clockwise and the other half counterclockwise) are only
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possible under carefully chosen initial conditions. Birnir [20] found
the circling and flocking solutions of ordinary differential equations
derived from the Vicsek model. Building on the work of Gautrais
et al. [21], Calovi et al. [22] showed a switched phase diagram
between the circular (milling) patterns and migratory patterns of
fish schools by varying theweights of two control terms in themodel.
Cheng et al. [23] discovered pattern transitions among gaseous,
liquid, and crystalline flocks by slightly varying the zero crossing
slope of the inter-particle interaction function.

Analogous to kinetic systems, study of structure and phase
transitions like lattices has drawn increasing attentions in recent
years. The well-known statistical-mechanical models of particles
like XY model and Ising model have intrinsic phase transitions for
regular and irregular lattices [24]. From the perspective of statistical
physics, the XY model with Hamiltonian equations of motion is
probably one of the most concise models which have continuous
degrees of freedom. In the field of condensed matter physics,
it is a model which realized the phase transition of superfluid
He4, High-Tc cuprate and Josephson junction arrays [25, 26]. The
system undergoes the well-known Berezinsky-Kosterlitz-Thouless
transition in two-dimensional spaces [27], whereas experiencing
a second-order phase transition in three-dimensional spaces
[28]. Nowadays, the study of physical particle systems has shed
some lights onto both physical and biological collective motion
investigation [29]. Interestingly, in recent years, researchers have
found that the phase transitions that exist in natural biological or
physical systems have similarities, and it is possible to learn from
each other in the theoretical study of phase transition mechanisms.
For instance, by slightly varying the vision range in a group of freely
moving particles, Cheng et al. [30] discovered various pattern phase
transitions between crystalline, liquid, gaseous, and mill-liquid
coexistence states. Referring to a lattice-gas model for superfluid
helium, Attanasi et al. [4] established a new model nourished by
conservation-law and spontaneous symmetry breaking principle
that nicely explains the universal fast synchronization behaviors in
starling flocks.

With the pioneer efforts devoted to the collective motions on
XY model, quite a few fascinating collective motion patterns are
observed with the XY model, like flocking and torus. In this letter,
we seek to refine the kinetic description of XY model which helps
reveal the phase transition principles of XYmodel withHamiltonian
equations of motion. Following the dynamics of the XY model,
we have meticulously described the role of model parameters in
governing the state of the system so as to figure out the actual
physical meaning of the parameters. By tweakingmodel parameters,
a series of phase transitions emerge among vortex, ferromagnet,
worm and anti-ferromagnet patterns.

2 Methods and results

The XY model has been widely applied to a large volume of
physical systems like superfluids, nematic liquid crystals, electron
nematics, planar magnets, and among others [25–28]. In this
letter, we study an XY model considering an external field effects
with Hamiltonian equations of motion and focus on the statistical
properties from the perspective of particles dynamics. In the
presence of a p-fold generalization field [31], we consider the 2D XY

model with spin in the direction θi ∈ [0,2π) on a square lattice with
M×M particles.

HXY = −h∑(cos(pθi −ψ) − J∑
⟨i,j⟩

cos(θi − θj) , (1)

where h is the intensity of a p-fold generalization field and J denotes
the coupling strength within nearest neighbor. When p = 1 and p >
1, the first term denotes a uniaxial and p-fold generalization field,
respectively [31]. ψ is a fixed constant representing the direction of
the p-fold generalization field. The i and j label the lattice sites on a
2D square lattice, ⟨i, j⟩ denotes a nearest-neighbor set of the particle
i, which is one unit away from particle i.

Consider the i-th particle’s spin, i.e., θi(t), the spin becomes
rotator, and hence the XY model turns into a system of coupled
rotators [32, 33]. By virtue of the process of taking the negative
gradient for the Hamiltonian system in [34], the first derivative for
the i-th object is obtained by taking negative gradient for system (1).
Considering the effects of external noises, the spin particles obey the
stochastic ordinary equation below,

dθi = [μ sin(ψ− pθi) + J∑
⟨i,j⟩

sin(θj − θi)]dt+ σdW, (2)

where i = 1,2,…,M×M, μ = ph, σdW is the external Gaussian white
noise, and σ is the corresponding magnitude.

Let Si = [cos(θi), sin (θi)], the phases of spin are quantified
by three order parameters, i.e., the consensus state order of
spin direction

Vc =
1

M×M
‖
M×M

∑
i=1

Si‖, (3)

the parallel state order quantifying the parallel tendency

Vp = 1−
1

M×M− 1

M×M−1

∑
i=1
‖Si × Si+1‖ , (4)

and the vortex state order quantifying the vortex tendency

Vv =
{{
{{
{

1− 1
n
∑
l∈N
‖∑
k∈K

Sl+k‖, if  n > 0

0, if  n = 0
, (5)

where N = {l| ∥ ∑k∈KSl+k ∥ < 1,Sl × Sl+1 ≠ 0, l = 1,2,…,M×
(M− 1),mod(l,M) ≠ 0}is the set of positions with vortices, K =
{0,1,M,M+ 1}, “× ” denotes cross product, and n = |N |is the
number of a setN .

Apparently, Vc is obtained by taking the norm of the sum of
all particle directions and then averaging it, which is crucial for
quantifying the consistency of spin directions and obtaining the
alignment degree of the entire system. That is, Vc = 1indicates that
the spin particles reach direction consensus state. Vpis calculated by
averaging the magnitudes of the outer products of the directions
of any two adjacent particles, which is essential for representing
the parallel state of adjacent particles and obtaining the parallel
trend of the entire system. That is, Vp = 1indicates that the spin
particles reach direction parallel state. Moreover, n > 0means that
vortex state occurs, Vvis derived by summing the directions of
four adjacent particles and then averaging them, which is crucial
for judging the vortex state of these four particles. Therefore, Vvis
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FIGURE 1
The order parameter characteristics of the four phases, i.e., vortex (A), ferromagnet (B), worm (C), and anti-ferromagnet (D), respectively.

vital for measuring the vortex state sequence and reflecting vortex
formation by quantifying local rotational arrangements.That is,Vv =
1means that spin particles reach standard vortex state. Therefore,
these parameters are chosen because they provide a straightforward
method to differentiate between the various patterns emerging from
our system. In order to show the order parameter characteristics
of the four phases more clearly, the schematic diagram Figure 1 is
exhibited. Vv = 1 and Vc = 1 mean the standard vortex (Figure 1A)
and ferromagnet phase (Figure 1B), respectively. It is worth noting
that we define a parallel state order parameter Vp to distinguish
worm and anti-ferromagnetic phases by combining the consensus
and vortex state order parameters together. More precisely, Vp < 1
andVv = 0 implies the worm phase (Figure 1C), whereasVp = 1 and
Vc < 1 represent the anti-ferromagnet phase (Figure 1D).

In the numerical simulations, M×M particles are randomly
initialized as θi(0) ∈ [0,2π). The parameters are picked as: ψ =
π, p = 2, M = 50 and σ = 0. In order to highlight the phase
transition, we demonstrate the spin motional phases in the space
spanned by the two parameters μ̂ = log10μ and ̂J = log10J.The
parameters are presented on a logarithmic scale to encompass
a wide range of values, this approach allows us to explore the
behavior of the system across multiple orders of magnitude. This
is important for understanding the fundamental properties and
scalability of the system. With different combinations of μ̂ and
̂J, three phase transitions emerge from vortex (Figures 2D–H) to
ferromagnet (Figure 2A), to worm (Figure 2B), and then to anti-
ferromagnet (Figure 2C). More precisely, in the ferromagnet phase,
the spin particles form parallel arrays and direction consensus,
whereas in the anti-ferromagnet phase, the spin particles form anti-
parallel pattern. In the worm phase, spin particles form a curved line
arrangement configuration pattern like a worm. By contrast, in the

vortex pattern, there are four adjacent spin particles that form an
ordered rotation, crossover, relative arrangement, etc. In the vortex
pattern, multiple vortex modes occur simultaneously.

Figure 3 demonstrates the phase transitions among vortex,
ferromagnet, worm and anti-ferromagnet patterns. At the top-left
corner of the μ̂- ̂J space, vortex pattern emerges by four adjacent spin
particles, where the parameter n > 0, implying the appearance of
vortices. Appealingly, five distinct vortex modes have been observed
in this phase, namely, rotational vortex, positive vortex, cross vortex,
relative vortex and anti-vortex, as illustrated in Figures 2D–H.With
increasing parameter μ̂, that is, the upper middle of Figure 3, spin
particles finally reach direction synchronization, which naturally
forms a ferromagnet phase, i.e.,Vc = 1. In themiddle diagonal stripe
of Figure 3, group direction no longer reaches synchronization (i.e.,
Vc < 1), the parameter Vp < 1 and Vv = 0 implying the emergence
of worm phase. By keeping increasing the parameter μ̂, that is, the
bottom-right corner of Figure 3, anti-ferromagnet phase (i.e., Vc <
1 and Vp = 1) is yielded. In order to show the above four phase
transition processes more vividly, we provide numerical simulation
videos in the supplementary material and the link http://imds.aia.
hust.edu.cn/info/1247/2403.htm.

In order to investigate more deeply into the principles governing
the pattern phase transitions, we present three heat maps of Vc,
Vp and Vv in Figures 4–6 along increasing parameters μ̂ and ̂J,
respectively. Each point is an average over 50 independent runs, with
each run lasting 1× 105 running steps guaranteeing the attainment
of steady states.Note that the choice of 105 stepsis a conservative
estimate to ensure that steady states are attained uniformly across
the entire parameter range.

Significantly, the order parameter Vc = 1implies ferromagnet.
It is observed from Figure 4 that the red region corresponds
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FIGURE 2
Ferromagnet (A), worm (B), anti-ferromagnet (C), and vortex in different forms (D–H). Dots represent the locations of the particles whereas arrows the
spin directions. The particles are arranged with equal distances similar to crystals. Patterns (D–H) are rotational vortex, positive vortex, cross vortex,
relative vortex and anti-vortex, respectively. Similar patterns [35] universally exist in superfluid, planar magnets, superconductors and electron nematics,
etc. The XY dynamics system of spin particles undergoes phase transition among patterns (A–H) simply by tweaking a few model parameters.

FIGURE 3
Spin pattern phase diagram in the space spanned by parameters Ĵand μ̂.
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FIGURE 4
Heat map of the consensus state order parameter Vc. Here, Ĵand μ̂are
sampled within the range of [−3, −1] with an interval of 0.02, resulting
in a total of 10,201 data points, and each point is an average over 50
independent runs, with each run lasting 1× 105 running steps,
guaranteeing the attainment of steady states. Parameter: M = 50.

FIGURE 5
Heat map of the parallel state order parameter Vp. Here, Ĵand μ̂are
sampled within the range of [−3, −1] with an interval of 0.02, resulting
in a total of 10,201 data points, and each point is an average over 50
independent runs, with each run lasting 1× 105 running steps,
guaranteeing the attainment of steady states. Parameter: M = 50.

to the ferromagnetic phase (Vc = 1). It is noteworthy that the
value presented here is an average over 50 independent runs,
thus there is a very small probability that there will be a non-
ferromagnetic phase (i.e., Vc ≠ 1). Consequently, the red region
does not exactly equal 1, especially near the boundaries of pattern
phase transition where the probability of a non-ferromagnetic
phase increases, leading to the average value less than 1. Therefore,
the pattern phase discussed here is a ferromagnetic phase in a
probabilistic sense. The order parameter Vp = 1means that the spin
particles reach parallel state, from Figure 5, the parallel state in
the blue region can be observed, which serves as an important
basis for identifying the worm phase (Vp < 1,Vv = 0) and the
anti-ferromagnet phase (Vp = 1,Vc < 1). Notably, in the bottom-
right corners of Figure 5, the spin motion of particles in the

FIGURE 6
Heat map of the vortex state order parameter Vv. Here, Ĵand μ̂are
sampled within the range of [−3, −1] with an interval of 0.02, resulting
in a total of 10,201 data points, and each point is an average over 50
independent runs, with each run lasting 1× 105 running steps,
guaranteeing the attainment of steady states. Parameter: M = 50.

FIGURE 7
Evolution of the occurrence frequencies of the ferromagnet and
vortex phases (A), the vortex state order parameter Vv (B) and the
vortex number (C) with increasing M. Here, each point is an average
over 200 independent runs, with each run lasting 1× 105 running
steps, guaranteeing the attainment of steady states. Parameters: μ̂ =
−3 and Ĵ = − 1.
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FIGURE 8
Evolution of the occurrence frequencies of the two parallel patterns
(i.e., ferromagnet and anti-ferromagnet phases), vortex and worm
phases (A), the parallel state order parameter Vp (B) with increasing
system size M. Here, each point is an average over 200 independent
runs, with each run lasting 1× 105 running steps, guaranteeing the
attainment of steady states.Parameters: μ̂ = − 1 and Ĵ = − 1.

FIGURE 9
Evolution of the vortex number (A) and the consensus state order
parameter Vc (B) with increasing σ. Here, each point is an average over
200 independent runs, with each run lasting 1× 105 running steps,
guaranteeing the attainment of steady states. Parameters in (B): μ̂ = − 1
and Ĵ = − 1.

system is governed by the 2-fold generalization field term, i.e.,
sin (ψ− 2θi). However, there are two stable equilibria, namely,
ψ/2and ψ/2+ π, so an anti-ferromagnet effect will be formed. The
order parameter Vv = 1implies vortex phase. It is observed from
Figure 6 that the red region corresponds to the vortex phase.
Meanwhile, in themiddle-upper diagonal striped region of Figure 6,
the system undergoes a phase transition from a vortex (Vv = 1)to
a ferromagnet (Vc = 1). In conclusion, by combining Figures 4–6,
a sequential phase transition process can be observed, including
the vortex phase (Vv = 1), the ferromagnetic phase (Vc = 1), the
worm phase (Vp < 1,Vv = 0), and finally the anti-ferromagnetic
phase (Vp = 1,Vc < 1).

To investigatemore deeply into the phase transitionmechanism,
we conduct the effects of the side length parameter M on vortex-
worm phase transitions. Along ascending M from 5 to 20, as
shown in Figure 7A, the vortex phase begins to appear. Upon
reachingM = 25, the occurrence frequency of vortex phase exceeds
that of ferromagnet phase, where occurrence frequency refers to
the number of times a specific phase (e.g., vortex or worm) is
observed across multiple simulations (same below). Until M ≥ 80,
only the vortex phase exists, whose number increases rapidly with
rising M (see Figures 7B, C), where vortex number quantifies the
number of vortices formed in the system during a single simulation,
and the error bars representing the standard deviation across 200
independent runs (same below). Analogously, in Figure 8A, when
M ≥ 10, the occurrence frequency of the worm phase exceeds that of
the parallel patterns (i.e., ferromagnet and anti-ferromagnet phases).
Upon reaching M = 25 only the worm phase exists. Figure 8B
shows the evolution of the parallel order parameter Vp value along
increasing M, which can quantitatively identifies the worm phase.
A plausible explanation is given below. From the spin dynamics
XY model (2), it can be observed that the model has many
stable equilibria, including spin particles aligned in a parallel or
vertical direction, relative to each other. However, according to the
characteristics of the dynamic model (2), spin particles on the four
corners and four sides of a square lattice have only two and three
neighbors, respectively, which forms a boundary effect. Specifically,
in the scenario of random initial values, the spin particles on the
boundary and their neighbors will be prone to reach the consensus
of heading directions, which drives the inner side spin particles
to reach the same direction. However, with increasing number of
the spin particles, the proportion of spin particles on the boundary
decreases, and hence the influence of the boundary effect on the
inner side particles will be weakened. In such a situation, vortex and
worm patterns can be formed.

So far, the phases and their transitions discussed above are noise-
free, i.e., σ = 0. Next, we conduct an investigation on the effect of
σ on the formation of vortex and worm phase in model (2). As
shown in Figure 9A, with the increase of σ, the number of vortices
gradually decreases until the vortex phase is totally ruined by noise.
It is observed that vortex phase can bemaintained for σ ≤ 0.07. In the
blue curves of Figure 9B, it is shown that with moderate increase of
external noise, a new phase appeared, that is, when σ ∈ [0.05,0.1],
Vc would approach 1, but could not exactly reach 1 due to the
influence of the external noise, i.e., Vc ∈ [0.98,1), which is called
quasi ferromagnet phase. As shown in Figure 9B, when σ ≥ 0.05, the
quasi ferromagnet phase appears, and the variance ofVc in theworm
phase grows larger.
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3 Conclusion

This letter investigates the pattern phase transition mechanism
for a class of the XY model with Hamiltonian equations of
motion. Three phase transitions among four patterns, i.e., vortex,
ferromagnet, worm and anti-ferromagnet, are revealed simply by
tweaking two parameters J and μ. Specifically, the occurrence
frequency of vortex phase exceeds that of ferromagnet phase for
a sufficiently large space. This study is expected to provide an
insight for understanding the emergence of single vortex and tight
vortices pairs in pattern phase transition of spin particle groups.
The observed phase transition may shed some lights onto the self-
assembly dynamics analysis of magnets, electron nematics, and
quantum gases.
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