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Introduction: The SIR (Susceptible-Infected-Recovered) model is one of the
simplest andmost widely used frameworks for understanding epidemic outbreaks.

Methods: A second-order dynamical system for the R variable is formulated using
an infinite exponential series expansion, and a recursion relation is established
between the series coefficients. A numerical approximation scheme for the R
variable is also developed.

Results: The proposed numerical method is compared to a double exponential
(DE) nonlinear approximate analytic solution, which reveals two coupled
timescales: a relaxation timescale, determined by the ratio of the model’s time
constants, and an excitation timescale, dictated by the population size. The DE
solution is applied to estimate model parameters for a well-known
epidemiological dataset—the boarding school flu outbreak.

Discussion: From a theoretical standpoint, the primary contribution of this work is
the derivation of an infinite exponential, Dirichlet, series for the model variables.
Truncating the series yields a finite approximation, known as a Prony series, which
can be interpreted as a sequence of coupled exponential relaxation processes,
each with a distinct timescale. This apparent complexity can be approximated
well by the DE solution, which appears to be of main practical interest.
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1 Introduction

Epidemic models have undergone steady development during the last 100 years. The
SIR model, short for Susceptible-Infectious-Recovered model, is a fundamental framework
in epidemiology used to describe the spread of infectious diseases within a population.
Developed by Kermack and McKendrick in the early 20th century [1], the SIR model
categorizes individuals into three compartments: Susceptible (S), those who can contract the
disease; Infectious (I), those who have contracted the disease and can transmit it to others;
and Recovered (R), those who have recovered from the disease and are assumed to be
immune. The SIR model is used to model epidemic outbreaks (see the monograph of
Martcheva [2] or [3]). By modeling the rates of transition between these compartments, the
SIR model provides insights into the dynamics of epidemic outbreaks, helping predict the
spread and eventual decline of infections. It should be noted that the original model
derived by Kermack and McKendrick was formulated in terms of convolution
integrals, while the more popular form used in the present literature is actually only its
simplified case.
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The SIR model is one of the simplest examples of dynamical
system with a positive and a negative feedback loops. That is, the
model features competing excitation and relaxation processes. The
SIR model has an universal applicability in epidemiology as well as
in different areas of social sciences – information spread in social
networks, behavior and influence adoption, social movements and
protests, etc. [5]. For example, in social networks individuals in the
network can be categorized as susceptible (not yet informed),
infectious (spreading the information), or recovered (informed
but no longer spreading).

Kendall [6] derived the parametric solution for the R-variable,
however, he could not formulate the complete parametric solution
since during his time the Lambert W and Wright Omega functions
were not available. The parametric solution of the SIR model
through the S-variable was derived in [7] Barlow and Weinstein
derived a power series for the S-variable and introduced rational
convergents on the positive half-plane [8]. A different
approximation scheme was introduced in [9]. Analytic Taylor
series have been obtained in [10] but they are purely of
theoretical interest. An inverse parametric solution for the
I-variable was obtained independently by the present author
[10, 11] and Kudryashov al. [12]. An equivalent differential
system has been obtained in [13]. The modern literature on the
applications of the SIRmodel has become quite extensive in view of
the applications to the COVID-10 pandemic and will not be
reviewed here.

The main contribution of the present manuscript is to give an
analytical solution of the SIR model as infinite exponential (i.e.
general Dirichlet) series. Upon truncation the solution produces a
finite Prony series, which can be of some practical interest. The
Prony series expression is a mathematical tool used primarily to
model viscoelastic materials, capturing their time-dependent
behavior through a sum of exponential terms. Each term
represents a distinct relaxation process with specific relaxation
times and moduli. This series is particularly useful in engineering
and material science for simulating and predicting the performance
of polymers, rubbers, and biological tissues. The article further
derives the double exponential approximate analytical solution of
the SIR model. Finally, the third contribution of the article is a
Newtonian iteration schema for the R-variable.

2 Preliminaries of the SIR model

The contemporary formulation of the model can be found in [2].
The SIR model is built on several simplifying assumptions [4]. The
dynamical formulation of the model comprises a set of three
ordinary differential equations ODEs Equations 1–3:

d

dt
S t( ) � − β

N
S t( )I t( ) (1)

d

dt
I t( ) � β

N
S t( )I t( ) − γI t( ) (2)

d

dt
R t( ) � γI t( ) (3)

By construction, the model assumes a constant overall population
N � S(t) + I(t) + R(t) [1]. The interpretation of the parameters is that

a disease carrier infects on average β individuals per day, for an average
time of 1/γ days. The β parameter is called disease transmission rate,
while γ – recovery rate. The average number of infections arising from an
infected individual is then modeled by the number R0 � β/γ, the basic
reproduction number. Typical initial conditions are S(0) � S0, I(0) �
I0, R(0) � 0 [1]. The model is strictly valid for an isolated population of
known size N. This is in practice seldom the case; therefore, in many
publications, the population size N is absorbed in the β time constant.
Due to the constant population size N (i.e the first integral) only two
variables are independent.

2.1 On two useful special functions

The theory of the SIR model is closely related to two special
functions – the Lambert W function and the Wright’s Ω function,
which is less well-known and can be expressed as a composition of
the W function.

The Lambert W function is defined implicitly by the
functional equation

W z( )eW z( ) ≕ z, z ∈ C (4)
and as such is the simplest example of a root of an exponential
polynomial. Properties of the function are surveyed in [14]. It is
particularly useful in solving equations where the variable
appears both in the base and the exponent, and it finds
applications in various fields, such as combinatorics, physics,
biochemistry, and complex analysis. Applications in physics
include the Wien’s displacement law; in biochemistry – the
Michaelis-Menten kinetic equation, etc. In general, the W
function is multivalued. Analytically continued on the
complex plane, the function has a countably infinite number
of complex-valued branches. The real-valued branches are two.
The principal branch is conventionally denoted byW0, while the
non-principal real-valued branch is denoted by W−1. In the
present work, I will slightly depart from the convention and
will denote W−1 ≡ W− and W0 ≡ W+ since we will be
concerned only with the real-valued branches. Furthermore, if
no subscript is written the symbol W will denote all branches of
the function.

The Lambert’s function is a simple example of a function which
is non-Liouvillian – it can not be expressed by a finite composition of
elementary functions or their integrals [15].

Useful identities are Equations 5–9:

enW z( ) � z

W z( )( )n

(5)

logW+ z( ) � log z −W+ z( ), z> 0 (6)

W+ z( ) � log
z

W+ z( )( ), z> 1/e (7)

W− z( ) � log
z

W− z( )( ), z ∈ −e−1, 0( ) (8)

W
nzn

W z( )n−1( ) � nW z( ), n> 0, z> 0 (9)

Furthermore, the Lambert function obeys the
differential equation
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W′ x( ) � e−W x( )

1 +W x( ) �
W x( )

x 1 +W x( )( )
The point x � −1/e is a branching point of the function where

the function can be presented by a convergent Puiseux series.
Around the branch point, the series can be given as

W p( ) � −1 + p − p2

3
+ 11
27

p3 − 43
540

p4 +/

where p � ±
��������
2(ex + 1)√

for W+ or W−, respectively. The series
converges for |p|< �

2
√

. This relationship can be used to evaluate the
function around the branch points where the usual Newton’s
method converges very slowly.

The Wright’s Omega function is closely related to the W
function [16]. Corless and Jeffrey [16] define the function as

Ω z( ) ≔ WK z( ) ez( ), K z( ) ≔ Imz − π

2π
⌈ ⌉ (10)

The Ω function obeys the rational autonomous
differential equation

Ω′ � Ω
1 +Ω (11)

This equation arises in biochemistry as the Michaelis-Menten
enzyme kinetic equation. The present work uses different convention

Ω± z( ) ≔ W± −ez( ) (12)

3 The parametric solution of the
SIR model

The common formulation of the SIR model employs two time
constants. The non-dimensionalization of the model can eliminate
one of the constants. In the present formulation, time will be re-
scaled as t ↦ βt. As a result, only the non-dimensional ratio of the
time constants will parametrize the resulting model:

s′ � −si (13)
i′ � si − gi, g � γ

β
� 1
R0

(14)

r′ � gi, (15)

This reformulation simplifies some of the resulting expressions.
Observe that di/dt has a fixed point at s � g. The advantage of this
formulation is that the phase space manifold is parametrized only by
a single parameter – g. Moreover, it will turn out instrumental for
the identification of the Prony series exponents. Another useful
quantity will be

Re ≔ N/g � NR0 (16)

This is related to the effective reproduction number if only
susceptible individuals are present before the outbreak. The
parametric solution takes t � 0 as the position of the peak
incidence im, although time shifting and formulation as initial
value problem are straightforward to implement [11].
Remarkably, all involved integrals are non-elementary [10].

The parametric solution can be computed as

t s( ) � −∫s/g

1

dy

y log y/Re( ) − y + Re( ) (17)

where the domain of s is [−gW+(−Ree−Re ), gRe]. To prove that we
should solve the equation

log y/Re( ) − y + Re � 0

The solution is given by the Lambert function branches

y1,2 � −W± −Ree
−Re( )

The proof is by direct substitution

log
−W± −Ree

−Re( )
Re

( ) +W± −Ree
−Re( ) + Re

� −W± −Ree
−Re( ) − Re +W± −Ree

−Re( ) + Re � 0

We also observe that W−(−Ree−Re ) � −Re.
For the i-variable, the solution can be computed by substitution

from Equation 17.

t i( ) � −∫−W+ −Ree
i
g−Re( )

1

dy

y log y/Re( ) − y + Re( ) (18)

This equation involves quadrature of only elementary functions,
which are present in any numerical package.

Finally, t(r) can be computed again by substitution:

gt r( ) � ∫
r/g

logRe

dy

y + Re e−y − 1( ) (19)

From the above we see that Re provides a natural foliation of the
solution manifold. The integration range can be determined from
the solution of the equation

y + Re e−y − 1( ) � 0 (20)

One of the roots of Equation 20 by inspection is y � 0. However,
the roots can be also determined using the W function. The real
roots are given by

y1,2 � Re +W± −Ree
−Re( ) (21)

The proof is obtained by a direct substitution:

W± −Ree
−Re( ) − Re 1 − e−W± −Ree−Re( )−Re( ) + Re

� W± −Ree
−Re( ) + Ree

−W± −Ree−Re( )−Re

� W± −Ree
−Re( ) − Re

Re
W± −Ree

−Re( ) � 0

We also observe that y2 � Re +W−(−Ree−Re ) � 0, confirming
the utility of the W function formulation.

The above formulation allows one to clearly split the temporal
axis in terms of the branches of the Lambert function. The special
choice of the origin allows one to discuss predictive (falling) and
retrodictive (rising) solutions, expressed by the i-variable. The
predictive solution corresponds with the positive principal branch
of the Lambert function, while the retrodictive solution corresponds
with the non-principal branch.
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4 Second-order dynamical systems for
the SIR model

The SIR model can be formulated also as several equivalent
second-order non-linear dynamical systems for the different
variables. The readers are directed to the original results
in [7, 12].

4.1 A dynamical system for the i-variable

The following results are stated and proofs are repeated for
convenience.

Proposition 1. The SIR system is reducible to the non-linear
differential equation for the i-variable:

i′ � −gi2 − i i′ + i′2

i
(22)

or the system

It′ � −gI2 − IIt + I2t
I

(23)
I′ � It (24)

Proof. from the conservation law s′ � −i′ − r′ � −i′ − ig. Then
from Equation 14 it holds that s � g + i′/i. Differentiating Equation
14 and substituting Equation 13

i′′ � −gi′ + is′ + i′s � −gi′ − i2s + si′

� −gi′ + i′ g + i′
i

( ) − i2 g + i′
i

( ) � −gi2 + i′′
2

i
− ii′

The system admits elementary solutions i � i0e−gt,
r � r0 + i0(1 − e−gt), which correspond to s0 � 0. This can be
verified by direct substitution into Equation 22. Remarkably, this
solution already has the form of a Prony series.

4.2 A dynamical system for the s-variable

An equivalent second-order system for the s-variable was
deduced in [7].

Proposition 2. The SIR system is reducible to the non-linear
differential equation for the s-variable

s′ � s′2

s
+ s − g( )s′

or the system

St′ � S2t
S
+ S − g( )St (25)

S′ � St (26)
Proof.

d

dt
i � s − g( )i � 1 − g

s
( )si � − 1 − g

s
( )s′

On the other hand,

d

dt
i � − d

dt

s′
s
� s′2

s2
− s′

s

Substitution gives

s′2

s2
− s′′

s
� − 1 − g

s
( )s′

from where the result follows.

4.3 A dynamical system for the r-variable

Finally, the r-variable can be represented by the following system.

Proposition 3. The SIR system is reducible to the second order
non-linear differential equation for the r-variable

r′ � gr′ Ree
− r
g − 1( ) (27)

or the dynamical system

Rt′ � gReRte
−R
g − gRt (28)

R′ � Rt (29)

Proof. differentiating Equation 15 yields
r′ � gi′ � g(si − gi) � gsi − gr′ � −gs′ − gr′. On the other hand,
in the r-s plane it holds that

dr

ds
� −g

s

which possesses an elementary solution as an equation of state:

r � −g log s + c (30)
We use the fixed-point condition s0 � s(0) � g so that s �

ge−r/g+r0/g for the constant r0. Further, observe that

r0 � −g log g

N
� g logRe

where N is the population size from where the result follows.
Obviously, the presented list of dynamical systems Equations

22–29 is non-exhaustive since for any composition of the model
variables one could derive a corresponding dynamical system.

The dynamical system described in Proposition 3 is illustrated in
Figure 1. The figure exhibits the vector field given by Equations 28,
29 and features one particular trajectory, integrated numerically
with the Runge-Kutta fourth order method. The above formulations
indicate three potential lines of attack for obtaining a globally
convergent series solution. If the system for the r-variable is
employed one needs to compute the exponential of a series
followed by multiplication with the original series. This seems
the least computationally complex approach and it will be
pursued in the present paper.

5 Properties of the state equations

To simplify presentation we further re-scale both time and
population variables as

ρ ≔ r/g, σ ≔ s/g, ι ≔ i/g, τ ≔ gt

Frontiers in Physics frontiersin.org04

Prodanov 10.3389/fphy.2024.1469663

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1469663


and differentiation with respect to τ will be denoted by a dot.
Therefore, the equations of state Equation 30 acquire a very
simple form

σ � Ree
−ρ, (31)

ι � Re 1 − e−ρ( ) − ρ � _ρ, (32)

where Equation 30 follow from Equation 31, while Equation 32
follows from the construction of SIR model – i.e. the number

FIGURE 1
The dynamic system for the r-variable, Equation 28. Parameter values – g � 2.0, Re � 3.45; drawn a trajectory passing through P(1.9, 11.4).

FIGURE 2
Parametric and asymptotic solutions for the incidence variable i(τ). Asymptotic solutions compared to parametric plots of (τ(i), i) parameterized by
im � 5.0 and g � 2.0. Legends: Lb denotes the left branch using W−(x), Rb denotes the right branch using W+(x), Equation 18. A denotes the asymptotic
solution. (A) the double exponential asymptotic for i(τ) is computed from Equation 44; (B) the gamma-asymptotic for i(τ) is computed from Equation 47.
Plots were produced using the quad_qags Maxima numerical integration command.
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conservation first integral. Therefore, at positive infinity (τ � +∞)
and for Re > 1 we have the triple

ι∞ � 0, ρ∞ � Re +W+ −Ree
−Re( ), σ∞ � −W+ −Ree

−Re( )
so that

e−ρ∞ � −e−Re
eReW+ −Ree−Re( )

Re
� −W+ −Ree−Re( )

Re
(33)

by Equation 5. While for Re > 1 and τ � −∞ it follows that

ι−∞ � 0, ρ−∞ � Re +W− −Ree
−Re( ) � 0,

σ−∞ � −W− −Ree
−Re( ) � Re

hold. These are limiting behaviors which should hold for any
approximation of practical interest.

Furthermore, the outbreak peak is given by the triple:

ιm � Re − 1 − logRe, ρm � logRe, σm � 1,

under the obvious conditions ιm > 0, ρm > 0, which is equivalent to
Re > 1. Alternatively, the Re can be inferred from im since

Re � −W− −e−ιm−1( ) (34)

Furthermore, the ρ variable can be obtained explicitly as follows.
We set ρ � −logy to obtain

FIGURE 3
Double-exponential approximation of the SIR model. S, I, R denote the s(t), i(t) and r(t) first order approximations, respectively. (A) im � 2; (B) im � 5.

FIGURE 4
3-term Prony predictive approximation of the r-variable. ilambint61 denotes the parametric solution, R3 denotes 3-term Prony approximation. (A)
im � 2; (B) im � 5. Numerical experiments indicate that λ ≈ A (Equation 43) provides a good fit.
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ι � logy − Rey + Re

This equation is solvable with the help of the Lambert’s W
function as

y � −W± −Reeι−Re( )
Re

Therefore,

ρ � −log −W± −Ree
ι−Re( )

Re
( )

� logRe + Re − ι − logRe +W± −Ree
ι−Re( ) � Re − ι +W± −eι−ιm−1( )

(35)
where the principal branch is taken for τ < 0 and the non-
principal one – for τ > 0, respectively. In summary from
Equations 33–35, in terms of the ι variable we obtain
the equations

σ � −W± −eι−ιm−1( ) (36)
ρ � W± −eι−ιm−1( ) −W− −e−ιm−1( ) − ι (37)

in accordance with the first integral. The last Equations 36, 37 can be
expressed concisely by the Ω function as

σ � −Ω± ι − ιm − 1( ) (38)
ρ � Ω± ι − ιm − 1( ) −Ω− −ιm − 1( ) − ι � −σ + Re − ι (39)

with a similar convention for the branches.

6 Exponential series solution

6.1 Predictive series

First, we will look for a solution, approximating the r-variable on the
positive real line. The asymptotic analysis indicates that an approximation
may be achievable using a general Dirichlet series of the form:

ρ − ρ∞ � ∑∞
k�1

cke−kmτ

k!
, τ ≥ 0 (40)

where m is a real-valued exponent to be determined later. The
truncation of the series at a finite k is then a Prony series. Since we
will characterize a dynamical system the Prony series will have exact
instead of empirical character. Furthermore, since we are interested
only in a Prony approximation we will treat the Equation 40 as
formal series without regard to convergence issues.

The formal exponent of the Dirichlet series is another general
Dirichlet series

eρ∞−ρ � 1 +∑∞
k�1

−1( )kBke−kmτ

k!

where the coefficients Bk are given by the complete, exponential Bell
polynomials Bk ≡ Bk(c1, . . . , ck).

The complete Bell polynomials in turn can be readily calculated
from the determinant

Bk c1, . . . , ck( ) �

k − 1
1

( )c1 k − 1
2

( )c2 k − 1
3

( )c3 . . . ck

−1 k − 2
1

( )c1 k − 2
2

( )c2 . . . cn−1

0 −1 k − 3
1

( )c1 . . . ck−2

0 0 −1 . . . ck−3
. . . . . . . . . . . . . . .
0 0 0 −1 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The first few polynomials can be listed as

FIGURE 5
Approximation of the r-variable. R denotes the parametric solution, R1 denotes the approximate solution, given by Equation 45. (A) im � 2; (B) im � 5.

TABLE 1 Estimated SIR model parameters.

Variable g im T (days) N

I 0.55008 0.44883 6.48575 659.91340

R 0.68049 0.44764 6.12176 972.22174
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B0 � 0, B1 � c1, B2 � c2 + c21, B3 � c3 + 3c1c2 + c31,

B4 � c4 + 4c1c3 + 3c22 + 6c21c2 + c41,

B5 � c5 + 5c1c4 + 10c2c3 + 10c21c3 + 15c1c
2
2 + 10c31c2 + c51, . . .

We substitute the above expressions in Equation 27, which
obtains the form

€ρ � _ρ Ree
−ρ − 1( )

Observe that reversing time direction will result in a change of sign
of the right-hand side of the equation. Therefore, it will be sufficient
to determine the coefficients only for the positive time direction. The
resulting expression is

m2 ∑∞
k�1

k2
cke−kmτ

k!
� −m ∑∞

k�1
k
cke−kmτ

k!
⎛⎝ ⎞⎠

× Ree
−ρ∞ − 1 + Ree

−ρ∞ ∑∞
k�1

−1( )kBke−kmτ

k!
⎛⎝ ⎞⎠

Since we work with formal infinite series one can
apply the Cauchy product formula. Therefore, we obtain
the equation

Rem ∑∞
k�1

kcke
−ρ∞−kmτ

k!
+ Reme−ρ∞ ∑∞

k�2
∑k−1
i�1

−1( )iBi k − i( )ck−ie−kmτ

i! k − i( )!

+m2 ∑∞
k�1

k2cke
−kmτ

k!
−m∑∞

k�1

kcke
−kmτ

k!
� 0

Equating the exponents results in the following recursion
dependence between the coefficients:

k2ckmeρ∞ − kcke
ρ∞ + Re ∑k

i�1
k!

−1( )iBick−i
i! k − i − 1( )! + Rekck � 0 (41)

The first terms of the recursion are

0, c1 eρ∞m − eρ∞ + Re( ), 2 2c2e
ρ∞m − c2e

ρ∞ + c2Re − c21Re( ),{
3 3c3e

ρ∞m − c3e
ρ∞ + c3Re − c1c2Re + c31Re( ), . . .}

Therefore, for the base exponent m � 1 − Ree−ρ∞ � 1 +
W+(−Ree−Re ) must hold as a constraint for a non trivial series
solution to exist. By using the value ofm found in this way ck can be
obtained by recursion from Equation 41:

ck � − q

k − 1
∑k
i�1

−1( )i k − 1
i

( )Bick−i, k≥ 2

where we have recognized the appearance of the Newton’s binomial
coefficients and

q � Re

eρ∞ − Re
� −W+ −Ree−Re( )
1 +W+ −Ree−Re( )

The first few coefficients of the series can be readily computed as

c1 � λ, c2 � −qλ2, c3 � q q + 1( )λ3
2

, c4 � q q2 − 2q − 1( )λ4
3

,

c5 � −q q − 1( ) 2q2 + 5q + 1( )λ5
4

,

c6 � −q 27q4 − 37q3 − 49q2 + 49q + 6( )λ6
30

,

c7 � q 98q5 + 311q4 − 295q3 − 227q2 + 197q + 12( )λ7
72

, . . .

Substituting the value of q produces an equivalent form of the
sequence as

c2 � c21Re

eρ∞ − Re
, c3 � −c

3
1Re eρ∞ − 2Re( )
2 eρ∞ − Re( )2 ,

c4 � c41Re e2ρ∞ − 4Ree
ρ∞ + 2Re

2( )
3 eρ∞ − Re( )3 ,

c5 � −c
5
1Ree

ρ∞ e2ρ∞ − 7Ree
ρ∞ + 8Re

2( )
4 eρ∞ − Re( )4 , . . .

FIGURE 6
Asymptotic fitting of reported cases. (A) Comparison between the raw data and fitted curves for the infected (“asymp i”) and recovered populations
(“asymp r”); (B) Incidence data compared to fitted curves. Parameters from Table 1 were used to compute the incidence curves, “asymp i” – fitting for I,
“asymp r” – fitting for R.
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The above procedure is essentially algorithmic and easily amenable
to programming in a computer algebra system. The procedure leaves
the coefficient c1 � λ undetermined. Therefore, the result is a
combined series in τ and λ:

ρ τ|λ( ) � ρ∞ +∑∞
k�1

ckλ
ke−kmτ

k!
, τ ≥ 0

where now ck are appropriately re-scaled from c1 � 1. This amounts
to a time-sift of the origin with log λ/m since

ρ τ|λ( ) � ρ∞ +∑∞
k�1

cke−k mτ−log λ( )
k!

, τ ≥ 0, λ ≠ 0

Furthermore, observe that λ � 0 corresponds to the positive
infinity, since then ρ(τ|0) � ρ∞.

6.2 Retrodictive series

In this section we revert the time direction and look for series of
the form

ρ � ∑∞
k�1

ckekmτ

k!
, τ < 0

which asymptotically approaches ρ−∞ � 0. The first terms of the
recursion are

0, c1 m − Re + 1( ), 2 2c2m − c2Re + B1c1Re + c2( ), 3 3c3m − c3Re({
+2B1c2Re − c1B2Re + c3), 4, 4c4m − c4Re + 3B1c3Re(
+c1B3Re − 3B2c2Re + c4), , , . . .}

Therefore, m � Re − 1. The same kind of analysis leads to
the recursion

k2ckm − Rek! ∑k−1
i�1

−1( )iBi k − i( )ck−i
i! k − i( )!

⎛⎝ ⎞⎠ − Rekck + kck � 0

Therefore,

ck � Re

Re − 1( ) k − 1( ) ∑
k

i�1
−1( )i k − 1

i
( )Bick−i, k≥ 2

This results in coefficients

c2 � c21Re

Re − 1
, c3 � −c

3
1Re 2Re − 1( )
2 Re − 1( )2 , c4 � c41Re 2Re

2 − 4Re + 1( )
3 Re − 1( )3 ,

c5 � −c
5
1Re 8Re

2 − 7Re + 1( )
4 Re − 1( )4 ,

c6 � c61Re 4Re
4 + 36Re

3 − 134Re
2 + 73Re − 6( )

30 Re − 1( )5 , . . .

Therefore, as before we can set c1 � λ and obtain the series

ρ τ|λ( ) � ∑∞
k�1

ckλ
kekmτ

k!
, τ < 0

In summary, as before we can determine the solution up to
translation in time.

6.3 Peak value parametrization -
predictive series

In this section, we use the peak parametrization where ρ0 �
ρm � logRe and form the infinite series

ρ − ρ0 ≔ ∑∞
k�1

ck 1 − e−kmτ( )
k!

� A −∑∞
k�1

cke−kmτ

k!
, t≥ 0

where we also denote the infinite sum A ≔ ∑∞
k�1ck/k!. Then, at

positive infinity, the value of A can be determined as

ρ∞ − ρ0 � Re +W+ −Ree
−Re( ) − logRe � A≥ 0

The Lambert function identity W+(−1/e) � −1 shows that Re �
1 implies A � 0.

The same development procedure produces the recursion

ck � − q

k − 1
∑k
i�1

−1( )i k − 1
i

( )Bick−i, k≥ 2 (42)

where now

q � 1
eA − 1

The coefficients are still given by Equation 42 but expressed in
terms of A can be read off as

c1 � λ, c2 � λ2

eA − 1
, c3 � −λ

3 eA − 2( )
2 eA − 1( )2, c4 �

λ4 e2A − 4eA + 2( )
3 eA − 1( )3 ,

c5 � −λ
5eA e2A − 7eA + 8( )

4 eA − 1( )4 ,

c6 � λ6 6e4A − 73e3A + 134e2A − 36eA − 4( )
30 eA − 1( )5 , . . .

while the base exponent is m � 1 − e−A.

6.4 Peak value
parametrization – retrodictive series

We start from the equation

ρ − ρ0 ≔ − A +∑∞
k�1

ckekmτ

k!
, τ < 0 (43)

where ρ0 � logRe. Then asymptotically

ρ−∞ − logRe � −A0A � logRe

So it follows that

ρ � ∑∞
k�1

ckekmτ

k!

∑∞
k�1

λkck
k!

� logRe

where m � Re − 1, q � Re/(Re − 1), and c1 � λ.
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In summary, the presented approach is manifestly time-asymmetric
due to the properties of the equivalent dynamical system for the r-variable.

6.5 The i-variable

The other observable of the model is the ι variable, which can be
obtained from Equation 32:

ι τ( ) � Re − σ τ( ) − ρ τ( ) � Re 1 − exp −ρ τ( )( )( ) − ρ τ( )

Therefore, by substitution

ι τ( ) � Re 1 − exp − ρ0 + A( ) +∑∞
k�1

cke−kmτ

k!
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − ρ0 + A( )

+∑∞
k�1

cke−kmτ

k!

For the value at τ � 0 one obtains

ι 0( ) � Re 1 − exp −ρ0( )( ) − ρ0 � Re − 1 − logRe � ιm

and finally

ι τ( ) � Re 1 − e−ρ∞ exp ∑∞
k�1

cke−kmτ

k!
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − ρ∞ +∑∞

k�1

cke−kmτ

k!
, τ ≥ 0

For the case τ < 0 we proceed in a similar way.

ι τ( ) � Re 1 − exp −∑∞
k�1

ckekmτ

k!
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +∑∞

k�1

ckekmτ

k!
, τ < 0

Then

ι 0( ) � Re 1 − e−logRe( ) − logRe � ιm

so that the series agree.
The asymptotes at infinity are verified by direct substitution

ι ± ∞( ) � Re 1 + W± −Ree−Re( )
Re

( ) − Re +W± −Ree
−Re( )( ) � 0

6.6 The s-variable

The series for the s-variable can be determined from the state
equations as

σ τ( ) � Re exp −ρ τ( )( ) � Ree
−ρ∞ exp ∑∞

k�1

cke−kmτ

k!
⎛⎝ ⎞⎠, τ ≥ 0

and

σ τ( ) � Re exp −∑∞
k�1

ckekmτ

k!
⎛⎝ ⎞⎠, τ < 0

7 Non-linear approximation procedure

Since the SIR solution is non-singular everywhere in R, one can
apply the Banach Fixed-Point Theorem to obtain non-linear

approximation. Notably, one can use the non-linear
approximation scheme of Daftardar-Gejji-Jafari (DJM method)
for solving the equivalent integral Equation 16 [17].

7.1 The double-exponential
approximate solution

Starting from the 0th order approximation i(0) ≈ i0, it follows
that s(0) ≈ s0e−i0τ . However, this does not guarantee convergence of
the iteration. To establish convergence we observe that s � g is a
fixed point of Equation 22 since di/ds � 0 for this point and,
therefore, the Banach theorem can be applied. Therefore, we
must take s0 � g as an initial condition. This corresponds to the
peak-value parameterization so that i0 � im, i′(0) � 0 and by
Equation 27:

i τ( ) � im exp g∫τ

0
e
−∫z

0
i y( )dydz − gτ( )

can be formulated as a functional integral equation to be
approximated by DJM.

From there the first order approximation for the i-variable
becomes the double exponential function

i 1( ) � im e
g
im

1−e−imt( )−gt (44)
The corresponding solution for r will be

r 1( ) � Reg − i 1( ) + gW± −Ree
i 1( )
g −Re( ) (45)

where we take the non-principal branch W− for t< 0 and the
principal one W+ for t> 0. The s-variable can be expressed
accordingly

s 1( ) � −gW± −Ree
i 1( )
g −Re( ) (46)

Therefore, we can claim:

Proposition 4. The double-exponential, approximate analytic
solution of the SIR model is given by Equations 44–46.

The advantage of this formulation is that it respects the
population size integral as well as the fixed points of the
dynamical system.

On the other hand, formulated through the ρ variable, the
integral equation

ρ τ( ) � ιm ∫τ

0
exp Re∫y

0
e−ρ z( )dz − y( )dy + logRe

also holds. However, iterating this system will not lead to global
convergence towards the analytical solution since ρ � logRe is not a
fixed point but an inflection point for ρ. A similar argument can be
brought forward also for the s-variable. Therefore, one must use
Equations 45, 46 to obtain the approximate analytic solutions.

To link this approach with the Prony approximation one
observes that

i 1( ) � im e
g
im
−gte−

g
im

e−imt � im e
g
im
−gt ∑∞

k�0

1
k!

−g
im

( )k

e−k imt
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which has the form of a general Dirichlet series and can be readily
truncated into Prony approximation. From this analysis one can
interpret im as a timescale rather than an amplitude parameter. This
is a useful interpretation also for the numerical fitting procedure as
there the population size N can be treated as an additional degree
of freedom.

7.2 The Γ-approximate solution

DJM method can be further applied as follows. The second
iteration of the DJM method results in a Γ-integral:

J � ∫ e
g
im

1−e−imτ( )−gτdτ � −∫y g
im
−1 e

g
im
−gy
imdy

∣∣∣∣∣∣∣y�e−imτ

� −
Γ g

im
,
g

im
e−imτ( )

g

im
( )

g
im

e
g
im � −e

a

aa
Γ a, ae−imτ( ), a � g/im

where Γ(a, x) is the upper incomplete Euler’s gamma function.
Following the same procedure for the i-variable we obtain

i 2( ) � im exp g ∫τ

0
eq Γ a,a( )−Γ a,ae−imz( )( )dz − gτ( ), q � e

a
( )a

(47)

This is another non-elementary integral which can be readily
computed by quadratures as it involves one of the common
special functions.

8 Newtonian approximation of
the r-variable

The R-variable can be computed by numerical inversion of
Equation 19. A suitable algorithm to do so is the Newton-Raphson
approximation based on the double-exponential formula. An
approximation schema can be derived for an input (t, g, im) and
initialization parameters

I � ime
g 1−e−imt( )/im−gt

N � −gW− −e−im/g−1( )
Δ � N − im − g � g logN

Let

F r( ) ≔ t − 1
g
∫Δ
r

dy

N e−y/g − 1( ) + y

Then the iteration schema is

rn+1 � rn − F rn( )
F′ rn( )

Therefore,

r0 � N − I + gW± I − im( )/g − 1( )
rn+1 � rn − N e−rn/g − 1( ) + rn( ) F rn( )

where we take the non-principal branch W− for t< 0 and the
principal one W+ for t> 0. The advantage of the above

formulation is that the integral kernel is elementary and
the Lambert W function is evaluated only during the
initialization of the algorithm. The schema converges
wherever the quantity

M ≔
F′′

2F′

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ � 1 − Ree−r/g

2g Re e−r/g − 1( ) + r/g( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
is bounded–that is, wherever the initial value r0 is sufficiently far
from the poles of the kernel, which are the zeroes of the
denominator, given by Equation 21: r1,2 � g y1,2. Observe that
the denominator has an extremum at rm � g logRe. Therefore, we
can investigate the convergence in the two intervals (0, rm) and
[rm, gy1). Suppose that r/g � ϵ could be thought of as infinitesimal
quantity. Then to first order in ϵ

Mϵ ≈ ϵ 1 − Re 1 − ϵ( )
2gϵ 1 − Re( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ � 1 − Re 1 − ϵ( )
2g 1 − Re( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ � 1

2g
1 + Reϵ

1 − Re

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣< 1

2g

since Re > 1. Therefore, for r0 ≥ 2gϵ the method will converge.
Furthermore, suppose that the value of the denominator

Re(e−r/g − 1) + r/g � ϵ could be thought of as infinitesimal
quantity. Then to first order in ϵ

Mϵ � 1
2g

1 − Ree
−r/g∣∣∣∣ ∣∣∣∣ ≈ 1

2g
1 − ϵ − r/g + Re( )∣∣∣∣ ∣∣∣∣< 1

2g
1 + r/g − Re

∣∣∣∣ ∣∣∣∣
� 1
2g

1 +W+ −Ree
−Re( )∣∣∣∣ ∣∣∣∣< 1

2g

since W+(−Ree−Re )< 0. Therefore, for gy1 − r0 ≥ 2gϵ the method
will converge. Therefore, the schema has the desired quadratic
convergence whenever M is bounded.

Validation data on the approach are included in the
Supplementary Material.

9 Numerical results

The asymptotics of the i-variable are compared with the parametric
solution in Figure 2. Figure 3 demonstrates the approximate double-
exponential SIR model. The parametric solution for the r-variable is
compared with the 3-term Prony series in Figure 4. Plots of the
parametric solution were obtained by direct numerical integration
using the QUADPACK [18] routines in the Computer Algebra
System Maxima. Figure 5 compares the parametric solution for the
r-variable with the double-exponential approximate solution. The
approximate solution shows global convergence to the parametric
one as expected.

10 A case study in epidemiology

The approach was applied to the boarding school flu dataset.
The influenza data are tabulated in [2]. The table is reproduced
as a Supplementary Material. The parametric fitting was
conducted using a least-squares constrained optimization
algorithm. The least-squares constrained optimization was
preformed using the fminsearchbnd routine [19]. The fitting
equations are given by
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R ~ N r 1( ) t − T|g, im( )
for the observed cumulative incidence R, as a proxy for the recovered
population, and

I ~ N i 1( ) t − T|g, im( )
where I is the observed incidence. The parameter estimation
procedure is demonstrated in the Supplementary Material. The
results of the procedure are reported in Table 1. The peak could
be correctly estimated as 296 cases. Variables are plotted in Figure 6.
The fitted curves match closely the raw data. Both estimation
procedures agree well on the value of the excitation timescale im,
while they differ for the relaxation timescale g.

11 Discussion and conclusion

The contributions of the present article are three fold. On the first
place, the article presents an infinite exponential series solutions,
converging on the real half-plane. The presented exponential series
explicitly characterizes the non-elementary r-variable and by virtue of
the state equations also the s- and i-variables of the SIR model.
Furthermore, the present paper expands the utility of Prony series
approximation towards mathematical epidemiology. The recovery can
be transparently represented as a series of relaxation processes having
different time constants, which could improve our conceptual
understanding of the emergence of different time scales in
epidemiological models. This is a phenomenon also captured by the
double-exponential, Gompertzian, solution [20] where the fast time-
scale emerges from the global property of the system – that is the
population size through the excitation timescale im. The presence of
such a phenomenon is not apparent from the form of the differential
equations only, as these explicate only the longer time scale g. In such
way, the appearance of the faster time scale is a truly emergent
phenomenon.

The time-asymmetry of the dynamical system for the R-variable
dictates the appearance of the very different forms of the exponential
series. Most likely this phenomenon will hold also in other models
derived from SIR, such as SEIR and SIRD.

On the second place, a new numerical approximation schema
was derived for the R-variable. To obtain convergence to the correct
branch it is crucial to start from an initial approximation, which is
close to the exact solution.

Finally, the non-linear approximation produces produces and
approximate analytic solution which matches globally the
previously-obtained parametric solution of the SIR system. The

global solutions are represented as compositions of Lambert W
function with elementary ones, which furthers the utility of the
Lambert W and the closely related Ω function for applied
mathematical applications. This can be used for data-fitting
purposes and can become a widely used predictive tool for
epidemic outbreak control.
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