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In computational chemistry and molecular modeling, the interactions between
biomolecules (BMs) and nanomaterials (NMs) play a crucial role in various physical
and biological processes, and have significant implications in material discovery
and development. While there is extensive literature on free energy calculations
for drug-target interactions, reviews specifically addressing BM-NM interactions
are relatively scarce. This manuscript aims to fill in this gap by presenting a
comprehensive overview of the most widely used and well-established methods
for free energy calculations. It provides a detailed analysis of the advantages and
limitations of these methods and discusses their applicability to BM-NM systems.
This work is intended to offer insights into free energy calculations and serve as a
guide for future research in this field.
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1 Introduction

The interactions between biomolecules (BMs) and nanomaterials (NMs) are receiving
growing research interest due to their diverse applications in fields such as nanomedicine,
biosensing, and biocatalysis. BMs, which include nucleic acids, proteins, and carbohydrates
[1], interact with various types of NMs, such as 0D quantum dots, 1D nanotubes, 2D
nanosheets, and 3D nanocomposites [2]. For example, C3N, an ultra-small nanodot, could
effectively disassemble mature Aβ fibrils and hence reduce aggregation-related neuron
cytotoxicity both in vitro and in vivo [3]. An ultra-thin MoS2-graphene heterostructure
nanopore was shown to prolong the translocation time of λDNA and bovine serum albumin
(BSA), while acquiring detailed information about these single molecules [4]. Candida rugosa
lipase (CRL) adsorbed onto multi-walled carbon nanotubes has enhanced the production of
geranyl propionate, doubling enzyme activity compared to free CRL [5]. Despite these
successes, a deeper understanding of molecular interactions often requires the aid of an
important in silico method–molecular simulation. This area has rapidly expanded over the
years, driven by significant advances in computer power and revolutionized by machine
learning techniques. Molecular simulations are especially adept at elucidating underlying
molecular mechanisms and predicting unknown molecular properties. They have been
extensively applied to study BM-NM interactions, in which free energy serves as an
essential quantity to estimate the interaction strength between molecules and evaluate the
spontaneity of a physical process. Unfortunately, although free energy calculations are very
popular in computer-aided drug design (CADD) to accurately predict the drug-target
interactions (DTIs) [6], they generally receive much less attention in BM-NM
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interactions, due to limited availability of experimental data, lack of
standardization in interaction types, and complexity and diversity of
NMs [7]. This mini-review focuses on the most widely used
computational techniques for free energy calculations specifically
for the BM-NM systems, providing readers with a succinct
guidance on computing various kinds of free energy.

There are many classifications concerning free energy concepts.
First, free energy changes help determine the direction of spontaneous
processes.Whilst Helmholtz free energy difference (ΔA) is defined for
systems at constant volume, Gibbs free energy difference (ΔG) applies
to systems at constant pressure. In molecular simulations of
condensed matter systems, the NPT ensemble is generally adopted
for production runs, i.e., the number of molecules (N), the pressure
(P), and the temperature (T) of the system remain constant during
simulations. Consequently, this paper only takes Gibbs free energy
into consideration instead of Helmholtz free energy. However, it
should be noted that, in such simulations, the volume change ΔV is
usually small, making the two free energy measures generally
comparable. Second, the binding affinity between BMs and NMs is
described using binding free energy, which comes in two forms:
absolute binding free energy (ABFE) and relative binding free energy
(RBFE). ABFE offers an exact value of the binding free energy between
the bound state (e.g., protein-graphene complex) and the unbound
states (e.g., free protein and free graphene), to be compared directly
with an experimental value. By contrast, RBFE measures the
difference in binding free energy between two or more ligands
(e.g., proteins) binding to the same receptor (e.g., graphene), to
make a comparison between different ligands. The former is
typically achieved by molecular dynamics (MD) simulations with
enhanced sampling techniques, while the latter is typically achieved by
alchemical methods. Thirdly, to calculate free energies, somemethods
only consider the final bound state, some require the initial and final
states, whereas others compute the free energy changes along a
reaction coordinate. Accordingly, we categorize free energy
calculation methods into three main types: endpoint methods,
alchemical methods, and pathway methods.

This paper is organized as follows. In Section 2, we introduce
two similar endpoint methods: molecular mechanics/Poisson-
Boltzmann surface area (MM/PBSA) and molecular mechanics/
generalized Born surface area (MM/GBSA). In Section 3, we
discuss in detail three alchemical methods: Free Energy
Perturbation (FEP), Thermodynamic Integration (TI), and
Bennett Acceptance Ratio (BAR). In Section 4, pathway methods
are elaborated including Umbrella Sampling (US), Jarzynski
Equality (JE), and Metadynamics (MtD). Their relative
advantages and disadvantages are compared, and some examples
are illustrated especially for BM-NM systems. Finally, we outline
future directions for improvement in free energy calculations.

2 Endpoint methods

MM/PBSA or MM/GBSA In these two similar methods, the
binding free energy can be calculated as ΔG = ΔGBN-ΔGB-ΔGN and
divided into different contributions using Equation 1:

ΔG � ΔEMM + ΔGsol − TΔS

� ΔEint + ΔEvdW( ) + ΔGsol polar + ΔGsol nonpolar( ) − TΔS (1)

where ΔEMM is the gas-phase molecular mechanics (MM) energy,
which can be decomposed into contributions of the internal energy
ΔEint (the sum of ΔEbond, ΔEangle, and ΔEdiheral), the electrostatic energy
ΔEele, and the van der Waals energy ΔEvdW; ΔGsol is the solvation
free energy, which can be decomposed into the polar solvation energy
ΔGsol_polar calculated from either the Poisson-Boltzmann (PB) or
generalized Born (GB) model, and the nonpolar contribution
ΔGsol_nonpolar estimated by the solvent accessible surface area
(SASA); and −TΔS denotes the change in conformational entropy of
BMs, normally derived from normal mode analysis. For more detailed
information about these two methods, readers are referred to the
original works [8–11] and recent review articles [12–14]. Figure 1
provides a typical example of these endpoint methods, illustrating the
binding of a peptide drug (ID: 7mll) to a (16,16) carbon nanotube
(CNT). Several computational programs specifically designed for these
methods are available, such as “g_mmpbsa” [15] and “gmx mmpbsa”
[16] for Gromacs, which are popular software tools for modelling
BM-NM systems [17]. These programs are user-friendly and
facilitate quick access to free energy calculations. Due to their
simplicity, straightforward application, and low computational
cost, MM/PBSA and MM/GBSA methods have been extensively
used in BM-NM systems [18–25]. These methods strike a good
balance between accuracy and computational efficiency, making
them among the most popular choices for calculating binding free
energies. Moreover, the breakdown of energy contributions also
provides useful information for further energy analysis.

It is important to note that the entropic term−TΔS is not included
in binding free energy calculations using “g_mmpbsa” and “gmx
mmpbsa”, due to its high computational cost, trivial contributions to
the total binding energy between proteins and drugs, and the
substantial standard error compared to enthalpic and solvation
terms [15, 16]. Consequently, strictly speaking, the binding free
energies calculated by these programs are not true ABFE, and their
accuracymay vary depending on the system. For instance, when a BM
binds to a rigid NM, it may undergo varying degrees of
conformational changes, and in some cases, its structure could be
significantly altered or even disrupted [26–28]. Nevertheless, these
programs are well-suited for calculating RBFE, such as comparing the
binding affinities of different amino acid residues to the samematerial
[19]. Recent developments in entropy calculation methods, such as
quasi-harmonic approximation [29], interaction entropy [30], and
multiscale cell correlation [31],might help address this limitation [32],
though further investigation is still required [33]. Another concern
over these end-point methods is the use of implicit solvent models for
evaluating solvation energy, whereas MD simulations employ explicit
water models that significantly influence BM structure and
dynamics [34, 35].

3 Alchemical methods

Free Energy Perturbation In 1954, Zwanzig developed the
equation for the FEP theory in which the binding free energy
was associated with the potential energy difference of two
ensemble states 1 and 0 using Equation 2 [36]:

ΔG � G1 − G0 � −kBTIn〈exp −U1 − U0

kBT
( )〉

0
(2)
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where U1 and U0 are the potential energy of states 1 and 0,
respectively; kB is the Boltzmann constant, and T is the
temperature. If the initial and final states are only influenced by
a small perturbation, state 1 can be considered as the final state and
state 0 as the initial state. However, in most situations, state 1 and
state 0 have little overlap, and therefore a series of alchemical
(nonphysical) intermediate states are created via a coupling
parameter λ, which varies from 0 to 1. The potential function for
these intermediate states is then achieved using Uλ = λU0 + (1-λ)U1.
The total free energy is finally calculated through adding all the free
energy differences between successive states through constructed
thermodynamic cycle. For more information about FEP, the readers
can refer to more recent advances [37–41], review papers [6, 42], as
well as real applications [43–47]. Of all the tools to implement FEP,
perhaps the most famous is FEP+, which was developed by
Schrödinger Inc. [48].

Thermodynamics Integration In 1935, Kirkwood proposed a
theory of fluid mixtures, which later became the foundation for the
TI method [49]. In this method, the free energy change between two
states of the investigated system is connected by a coupling variable
λ, being 0 for the initial state and 1 for the final state. By
continuously changing λ, a series of intermediate states between
the initial and final states are obtained. By sampling these
intermediate states, the free energy change is finally calculated
using Equation 3:

ΔG � ∫1

0
〈∂Uλ

∂λ 〉λ
dλ (3)

where Uλ is the potential energy function of the system as a function
of λ, and the angle brackets denote an ensemble average at each λ
value. The major difference between FEP and TI is that the adjacent
states sampled by FEP need to be overlapped in phase space whereas

those sampled by TI may not be overlapped [50]. For more
information about this method, readers can further refer to many
of the classical works [50–55]. To handle the complicated procedure
for FEP and TI, some tools were developed based on alchemical
transformations specifically for Gromacs [56] and Amber [57].

Bennett Acceptance Ratio In 1976, Bennett introduced an
implicit equation obtaining free energy difference by an iterative
numerical approach using Equation 4 [58]:

ΔG � G1 − G0 � −kBTIn
〈 1

1+ exp U1−U0+ΔG
kBT

( )〉0

〈 1

1+ exp U1−U0−ΔG
kBT

( )〉1

(4)

where U1 and U0 are the potential energy of states 1 and 0,
respectively. Unlike FEP, BAR requires gathering samples of
potential energies for configurations at both states 0 and 1. This
method was later extended to the multistate Bennett acceptance
ratio (MBAR)method in 2008, which calculates the free energy from
multiple states rather than two states [59]. For more information
about this method, readers can refer to method comparative studies
[60, 61], relevant review papers [62–64], application-focused works
[65], and recent developments [66–68].

Figure 1 also illustrates the application of alchemical methods
for calculating the binding energies between an α-helical protein
(ID: 1fmh) and a (26, 26) CNT. Although alchemical methods are
appealing for calculating protein-ligand binding free energies and
solvation free energies, they are typically limited to small ligands
[35]. Many BMs, however, are macromolecules, and their
interactions with NMs can involve multiple binding modes and
orientations. This complexity makes it computationally expensive to
adequately sample the conformational space needed for converged
free energy estimates. Additionally, NMs often have complex and

FIGURE 1
Schematic representations of the simulations typically performed using endpoint methods, alchemical methods, and pathway methods. For
endpoint methods, a protein (ID: 7mll) binds to a (16,16) carbon nanotube (CNT). For alchemical methods, the thermodynamic cycle used to calculate the
binding free energy between a protein (ID: 1fmh) and a (26,26) CNT (ΔGbind = ΔGann + ΔGcre) is depicted, where ΔGann and ΔGcre represent the free energy
required to annihilate and create protein-CNT interactions in the bound and unbound states, respectively. For pathwaymethods, an external force is
exerted on a protein (ID: 1jmq) to pull it away from a (22,22) CNT.
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heterogeneous surfaces, and their properties such as hydrophobicity
and charge distribution can also complicate the accurate modeling of
interactions with BMs. These factors, alongside the unavailability of
relevant experimental data, hinder the application of alchemical
methods to BM-NM systems. Consequently, we can find a limited
quantity of literature reporting the application of FEP, TI, and BAR
to BM-NM systems. Shen et al. used TI to investigate the binding
free energies of single nucleotides adenine (A) and thymine (T) on
CNT inner walls [69]. In this scenario, A and T are relatively small
ligands, which may potentially mitigate some of the major
limitations associated with using alchemical methods in BM-NM
systems. Additionally, alchemical methods could provide insights
into how mutations in BMs or changes in NM surface chemistry
influence binding and interactions. These methods could also be
applied to explore the interactions between small nanoparticles (e.g.,
fullerene) and BMs during the formation of hybrid functional
assemblies [70].

4 Pathway methods

Umbrella Sampling In statistical thermodynamics, the free
energy of a system is related to the probability distribution of the
system. The free energy difference from state 0 to state 1 can be
obtained from the probability distribution of the system in the two
states using Equation 5:

ΔG � G1 − G0 � −kBTIn ρ0
ρ1

(5)

where ρ0 and ρ1 are the probability distributions of the system in
states 0 and 1. However, for transitions between states that have
high energy barriers, the regions near these barriers are poorly
sampled. To overcome these challenges, umbrella sampling
employs a series of biased simulations, where a harmonic
umbrella potential is added to sample configurations within
each window along the reaction coordinate ξ [71]. The
unbiased free energy profile in the form of potential of mean
force (PMF) [72, 73] can be constructed from data in all the
windows using the weighted histogram analysis method
(WHAM) [74–76]. This method was proposed by Torrie and
Valleau in 1977. A typical example using US for protein-ligand
interactions can be found here [77], and recent advances are also
provided here [72, 78, 79]. In BM-NM systems, the US method
can be widely used to compute PME versus ξ with good accuracy
despite its high computational cost [26, 80–83]. It can be applied
to obtain free energy differences as well as free energy profiles.
For example, it was reported that a protein can spontaneously
enter carbon nanotubes (CNTs) in aqueous solutions, while
releasing it from the tubes is a rare event [84]. Using US, one
can easily understand the spontaneity of this encapsulation
process by calculating the PMF along the reaction coordinate,
where a wide potential well can be clearly observed [26, 80].

Jarzynski Equality JE seeks to relate the free energy
differences between two states to the work done during a
non-equilibrium transformation between those states. To visit
the high free energy regions between states, a possible method is
steered molecular dynamics (SMD), in which the harmonic
potential guides the system from low free energy regions to

high free energy regions. It should be noted that US also uses
SMD to build starting configurations along ξ. However, unlike in
US sampling where additional harmonic potential is static, the
harmonic potential in JE sampling moves at a constant speed
over time. By a sufficient number of samples of irreversible work,
the free energy difference of the reaction process is directly
related to the irreversible work done to the system using
Equation 6 [85]:

e−
ΔG
kBT � 〈e− W

kBT〉 (6)
where W is the irreversible work. This Jarzynski equality, which
was proposed in 1997, provides a way to calculate equilibrium
free energy differences using non-equilibrium measurements.
Further improvements on JE can be found in the literature
[86–89]. Figure 1 depicts an example where SMD simulations
are used to pull a protein (ID: 1jmq) out of a CNT. In this process,
US extracts a series of configurations along the reaction pathway
as sampling windows for further biased simulations, while the JE
method directly calculates the work done on the protein by
integrating the force over the pulling distance. Numerous
studies have shown that JE can yield results comparable in
accuracy to US when determining free energy for simple
systems [54, 90–93]. However, there are some limitations to
the JE method. First, the SMD pulling might not always align
with the most physically favorable separation pathway required
to accurately reproduce the binding affinity. Second, for slightly
more complex systems, energy dissipation and the impact of the
applied harmonic potential on the conformations of BMs can
significantly affect the accuracy of free energy calculations
[94–98]. Zhang et al. employed JE to calculate the adsorption
free energy of biomolecules on the surface of hydroxyapatite,
indicating that the structured water layer at the solid-liquid
interface causes SMD simulations to produce a large amount
of dissipative work [98]. They further proposed a hybrid scheme
combining JE with US to address this issue.

Metadynamics MtD, similar to US and JE, uses an additional
potential to sample high free energy regions of the system. However,
unlike the other two methods, MtD operates by applying a time-
dependent biasing potential to selected collective variables (CVs).
The biasing potential is periodically introduced through the periodic
addition of Gaussian-shaped repulsive potentials to the overall
potential energy of the system. This prevents the system from
revisiting areas of the reaction coordinate, and continually drives
the system towards higher free energy regions. Ultimately, free
energy can be calculated based on the series of repulsive
potentials using Equation 7:

ΔG � −∑N

i�1Gi exp − s − si( )
2σ2

[ ] (7)

where Gi is the height of the ith Gaussian, si is the position of the
ith Gaussian in CV space, and σ is the width of the Gaussian
functions. This method, proposed by Laio and Parrinello in
2002 [99], offers several advantages for calculating free energy.
Unlike US and JE, MtD does not require the prior determination
of the reaction pathway. Instead, it accelerates the sampling of
high free energy events by gradually pushing the system from low
to high free energy regions through a series of added repulsive
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potentials. MtD is especially useful for high-dimensional free
energy calculations, such as two-dimensional free energy
surfaces. Consequently, it has become widely used to map the
free energy landscape of protein-ligand interactions, and can be
easily extended to BM-NM systems, even though the number of
such studies has still been small so far. MtD can be implemented
using the portable plugin PLUMED [100]. For more details, the
readers are asked to see more review papers [101–104]. NM-BM
systems often involve rare events, such as the dissociation of a
protein from its binding NM. MtD can enhance the sampling of
these events, which might be difficult to capture using
conventional MD simulations. An example of using MtD to
calculate the binding free energy between P-glycoprotein and
two drugs, paclitaxel and doxorubicin, is presented here [105],
which can also be extended to BM-NM interactions. However,
the success of MtB depends on the selection of CVs, biasing
potentials, and the complex interpretation of data, making it
more suitable for experienced users. Also, the application of MtD
to large BMs demands substantial computational resources.
These drawbacks underscore the necessity for continued
improvements in this method.

5 Future prospects

Free energy methods can accurately predict the interaction
strength between BMs and NMs. Table 1 summarizes highlights
and limitations of all the methods discussed within this paper.
Future research should address several key areas to enhance these
methods. First, improving and optimizing force fields are crucial for
achieving accurate free energy calculations. Second, the
development of more user-friendly software and programs is
needed to make these methods more accessible and commercially
viable. Third, while many end-to-end DTI models can precisely
predict protein-ligand interactions [106–108], there is a need for
extensive investigation into the application of machine learning to
BM-NM interactions.
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TABLE 1 Summary of highlights and limitations of all the methods discussed in this paper.

Methods Highlights Limitations

MM/PBSA
MM/GBSA

1. Balances accuracy with computational efficiency
2. Easily accessible

1. Replies on implicit solvent models
2. Potential errors in entropic calculations

Free Energy Perturbation 1. High accuracy
2. No need to predefine reaction pathways

1. Computationally demanding
2. Requires extensive sampling
3. Typically limited to small ligandsThermodynamics

Integration

Bennett Acceptance Ratio

Umbrella Sampling 1. High accuracy
2. Capable of generating free energy profiles

1. Computationally demanding
2. Requires extensive sampling windows
3. Requires predefined reaction pathways

Jarzynski Equality 1. High accuracy
2. Easy accessibility
3. Capable of generating free energy profiles

1. Computationally demanding
2. Sensitive to the number of sampled trajectories
3. Requires predefined reaction pathways

Metadynamics 1. Capable of mapping high-dimension free energy
landscapes
2. No need to predefine reaction pathways

1. Computationally demanding
2. Accuracy depending on the choice of collective variables and biasing
potentials
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