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A tunable continuous wave (CW) Yb:CaWO4 laser operating in near infrared (NIR)
spectral region is demonstrated by pumping with a diode laser. Continuously
broadband tunable wavelengths are obtained in two polarizations by rotating the
Lyot filter. The tuning widths of the output wavelengths in the π- and σ-
polarizations are 42 nm (from 1005.2 nm to 1047.2 nm) and 41.8 nm (from
1005.1 nm to 1046.9 nm), respectively. At an absorbed pump power of 15.6 W at
976 nm, the maximum output powers in the π- and σ-polarizations are 5.2 W at
1026.2 nm and 4.7 W at 1028.1 nm, respectively. To the best of our knowledge,
this is the first tunable laser operation by using Yb:CaWO4 crystal.
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1 Introduction

Trivalent ytterbium ions (Yb3+)-doped crystals have been considered one of the most
promising active medium for solid-state lasers because it has a small quantum defect, a simple
two-manifold structure, a low thermal load, a longer energy-storage lifetime, no upconversion
and cross relaxation processes and excited state absorption compared to trivalent neodymium
ions (Nd3+) [1–5]. Yb3+-doped tungstates such as Yb:NaY(WO4)2 [6–10], Yb:NaGd(WO4)2
[11–14], NaLu(WO4)2 [15], Yb:NaLa(WO4)2 [16–18] and Yb:KLu(WO4)2 [19–21] have played
an important role in the development of solid-state lasers due to the broader emission and
absorption linewidths. Yb3+-doped calcium tungstate (CaWO4) crystal as an excellent host
medium for rare-earth ions, has been widely used in solid-state lasers. Recently, the absorption
and emission spectra of Yb:CaWO4 crystal and its CW lasing properties have been investigated
[22–24]. The absorption spectra of the Yb:CaWO4 crystal from 875 nm to 1075 nm in two
polarizatios were carried out in a UV-Vis-IR absorption spectrophotometer (Cary 5000,
VARIAN USA). The emission spectra of the Yb:CaWO4 crystal from 875 nm to 1075 nm
in two polarizatios were measured at 875–1075 nm by a steady-state time-resolved fluorescence
spectrometer (FLS-980, Edinburgh England) under 976 nm. The emission cross-sections can be
calculated from themeasured fluorescence spectra by the Füchtbauer-Landenburg equation [25]

σ λ( ) � λ5 · I λ( )
8πn2cτrI λ( )dλ (1)

where λ is the wavelength, I(λ) is the fluorescence intensity, n= 1.91 [26] is the refractive index of
the Yb:CaWO4 crystal, s is the velocity of light, τr = τf = 428 μs [22], τr and τf are the radiative
lifetime and the fluorescence lifetime, respectively. Calculate using Equation 1, the cross-section
curve is shown in Figure 1. It can be seen that there were three absorption peaks in π-
polarization, which were 965, 976 and 994 nm respectively, and the corresponding absorption
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cross-sections (σabs,π) were 2.03, 1.28 and 1.34 × 10−20 cm2 respectively.
Two absorption peaks in σ-polarization were 934 and 975 nm,
respectively, and the corresponding absorption cross-sections (σabs,σ)
were 1.48 and 1.27 × 10−20 cm2 respectively. Two emission peaks in π-
polarization were 967 and 997 nm respectively, and the corresponding
emission cross-sections (σem,π) were 1.97 and 5.61 × 10−20 cm2

respectively. There was a wide emission spectrum (from 976 to
1024 nm) in σ-polarization, and corresponding to an emission
cross-section (σem,σ) of about 2.0 × 10−20 cm2. The gain cross-
sections of the Yb:CaWO4 crystal from 875 nm to 1075 nm in two
polarizations were calculated by σg,i = βσem,i − (1 − β)σabs,i [27], where β
is the fraction of Yb3+ excited to the upper state, and i = π, σ represents
the π- and σ-polarization respectively, as shown in Figure 2. It can be
seen fromFigure 2 that the Yb:CaWO4 crystal had awide gain spectrum
in both directions, which made it suitable for tunable laser output. In

this work, we realized the first tunable Yb:CaWO4 laser in NIR spectral
range. The laser tuning ranges in π- and σ-polarizationswere 42 nm and
41.8 nm, respectively. Continuously broadband tunable wavelengths are
obtained in two polarizations by rotating the Lyot filter, which have the
potential applications in some fields, such as mid-infrared laser
absorption spectroscopy [28], wavelength modulation spectroscopy
[29] and photoacoustic spectroscopy [30], etc.

2 Experimental setup

A schematic setup for the diode-pumped tunable Yb:CaWO4 laser is
shown in Figure 3. In our experiment, we used a 9 mm long Yb:CaWO4

was crystal with a doping concentration of 1.2 at% Yb3+, which supplied
by Fujian Institute of Material Structure, Chinese Academy of Sciences.
The thermal effect of the laser crystal will affect the spectral width of the
tunable Yb:CaWO4 laser, because the increase of the Yb:CaWO4 crystal
temperature will lead to changes in the refractive index and absorption
coefficient of the crystal, which will directly affect the output spectral
characteristics of the laser. The narrower the spectral line width, the
higher the output power will be, because the narrower the spectral line,
the lower the intracavity loss, the higher the photon number density, the
higher the output power. Therefore, in order to reduce the thermal effect
of the Yb:CaWO4 crystal, we choose the Yb:CaWO4 crystal with low
doping concentration of Yb3+, which can reduce the probability of
possible nonradiative cross-relaxation processes and the reabsorption
of the laser emission. The Yb:CaWO4 crystal was wrapped in indium foil
and mounted on water-cooled copper blocks. The temperature of the
water was controlled at 15oC. The pump source of the tunable Yb:
CaWO4 laser is a diode array with fiber-coupled output, a maximum
output power of 20W and a radius of the pump beam waist of 200 μm.
The two identical convex lenses with the focal length of 150 mm, L1 and
L2, coupled the pump beam to the Yb:CaWO4 crystal, which were
antireflection (AR) coated at 976 nm. The plane mirror (M1) was the
input mirror, which was AR coated at 976 nm and high reflectivity (HR)
coated at 1000–1050 nm. The concave mirror (M2) with the radius of
curvature of −150 mm was the output mirror, which was with a
transmittance of about 3.0% at 1000–1050 nm. The concave mirror
(M3) with the radius of curvature of −300 mm was the reflector, which
were HR coated at 1000–1050 nm. To achieve wavelength tuning, a Lyot
filter (quartz crystal, thickness d = 2 mm) was inserted into the cavity,
which was AR coated at 1000–1050 nm and was which supplied by
Jiangyin Yunxiang Optoelectronic Technology Co. , Ltd, China. Figures
3A, B are Lyot filter placed in the π- and σ-polarization, respectively.

3 Results and discussion

The transmittance of Lyot filter, T, can be written as [31]:

T � 1 − 4 cot 2 γ tan 2 θ 1 − cot 2 γ tan 2 θ( )sin 2 δ/2( ) (2)
cos α � cos γ − sin θ sinφ

cos θ cosφ
(3)

where γ is angle between the internal ray and the optic axis, θ is incident
angle (θ = θB = 57.2o in the experiment), β is angle between the crystal
axis and the surface of Lyot filter (φ = 0 in the experiment), δ = 2πd
(no–ne)sin

2γ/λsinθ is the optical phase difference. According to

FIGURE 1
Absorption and emission cross-sections of the Yb:CaWO4 crystal
from 875 to 1075 nm.

FIGURE 2
Gain cross-sections of the Yb:CaWO4 crystal from
875 to 1075 nm.
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Equations 2, 3, the angle, α (rotation angle) is changed by rotating the
Lyot filter, the transmittance of Lyot filter, T, is also changed. Therefore,
by rotating the Lyot filter, we could change its transmittance to different
wavelengths in the NIR region, resulting in the continuously tunable
laser output. The relationship between the rotation angle and the laser
wavelength is calculated (T = 1), as shown in Figure 4. As can be seen
from Figure 4, the different rotation angle, α, corresponds to different
laser wavelength (the maximum transmittance, T = 1), thus the
corresponding tunable wavelength output can be realized.

At an absorbed pump power of 15.6W (or an incident pump power
of 20 W), the output powers of the Yb:CaWO4 laser for output
wavelengths in the π-polarization are shown in Figure 5. As can be
seen from Figure 5, the peak power is 5.2 W at 1026.2 nm in the π-
polarization. The input-output performance of the CW 1026.2 nm Yb:
CaWO4 laser is shown in Figure 6. The oscillation threshold is 0.52 W.
The slope efficiency and the optical-to-optical efficiency with respect to
the absorbed pump power are 34.6% and 33.3%, respectively. The
quality factor of the laser beam M2 = 1.21. The stability of the output

power is about 3.2% in 1 h. Using a LABRAM-UV spectrum analyzer to
scan the output beam and dealing with the data with software, the
tuning spectra of the Yb:CaWO4 laser at the absorbed pump power of
15.6 W is shown in Figure 7. As can be seen from Figure 7, the Yb:
CaWO4 laser realized tuning wavelength from 1005.2 nm to 1047.2 nm
in the π-polarization. The width of wavelength tuning in the NIR
spectral range reached 42 nm.

Similarly, at an absorbed pump power of 15.6W, the output powers
of the Yb:CaWO4 laser in σ-polarization are also shown in Figure 5. As
can be seen from Figure 6, the peak power is 4.7W at 1028.1 nm in the
σ-polarization. The input-output performance of the CW
1028.1 nm Yb:CaWO4 laser is also shown in Figure 6. The
oscillation threshold is 0.67 W. The slope efficiency and the optical-
to-optical efficiencywith respect to the absorbed pumppower are 30.3%
and 30.1%, respectively. The quality factor of the laser beamM2 = 1.26.
The stability of the output power is about 2.7% in 1 h. The spectra of the

FIGURE 3
Schematic setup for the laser experiment. (A)Continuous tuning laser of π-polarization. (B)Continuous tuning laser of σ-polarization. θB is Brewster’s
angle, C is the crystal axis, which is parallel to the surface of the crystal, α is the angle between the projection of the incident ray on the surface of the
crystal and the crystal axis, d is the thickness of the crystal.

FIGURE 4
Laser wavelength versus rotation angle at T = 1. FIGURE 5

Output powers of two polarization directions versus laser output
wavelength.
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Yb:CaWO4 laser at the absorbed pump power of 15.6 W is shown in
Figure 8. As can be seen from Figure 8, the Yb:CaWO4 laser realized
tuning wavelength from 1005.1 nm to 1046.9 nm in the σ-polarization.
The width of wavelength tuning in the NIR spectral range reached
41.8 nm. At the highest output power, the output beam profile of each
tuned wavelength in both polarized directions was measured, which
exhibited almost Gaussian distribution along both axes.

4 Conclusion

In conclusion, we first demonstrate a diode pumped continuously
tunable Yb:CaWO4 laser in NIR spectral regions. The tuning widths of
the output wavelengths in the π- and σ-polarizations are 42 nm (from
1005.2 nm to 1047.2 nm) and 41.8 nm (from 1005.1 nm to 1069.9 nm),
respectively. Continuously broadband tunable wavelengths are obtained

in two polarizations by rotating the Lyot filter, respectively. At an
absorbed pump power of 15.6 W at 976 nm, the maximum output
powers in the π- and σ-polarization are 5.2 W at 1026.2 nm and 4.7 W
at 1028.1 nm, respectively. To the best of our knowledge, this is the first
tunable laser operation by using Yb:CaWO4 crystal. We believe that the
same technology can be applied to other Yb3+-doped tungstate crystals
to realize tunable laser output.
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FIGURE 6
Output power at 1026.2 nm and 1028.1 nm versus absorbed
pump power.

FIGURE 7
Spectra of the Yb:CaWO4 laser from 1005 nm to 1047 nm in the
π-polarization.

FIGURE 8
Spectra of the Yb:CaWO4 laser from 1005 nm to 1047 nm in the
σ-polarization.
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