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This paper presents the acoustic analysis of a three-dimensional cylindrical shell
model under electromagnetic vibration, a critical factor affecting the
performance of electric motors in various applications such as automotive,
aerospace, and industrial systems. The study provides a multidisciplinary
approach that integrates electromagnetics, structural vibration, and acoustics,
solved using the fast multipole boundary element method (FMBEM). The results
summarize the validation of the analytical models and numerical simulations,
offering insights into effective vibration reduction methods. The conclusions
indicate that the 3-D numerical analysis using FMBEM aligns well with the
analytical solution for the sound pressure in the exterior acoustic domain of
the cylindrical shell model. The paper contributes valuable insights for the design
of low-noise motors and the control of electromagnetic vibration and noise in
electric motors.
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1 Introduction

The performance of electric motors, especially in applications such as automotive,
aerospace, and industrial systems, is heavily influenced by their electromagnetic vibration
and noise. These aspects not only affect the operational efficiency but also the comfort and
reliability of motor-driven systems. With the rapid development of electric vehicles and
advanced industrial automation, there is an increasing demand for motors that are efficient,
compact, and silent. Therefore, the accurate prediction and control of their electromagnetic
vibration and noise have become paramount. A significant body of research has been
dedicated to understanding and mitigating the sources of electromagnetic vibration and
noise in permanent magnet synchronous motors (PMSMs) and other types of
electric motors.

Studies by Ballo et al. [1] and Xing et al. [2, 3] have focused on developing simplified
analytical models and numerical prediction models to forecast the noise and vibration in
PMSMs at the design stage. The influence of electromagnetic forces on motor vibration
[4, 5] has also been a central theme. Strategies to mitigate vibrations and noise have been
explored [6, 7]. Experimental studies by Torregrossa et al. [8] and Zhao et al. [9] have
validated theoretical models and numerical simulations, providing insights into the
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effectiveness of various vibration reduction methods. The
detection and analysis of oscillations in rail vehicle systems
has been significantly advanced [10–12], particularly focusing
on pantograph control, which not only improved the
understanding of signal processing in this context but also
provided practical solutions for real-time applications,
enhancing the safety and efficiency of rail transportation. A
multidisciplinary approach by Chai et al. [13] and Wu et al.
[14], combining electromagnetics, structural mechanics, and
acoustics, has been employed to provide a comprehensive
understanding of motor behavior. The dynamic behavior of the
rotor and the acoustic performance of the entire motor system
have been examined [15, 16]. Optimization studies by Mendizabal
et al. [17] have provided guidelines for designing low-noise
motors. Certain studies have focused on specific aspects such
as the effects of laminations [18], axial forces [19], and the
application of amorphous alloys in stators [20], offering
specialized insights into motor design.

The finite element method (FEM) has been extensively
employed by Mao et al. [21] and Wang et al. [22] to predict
acoustics, fracture mechanics, electromagnetics, and vibrations.
Additionally, [23, 24] investigated the natural frequencies of
motor components. However, there are several problems with
FEM when modeling infinite domains. The boundary element
method (BEM) has been used to tackle potential problems
because it offers good accuracy and easy mesh construction.
Particularly for exterior acoustic problems, the Sommerfeld
radiation condition at infinity is rapidly satisfied [25]. The
boundary integral problem has been quantitatively solved using
the Galerkin approach for BEM implementation [26, 27].

In order to directly resolve the equation system, the
conventional boundary element method (CBEM) produces a
dense and non-symmetric coefficient matrix that takes a long
time to compute. The fast multipole method (FMM) [28–30], the
fast direct solver [31, 32], and the adaptive cross approximation
approach [33] are only a few of the methods that have been
employed to expedite the resolution of the integral issue.
Architects and designers are increasingly considering changing
the structural geometry to reduce noise. There is much potential
for radiated noise reduction with this structural-acoustic
optimization [34–36]. FEM and BEM may be employed with
some computer-aided engineering (CAE) software. However,
contemporary CAE requires that the models produced by CAD
software be converted into simulation-ready models as part of the
preprocessing phase. The transfer of geometric model data by the
CAE results in geometry errors. One proposed approach to this
problem [12, 37] is to combine BEM with geometric modeling and
numerical simulation using isogeometric analysis (IGA) [38–40].
IGABEM has been employed to tackle an extensive variety of
problems, including elastic mechanics [41], potential problems
[42–46], heat transfer problems [47], wave propagation [48–53],
fracture mechanics [54], electromagnetics [55–60], and structural
optimization [61–66].

In this study, the acoustic analysis under electromagnetic
vibration is solved using the fast multipole boundary element
method (FMBEM). With regard to the advantages of FMBEM
over CBEM, please refer to Chen et al. [67].

2 Analytical solution of sound pressure
in a cylindrical shell model for external
acoustic analysis

A cylindrical shell with radius a and infinite length is the subject
of the investigation. Consider a region of length l in the model where
the cylindrical shell vibrates and outside of which there are no
displacements of the cylindrical shell. The acoustic vibration
coupling is not taken into account while analyzing the sound
field. The region outside the cylindrical shell when r> a is the
acoustical analysis domain. The model is presented in Figure 1.

Assuming a known radial displacement w in Equation 1:

w z, θ, t( ) � Wmγm z( )cos nθ( )e−jωt, (1)
where γm(z) is the modal function in the axial direction, cos(nθ) is
the modal function in the circumferential direction, Wm is the
amplitude, and j is the imaginary unit. After that, the time term e−jωt

is omitted from the calculation in the frequency domain.
Equation 1 is derived for time t in order to obtain the velocity

expression, as shown in Equation 2.

_w z, θ( ) � −jωWmγm z( )cos nθ( ). (2)

The sound field in the domain must follow Equation 3 after
being excited by the displacement in Equation 1.

p r, z, θ( ) � P r( )γm z( )cos nθ( ). (3)

A Fourier transform of Equations 1, 3 in the z direction yields
Equations 4, 5.

~w kz, θ, t( ) � Wm~γm kz( )cos nθ( ), (4)
~p r, kz, θ( ) � P r( )~γm kz( )cos nθ( ), (5)

in which kz � ω/cz is the wave number, and we have Equation 6.

~γm kz( ) � ∫∞

−∞
γm z( )e−jkzzdz. (6)

In the cylindrical coordinate system, the acoustic Helmholtz
equation has the form shown in Equation 7.

∂2p

∂r2
+ 1
r

∂p

∂r
+ 1
r2

∂2p

∂θ2
+ ∂2p

∂z2
+ k2fp � 0, (7)

where the wave number kf � ω/cf.
A Fourier transform of Equation 7 in the z direction yields

Equation 8.

∂2 ~p

∂r2
+ 1
r

∂~p

∂r
+ k2f − k2z −

n

r
( )2[ ]~p � 0. (8)

Substituting Equation 5 into Equation 8 yields Equation 9.

∂2P r( )
∂r2

+ 1
r

∂P r( )
∂r

+ k2f − k2z −
n

r
( )2[ ]P r( ){ }~γm kz( )cos nθ( ) � 0.

(9)
We need Equation 10 to make Equation 9 constant.

∂2P r( )
∂r2

+ 1
r

∂P r( )
∂r

+ k2f − k2z −
n

r
( )2[ ]P r( ) � 0. (10)
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The homogeneous equation shown in Equation 10 is a Bessel
equation with the solution in Equation 11.

P r( ) � AJn krr( ) + BYn krr( ),
kr � k2f − k2z( )1/2. (11)

When r → ∞, the radiation field tends to be in the form of a
plane wave, as shown in Equation 12.

P r( ) → Aejkrr−jωt � A cos krr( ) + j sin krr( )( )e−jωt. (12)

Furthermore, based on the approximation of two classes of
Bessel functions at infinity in Equation 13,

lim
k,r→∞

Jn krr( ) →

2

πkrr

√
cos krr − 2n + 1

4
π( ),

lim
k,r→∞

Yn krr( ) →

2

πkrr

√
sin krr − 2n + 1

4
π( ). (13)

B � jA is needed to satisfy the infinity condition. Then, we have
Equation 14.

P r( ) � A Jn krr( ) + jYn krr( )[ ] � AH 1( )
n krr( ), (14)

whereH(1)
n denotes the Hankel functions of the n-th order first kind.

The continuity conditions shown in Equation 15 must be
satisfied at the interface:

− 1
jωρf

∂p

∂r

∣∣∣∣∣∣∣∣∣
r�a

� _w|r�a. (15)

Performing a Fourier inverse transform of Equation 15, we have
Equation 16.

∂~p

∂r
� −ω2ρf ~w. (16)

Substituting Equations 4, 5 into Equation 16 yields Equation 17.

A � − ω2ρfWm

krH
1( )′

n kra( ), (17)

and then, we have Equation 18.

~p � −ω
2ρfH

1( )
n krr( )

krH
1( )′
n kra( ) ~γm kz( )Wm cos nθ( ). (18)

Performing a Fourier inverse transform of Equation 18, we
finally obtain an analytical solution for the sound pressure at any
point in the exterior acoustic domain for the cylindrical shell model,
as shown in Equation 19.

p r, z, θ( ) � −ω
2ρf
2π

∫∞

−∞
H 1( )

n krr( )
krH

1( )′
n kra( )~γm kz( )ejkzzdkz[ ]Wm cos nθ( ).

(19)
Note that r> a.

3 Numerical analysis of sound pressure
in three-dimensional external
acoustic analysis

Consider the Helmholtz governing equation in time-harmonic
acoustic analysis, as shown in Equation 20.

∇2p x( ) + k2p x( ) � 0, ∀x ∈ Ω, (20)
where ∇2 is the Laplace operator, p(x) is the sound pressure at
field point x, k � ω/c is the wave number, ω is the angular
frequency of the incoming wave, c is the sound speed in the
domain Ω, and Ω is the domain for acoustic analysis. In the
frequency domain, the time-dependent component e−jωt can be
excluded from the computation.

Applying Green’s second theorem to the Helmholtz equation
yields the following integral equation, as shown in Equation 21.

p x( ) + ∫
Γ

∂G x, y( )
∂n y( ) p y( )dΓ y( ) � ∫

Γ
G x, y( )q y( )dΓ y( )

+ pinc x( ), y ∈ Γ, (21)

where Γ � ∂Ω is the border of the domain Ω, y is the sound source
point on the boundary Γ, x is the field point affected by the sound
source y, G(x, y) is the Green’s function, n(y) is the outward unit
normal vector at point y, ∂()/∂n � ∇() · n is the exterior derivative,
pinc is the sound pressure of the incident wave, and q(y) is the
outward flux at point y. q(y) satisfies the Neumann boundary
condition, as shown in Equation 22.

FIGURE 1
Cylindrical shell model for the acoustical analysis.
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q y( ) � ∂p y( )
∂n y( ) � jρωvf y( ), (22)

where ρ is the density of the medium in which the sound wave
propagates, and vf(y) is the normal velocity at point y.

To obtain the unknown sound pressure on the boundary Γ, the
field point x may converge to the boundary, and thus, the
Kirchhoff–Helmholtz conventional boundary integral equation
(CBIE) is obtained from Equation 21, as shown in Equation 23.

c x( )p x( ) + ∫
Γ

∂G x, y( )
∂n y( ) p y( )dΓ y( )

� ∫
Γ
G x, y( )q y( )dΓ y( ) + pinc x( ), x, y ∈ Γ. (23)

The normal derivative boundary integral equation (NDBIE) of
Equation 23 is given by Equation 24.

c x( )q x( ) + ∫
Γ

∂2G x, y( )
∂n y( )∂n x( )p y( )dΓ y( )

� ∫
Γ

∂G x, y( )
∂n x( ) q y( )dΓ y( ) + ∂pinc x( )

∂n x( ) , x, y ∈ Γ. (24)

In Equations 23, 24, c(x) = 1/2 when the boundary around point
x is smooth.

Applying only CBIE or NDBIE leads to non-uniqueness of the
solution to the exterior sound field analysis, which can be solved by
linearly combining CBIE and NDBIE. This is called the
Burton–Miller method [68], as shown in Equation 25.

c x( )p x( ) + αc x( )q x( ) + ∫
Γ

∂G x, y( )
∂n y( ) p y( )dΓ y( )

+ α∫
Γ

∂2G x, y( )
∂n y( )∂n x( )p y( )dΓ y( )

� ∫
Γ
G x, y( )q y( )dΓ y( ) + α∫

Γ

∂G x, y( )
∂n x( ) q y( )dΓ y( ) + pinc x( )

+ α
∂pinc x( )
∂n x( ) , x, y ∈ Γ,

(25)
in which α is the coupling coefficient, and we have Equation 26.

α �
j, k< 1,

− j
k
, k≥ 1.

⎧⎪⎨⎪⎩ (26)

In Equation 25, for 2-D acoustic analysis, we have Equation 27.

G x, y( ) � j
4
H 1( )

0 kr( ),
∂G x, y( )
∂n x( ) � −jk

4
H 1( )

1 kr( ) ∂r

∂n x( ),
∂2G x, y( )
∂n y( )∂n x( ) �

jk2

4
H 1( )

2 kr( ) ∂r

∂n y( ) ∂r

∂n x( ) +
jk
4r
H 1( )

1 kr( )ni y( )ni x( ),
(27)

and for the 3-D acoustic problem, we have Equation 28.

G x, y( ) � ejkr

4πr
,

∂G x, y( )
∂n x( ) � − ejkr

4πr2
1 − jkr( ) ∂r

∂n x( ),
∂2G x, y( )
∂n y( )∂n x( ) �

ejkr

4πr3
3 − 3jkr − k2r2( ) ∂r

∂n y( ) ∂r

∂n x( ) + 1 − jkr( )ni y( )ni x( )[ ],
(28)

where H(1)
n is the Hankel function of n-th order first kind, r is the

distance between point x and y, r � |x − y|, and ni is the component
of the coordinate.

In Equation 25, discretizing the boundary Γ yields the linear
equations shown in Equation 29.

Hp � Gq + pi, (29)
where pi is the nodal pressure from pinc.

The sound pressure at point x could be obtained by solving
Equation 29.

4 Numerical example

In this part, we will calculate the sound pressure at some certain
location using the analytical equation (Equation 19) and numerical
analysis (using BEM), respectively. Both are implemented using our
in-house Fortran code. The algorithm is crafted using the Fortran
90 programming language and compiled with the combination of
Visual Studio 2022 and Intel®oneAPI 2022 toolkit. It is executed on a
PC with an Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90 GHz and
complemented by 128.0 GB of RAM. In this part, the coordinates of
the points are described using the cylindrical coordinate system in
Equation 19.

Consider the cylindrical shell model shown in Figure 1. The
cylindrical shell of radius a = 0.5 m and length l = 0.4 m is closed at
both ends for the three-dimensional (3-D) numerical analysis.
Consider Equation 1. Let the vibration of the cylindrical shell be
uniformly distributed in the axial direction; that is, let γm = 1. Let the
amplitude of the vibration Wm = 2.24 × 10−8 m, the frequency
f � ω/2π = [100, 1,000] Hz, and the order of the circumferential
vibration order be n = 0.

The cylindrical shell model is meshed with quadrilateral
elements. Figures 2A, B gives the meshing scheme with element
number of 2112 and 8320, separately. Figure 3 provides the
numerical solutions of the sound pressure at (


2

√
/2, 0.0, π/4)

— (0.5, 0.5, 0.0) in the cartesian coordinates for the meshing
schemes in Figure 2, where the center of the cylindrical shell is at
(0.0, 0.0, 0.0). The comparison in Figure 3 is crucial, as it tests the
sensitivity of the numerical solution to themesh density. A finemesh
provides a more accurate representation of the continuous problem
but at a higher computational cost. Conversely, a coarse mesh
reduces computational demand but may lead to inaccuracies. The
two mesh schemes have 2,112 and 8,320 elements, respectively. The
agreement between these two schemes suggests that the coarser
mesh (2,112 elements) is sufficiently refined for the problem at hand,
capturing the essential features of the sound pressure distribution
without the excessive computational cost associated with a very fine
mesh. Good agreement between the two mesh schemes indicates
that the numerical solution has converged to a value that accurately
represents the sound pressure at the specified point. This
convergence is a critical aspect of numerical methods, ensuring
that the solution is reliable and independent of the discretization.
The consistency of results from different mesh densities also serves
as an indirect validation of the FMBEM approach. It demonstrates
that the method is capable of providing accurate results even with
relatively coarse meshes, which is particularly beneficial for complex
geometries and larger models where fine meshing becomes
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impractical. Based on this, we will select the element size
configuration shown in Figure 2A for the cylindrical shell model
with radius a = 0.5 m and length l ≥ 0.4 m in the
subsequent analysis.

Consider the model presented in Figure 1. The cylindrical shell
model for analytical analysis is of infinite length, in which only a
segment of length l vibrates. This infinite-length cylindrical shell is
considered as the boundary of the exterior acoustic domain,
meaning that the acoustic analysis does not take into account the
interior region of the cylindrical shell. However, during the 3-D
numerical analysis, the boundary of the exterior acoustic domain is
not a cylindrical shell of infinite length but a shell of length l with

closed ends, which causes the space outside the l-length segment in
the infinitely long cylindrical shell to be involved in the acoustic
analysis. Thus, computing errors are introduced. For the cylindrical
shell model with a radius of 0.5 m and a length of 0.4 m, the
analytical and 3-D numerical solutions for the sound pressure at
(


2

√
/2, 0.0, π/4) are provided in Figure 4. The two curves do not fit

well, as we have predicted. This discrepancy is expected and can be
attributed to several factors. The analytical model assumes an
infinite length for the cylindrical shell, which simplifies the
boundary conditions but deviates from the actual finite length
used in the numerical model. The numerical model includes the
effects of the shell’s finite length, which introduces additional

FIGURE 3
Numerical results of sound pressure at (


2

√
/2, 0.0, π/4).

Circumferential vibration order n = 0, length l = 0.4 m; number of
elements = 2,112 vs. 8,320.

FIGURE 2
Meshing scheme for the cylindrical shell model with closed ends. Radius a = 0.5 m and length l = 0.4 m. (A)Model meshing. Number of elements =
2,112. (B) Model meshing. Number of elements = 8,320.

FIGURE 4
Numerical vs. analytical results of sound pressure at (


2

√
/2, 0.0,

π/4) for a cylindrical shell model of length l = 0.4 m. Circumferential
vibration order n = 0.
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complexities not fully captured by the analytical model’s
assumptions. The discrepancy highlights the limitations of
analytical models when they are based on simplified assumptions
that may not fully represent the physical system’s complexity. The
comparison underscores the importance of validating analytical
models with numerical simulations, especially when the models
are used for design and optimization in engineering applications.
The results suggest that the model configuration, particularly the
length of the cylindrical shell, significantly affects the accuracy of the

sound pressure predictions. This insight is crucial for selecting
appropriate model parameters in both theoretical and numerical
studies. The choice between analytical and numerical methods
should be guided by the specific requirements of the problem,
including the need for accuracy, computational resources, and
the complexity of the model.

To reduce the computational errors resulting from the axial
external space of the cylindrical shell, we attempt to lengthen the
shell model with closed ends in the 3-D numerical analysis. For

FIGURE 5
Numerical vs. analytical results of sound pressure at (


2

√
/2, 0.0, π/4) for cylindrical shell models of different lengths. Circumferential vibration order

n=0. (A) Length l= 1m, number of elements = 2,880. (B) Length l= 2m, number of elements = 4,160. (C) Length l= 4m, number of elements = 6,784. (D)
Length l = 5 m, number of elements = 8,064. (E) Length l = 9 m, number of elements = 13,312. (F) Length l = 10 m, number of elements = 14,592.
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models of various lengths, the numerical results are compared with
the analytical solution to determine an appropriate model
configuration. Figure 5 gives the sound pressure at (


2

√
/2, 0.0,

π/4) for cylindrical shell models of different lengths. The
circumferential vibration order n = 0. Figures 5A–F show that
the 3-D numerical result agrees well with the analytical solution
when the length l ≥ 4 m. The analytical model assumes an infinite
length for the cylindrical shell, which simplifies the boundary
conditions but deviates from the actual finite length used in the
numerical model. The numerical model includes the effects of the
shell’s finite length, which introduces additional complexities not
fully captured by the analytical model’s assumptions. The
discrepancy between the analytical and numerical solutions for
shorter shells highlights the limitations of analytical models when
they are based on simplified assumptions that may not fully
represent the physical system’s complexity. The comparison
underscores the importance of validating analytical models with
numerical simulations, especially when the models are used for
design and optimization in engineering applications.

The data in Figures 5C–F, 6 give the relative error of the 3-D
numerical solution to the analytical result. Similar characteristics are
displayed by the four curves, namely, a rising relative error between
the analytical and numerical solutions with increasing frequency,
indicating that higher frequencies are more challenging to model
accurately. This could be due to the higher spatial and temporal
resolution required for capturing the dynamics of higher-frequency
waves. For the cylindrical shell model of length l = 4 m, the relative
error range is (−5%, 1%); for the model of l = 5 m, it is (−4%, 1%);
and for the models of l = 9 m and l = 10 m, it is about (−3%, −1%).
The relative error decreases, and the computational accuracy
generally improves as the model lengthens. The present shell

model has a radius of 0.5 m. The model length is 10 times the
radius when l = 5 m and 20 times the radius when l = 10 m. The
results suggest that the length of the model plays a critical role in the
accuracy of numerical simulations. The analytical model assumes an
infinite length for simplicity, but the numerical model must account
for the finite length, which introduces additional complexities. The
findings indicate that a model length of at least 10 times the radius is
necessary for accurate uncoupling analysis. Although increasing the
model length improves accuracy, it also increases the computational
cost in terms of memory usage and processing time. Therefore, a
balance must be struck between accuracy and computational
efficiency, which is achieved when the model length is
approximately 10 times the radius. In our future work,
acceleration algorithms may be employed to speed up the
calculation.

Consider the cylindrical shell model shown in Figure 1. The
cylindrical shell is closed at both ends for the 3-D numerical analysis.
The radius a = 0.5 m. The length l = 5 m or l = 10 m for the 3-D
numerical analysis. Consider Equation 1. Let γm = 1, the amplitude
of the vibrationWm = 2.24 × 10−8 m, and the frequency f � ω/2π =
[100, 1,000] Hz. The analytical and 3-D numerical solutions for the
sound pressure at (


2

√
/2, 0.0, π/4) for different circumferential

vibration orders n are given in Figure 7. Figures 7A–F show that
the 3-D numerical result agrees well with the analytical solution
when the circumferential vibration order n = 1, 3, or 4. The data in
Figures 7A, 8 provide, as an example, the relative error between the
3-D numerical result and the analytical solution.

Figure 7 shows that for n = 2, 6, and 10, the analytical solution
goes to zero, and the numerical solution is less than 3.0E−12, which
might be thought of as tending toward zero in numerical analysis.
Note that the sound pressure at (


2

√
/2, 0.0, π/4) is calculated in

FIGURE 6
Relative error, numerical results vs. analytical results. Circumferential vibration order n = 0, length l = 4 m, 5 m, 9 m, and 10 m.
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Figure 7. Consider Equation 19. When θ = π/4 and n = 2, 6, or 10,
cos(nθ) = 0, meaning that the sound pressure p(r, z, θ) = 0 in
Equation 19, which coincides with Figures 7B, E, F.

The agreement between analytical and numerical results for
certain modes validates the theoretical model’s assumptions and
the mathematical formulations that describe the sound pressure
distribution. This is crucial for the reliability of predictions made
using these models in practical applications. The results highlight
the importance of considering different vibration modes in the
analysis. The theoretical model predicts different behaviors for
different modes, and the numerical simulations confirm these

predictions, emphasizing the need for accurate modeling of
vibration modes in the design and analysis of electric motors.
The findings provide valuable insights for the design and
optimization of electric motors, particularly in controlling the
vibration modes that contribute to noise. Understanding which
modes contribute to the sound pressure can guide the design of
motor components to minimize noise emissions. The choice
between analytical and numerical methods should be guided by
the specific requirements of the problem, including the need for
accuracy, computational resources, and the complexity of the
model. The agreement between the two methods for certain

FIGURE 7
Sound pressure at (


2

√
/2, 0.0, π/4) and the circumferential vibration order n varies. Numerical results vs. analytical result, in which L5 is length l= 5m,

and L10 is length l = 10 m. (A) n = 1. (B) n = 2. (C) n = 3. (D) n = 4. (E) n = 6. (F) n = 10.
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modes suggests that, under these conditions, either method could
be reliably used.

For the closed cylindrical shell model with a length of 5 m,
Figures 8A–H provide the numerical sound pressure on the
structure surface for various circumferential vibration orders, in
which the frequency f = 500 Hz. The black line in the figure
represents the section for θ = π/4. In Equation 19, when θ = 0,
cos(nθ) = 1, and the sound pressure p(r, z, θ) reaches its maximum.
This is in accordance with Figure 8I. Furthermore, in Equation 19,
when n = 0, cos(nθ) = 1, indicating that the sound pressure p(r, z, θ)

is constant along the cylindrical shell’s circumferential direction.
This finding aligns with Figure 8A. Still in Equation 19, when θ �
π/4 and n = 2, 6, or 10, cos(nθ) = 0, indicating that the sound
pressure p(r, z, θ) = 0. This conclusion is consistent with Figures 8C,
F, H. Remaining in Equation 19, when θ � π/4 and n = 4 or 8,
abs(cos(nθ)) = 1, indicating that the sound pressure p(r, z, θ) is
maximized. This is in accordance with Figures 8E, G. These results
demonstrate good agreement between the results of our 3-D
numerical analysis and the analytical solution. The agreement
between the numerical results and the analytical predictions

FIGURE 8
Numerical results. Sound pressure on the cylindrical shell with a length of 5 m. Frequency f = 500 Hz. Circumferential vibration order n varies. The
black line represents the section for θ = pi/4. (A) n = 0. (B) n = 1. (C) n = 2. (D) n = 3. (E) n = 4. (F) n = 6. (G) n = 8. (H) n = 10.
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validates the analytical model’s accuracy in predicting the sound
pressure distribution on the cylindrical shell under different
vibration modes. This is essential for the model’s reliability in
practical applications. The results highlight the importance of
considering different vibration modes in the analysis. Each mode
affects the sound pressure distribution, which is crucial for noise
control and motor design.

5 Conclusion

This study concludes that the 3-D numerical analysis
using FMBEM aligns well with the analytical solution for
the sound pressure in the exterior acoustic domain of a
cylindrical shell model, particularly when the model length is
sufficient relative to its radius. The investigation reveals that
computational accuracy improves as the model lengthens,
suggesting a model length of at least 10 times the radius for
accurate uncoupling analysis. The findings provide valuable
insights for the design of low-noise motors and contribute to
the understanding of electromagnetic vibration and noise control
in electric motors.
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