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This study presents a novel method for wideband acoustic analysis using
the Boundary Element Method (BEM), addressing significant computational
challenges. Traditional BEM requires repetitive computations across different
frequencies due to the frequency-dependent system matrix, resulting in high
computational costs. To overcome this, the Hankel function is expanded into a
Taylor series, enabling the separation of frequency-dependent and frequency-
independent components in the boundary integral equations. This results in
a frequency-independent system matrix, improving computational efficiency.
Additionally, themethod addresses the issue of full-rank, asymmetric coefficient
matrices in BEM, which complicate the solution of system equations over
wide frequency ranges, particularly for large-scale problems. A Reduced-Order
Model (ROM) is developed using the Second-Order Arnoldi (SOAR) method,
which retains the key characteristics of the original Full-Order Model (FOM).
The singularity elimination technique is employed to directly compute the
strong singular and super-singular integrals in the acoustic equations. Numerical
examples demonstrate the accuracy and efficiency of the proposed approach,
showing its potential for large-scale applications in noise control and acoustic
design, where fast and precise analysis is crucial.
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1 Introduction

In the acoustics domain, simulating and analyzing the propagation of sound waves
through complex structures is essential. Frequency sweep calculations play a pivotal role
in understanding sound wave behavior across various frequencies, crucial for designing
effective acoustic barriers and noise reduction devices. Traditional methods for these
calculations often utilize the finite elementmethod (FEM) or the boundary elementmethod
(BEM). It is common knowledge that BEM is frequently utilized to address acoustic
issues because of its superior accuracy and simplicity in mesh creation [1–4]. For external
acoustic problems, it naturally satisfies the Sommerfeld radiation condition at infinity [5–9].
Conventional sound pressure calculations are typically optimized for specific frequencies,
limiting their applicability across a broader frequency spectrum. To address this limitation,
broadband analysis is introduced to provide results over a wider range of frequencies [10].
Nevertheless, in broadband analysis, the frequency band within a given range is segmented,
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and the coefficient matrix along with the boundary elements system
equation is recalculated at every distinct frequency point. This
procedure results in substantial computational expense. This study
presents an efficient approach for rapid frequency sweep calculations
in broadband acoustics.

When performing broadband acoustic analysis with the BEM,
the frequency dependence of the H(1)n (kr) results in coefficient
matrices that change with frequency [11, 12]. Consequently, for
large-scale issues, the approach is particularly time-consuming
because the boundary element system equations must be
recalculated for every discrete frequency point. Researchers came
up with a number of techniques to speed up the broadband analysis
computational process to address this problem [13–16]. A three-
dimensional (3D) axisymmetric multifrequency acoustic analysis
technique called the Linear Frequency Interpolation Technique
(FIT) was proposed by Vanhille et al. [17]. In this approach, the
second-order isoparametric segment of the Helmholtz Integral
Equation (HIE) is discretized. Despite its effectiveness, FIT requires
substantial storage capacity. Li [18] addressed the issue by separating
the frequency terms from the damping function through power
series expansions of sine and cosine functions into algebraic
polynomials, which significantly reduced computational time
for multifrequency problems. Similarly, Zhang et al. [19] tackled
multifrequency issues using BEMand incorporated series expansion
techniques in their calculations, which offer high accuracy and
computational efficiency [20]. The advantages of using series
expansion are precision and computational economy [21–23]. In this
study, the frequency-related and frequency-unrelated components
of the product function in the Boundary Integral Equations (BIE)
are separated using a Taylor series expansion.

In the realm of acoustic computations using the BEM,
coefficient matrices exhibit characteristics of being asymmetric,
full-rank, and dense [24, 25]. These attributes contribute to
diminished computational efficiency, particularly evident in
scenarios involving large-scale problems [26, 27]. Model Order
Reduction (MOR) emerges as a viable solution to this challenge
[28–31]. Among the most prominent MOR techniques [32] is
Proper Orthogonal Decomposition (POD) [33, 34]. However, the
quality of the simplified model is not guaranteed, as it depends on
the representativeness of the snapshots (or primary frequencies)
selected during the POD process [35]. The second-order Arnoldi
(SOAR) algorithm for two-dimensional (2D) linear systems, which
was introduced by Bai et al. [36, 37], has garnered interest from
numerous scholars. The full-order model (FOM) gets mapped
onto the projection space. SOAR facilitates the acquisition of an
orthogonal basis within the projection space and the construction
of a Reduced-Order Model (ROM) that preserves the characteristics
of the initial model. Furthermore, the SOAR method finds
extensive application in structural acoustic analysis, second-
order dynamical system modeling [19], and quadratic eigenvalue
problems [37, 38].

Singular Helmholtz boundary integral equations may fail to
yield unique solutions when applied to exterior boundary value
problems. To address this issue, two primary approaches have been
proposed [39–42]. The Combined Helmholtz Integral Equation
Formula (CHIEF), cited in Ref. [43], effectively addresses this
issue by introducing additional HIE within the internal domain
[44, 45]. The resulting overdetermined system of equations can be

solved using the method of least squares. However, determining
the optimal number and placement of internal points, particularly
for issues of high frequency, remains challenging. The Burton-
Miller method [46] presents another useful strategy for handling
non-unique solutions, offering a linear formulation of the Classical
Boundary Integral Equation (CBIE) and its associated Normal
Derivative Boundary Integral Equation (NDBIE). If the boundary
is nonsmooth, NDBIE becomes hypersingular, requiring special
numerical treatment. This study utilizes Cauchy principal value
integrals and Hadamard finite part integrals for handling singular
integrals.

To enable the application of the Boundary Element Method
(BEM) in 2D acoustic computations across a wide frequency range,
this study proposes the following enhancements:

• Frequency-dependence elimination for the 2D acoustic state
boundary integral equation using Taylor series expansion.
• A ROM of a 2D acoustic state system based on SOAR

is proposed.
• The singularity elimination technique is suggested for

accurately resolving the singularities in the boundary integrals
present in the Taylor series expansion formulation.

This article has the following structure. Section 2 details the
BEM formulation for acoustic state analysis. Section 3 elaborates
on the BEM formulation with Taylor series expansion for acoustic
state analysis.MOR built on the adaptive SOARmethod is employed
in Section 4 to speed up the BEM computation for 2D broadband
acoustic situations. The treatment of singular integrals in kernel
function border integrals is described in Section 5. Section 6
includes multiple numerical instances that verify the effectiveness of
the proposed algorithm. Finally, conclusions and further discussions
are drawn in Section 7.

2 BEM formulations for acoustic state
analysis

The Helmholtz half-space problem can be represented by the
following BIE and normal derivative boundary integral equation
(HBIE).

C (x)p (x) +∫
S
F (x,y)p (y)dS (y) = ∫

S
G (x,y)q (y)dS (y) + pinc (x)

(1)

and

C (x)q (x) +∫
S
H (x,y)p (y)dS (y) = ∫

S
K (x,y)q (y)dS (y) +

∂pinc (x)
∂n (x)

(2)

where y signifies the field point, x denotes the source point, and q
is the normal derivative of the sound pressure p: q(x) = ∂p(x)/∂n(x).
When x is located on a border that is smooth S, C(x) = 1/2. Acoustic
pressure incident at position x is given by pinc. The function of
Green G(x,y) and its derivatives in Equation 1 and Equation 2 are
presented as follows, which can be expressed in Equation 3.

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2024.1464716
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhong et al. 10.3389/fphy.2024.1464716

FIGURE 1
Calculate the frequency band.

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

G (x,y) = i
4
H(1)0 (kr)

F (x,y) =
∂G (x,y)
∂n (y)
= − ik

4
H(1)1 (kr)

∂r
∂n (y)

K (x,y) =
∂G (x,y)
∂n (x)
= − ik

4
H(1)1 (kr)

∂r
∂n (x)

H (x,y) =
∂2G (x,y)

∂n (x)∂n (y)
= ik

4r
H(1)1 (kr)nj (x)nj (y) −

ik2

4
H(1)2 (kr)

∂r
∂n (x)

∂r
∂n (y)

(3)

where the nth order first kind Hankel function is indicated by
H(1)n , k denotes by the wave number, i = √−1, nj is the Cartesian
component of n(x) or n(y) and the distance between the field and
source locations is represented by the formula r = |x− y|.

For exterior acoustic problems, using either Equation 1 or
Equation 2 alone can lead to non-uniqueness of the solution at
certain imaginary frequencies. According to the Burton-Miller idea,
a linear combination of Equation 1 and Equation 2 can effectively
resolve this issue. The Burton-Miller formulation is expressed
as follows [46].

C (x) [p (x) + αq (x)] +∫
S
[F (x,y) + αH (x,y)]p (y)dS (y)

= ∫
S
[G (x,y) + αK (x,y)]q (y)dS (y) + pinc (x) + α

∂pinc (x)
∂n (x)

(4)

in which α represents the coupling parameter: defined as α = i/k
where k > 1 and α = i in other cases.

By discretizing the structural boundary into several
elements using constant elements and introducing the
coefficient matrix, Equation 4 can be reformulated as follows

Hp−Gq = pincf (5)

where H and G ∈ ℂN×N (N indicates the quantity of degrees of
freedom.) are the coefficient matrices. They are asymmetric, fully
populated, and frequency-related. The column vectors p and q,
respectively, represent the sound pressure and the acoustic flux at
the collocation locations. pincf is the vector of the incident wave.

To determine the sound pressure values at the boundary
surface nodes, Equation 5 needs to be solved. Subsequently, the
sound pressure can be computed at any point within the acoustic
domain by using Equation 4 with α = 0 and C(x) = 1.

Its sound pressure, p f , can be written as follows if the
computation takes into account the external acoustic field.

p f = −|H fp−G fq| + p
inc
f (6)

where the matrices H f and G f as well as the vector p f are similar
to those in Equation 5, except that the source point x is outside the
structure domain. AndH f andG f ∈ ℂÑ×N (Ñ indicates the quantity
of degrees of freedom.)

3 Frequency sweep analysis for
acoustic state

In broadband acoustic analysis using BEM, the frequency-
dependent coefficient matrices result in time-consuming repetitive
computations and repeated solutions of the system equations,
posing challenges for practical engineering applications. This
frequency dependence arises because the underlying solution is
inherently frequency-related. To address this issue, the frequency
dependence of the coefficient matrix is eliminated by applying
the Taylor series theorem.

The Taylor series expansion of H(1)n (kr) [47] is given by

H(1)n (kr) =
∞

∑
m=0

(kr− k0r)
m

m!
[H(1)n (kr)]

(m)

kr=k0r
(7)

where k0 is a fixed frequency expansion point. As seen in Figure 1,
the fixed expansion point in this paper is the midway point of the
frequency band.

Considering an incident wave traveling along the ℓ-axis, the
Taylor series expansion of the term related to pinc(x) in Equation 4
can be expressed as follows

pinc (x) + α
∂pinc (x)
∂n (x)
= eikxℓ(1+ αik

∂xℓ
∂n (x)
) (8)

where xℓ denotes the ℓ-axis coordinate of the source point, with ℓ
being either x or y.

The terms of incident wave in Equation 8 are Taylor series
expanded into

eikr = eik0r
∞

∑
m=0

(ir)m(k− k0)
m

m!
(9)

The expansion expression for the integral of the kernel functions
is obtained by combining Equation 7 and Equation 4.

∫
S
G (x,y)q (y)dS (y) =

∞

∑
m=0

(k− k0)
m

m!
Img

∫
S
F (x,y)p (y)dS (y) =

∞

∑
m=0

(k− k0)
m

m!
Imf

∫
S
αK (x,y)q (y)dS (y) =

∞

∑
m=0

(k− k0)
m

m!
kImk

∫
S
αH (x,y)p (y)dS (y) =

∞

∑
m=0

(k− k0)
m

m!
[kImh1 + k

2Imh2]

(10)

where

Img = ∫
S

irm

4
[H(1)0 (kr)]

(m)

kr=k0r
q (y)dS (y)

Imf = −∫S
irm−1

4
[(kr)H(1)1 (kr)]

(m)

kr=k0r

∂r
∂n (y)

p (y)dS (y)

Imk = −∫S
αirm

4
[H(1)1 (kr)]

(m)

kr=k0r

∂r
∂n (x)

q (y)dS (y)

Imh1 = ∫S
αirm−1

4
[H(1)1 (kr)]

(m)

kr=k0r
nj (x)nj (y)p (y)dS (y)

Imh2 = −∫S
αirm

4
[H(1)2 (kr)]

(m)

kr=k0r

∂r
∂n (x)

∂r
∂n (y)

p (y)dS (y)

(11)
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where

[(kr)H(1)1 (kr)]
(m)
=m[H(1)1 (kr)]

(m−1)
+ (kr)[H(1)1 (kr)]

(m)
(12)

By combining Equation 12 and Equation 9, an expression related to
the incident wave in Equation 4 is obtained.

̃pinc =
∞

∑
m̄=0

(k− k0)
m̄

m̄!
[ ̃Pm̄inc,1 + k ̃P

m̄
inc,2] (13)

where the respective components can be expressed as Equation 14.

̃Pm̄inc,1 = e
ik0xℓ(ixℓ)

m̄

̃Pm̄inc,2 = e
ik0xℓ(ixℓ)

m̄ (αi)
∂xℓ

∂n (x)
(14)

A new formulation of Equation 4 is given below by substituting
Equation 10 and Equation 13 into Equation 4.

C (x) p (x) + αC (x)q (x) +
∞

∑
m=0

(k− k0)
m

m!
[(Imf − I

m
g ) + k(I

m
h1 − I

m
k )) + k

2Imh2]

=
∞

∑
m̄=0

(k− k0)
m̄

m̄!
[ ̃Pm̄inc,1 + k ̃P

m̄
inc,2] (15)

By discretizing Equation 15 using constant elements, the following
matrix expression is derived.

∞

∑
m=0

(k− k0)
m

m!
{[Imp1 + kI

m
p2 + k

2Imp3] p̃− [I
m
q1 + kI

m
q2] q̃}

=
∞

∑
m̄=0

(k− k0)
m̄

m̄!
[P̃m̄

inc,1 + kP̃
m̄
inc,2] (16)

Due to the linearization of the BEM system, the solutions p̃ and
q̃ in Equation 16 with truncation term M̄ can be expressed as
Equation 17 and Equation 18.

p̃ =
M̄

∑
m̄=0

(k− k0)
m̄

m̄!
p̃m̄1 +

M

∑
m̄=0

k(k− k0)
m̄

m̄!
p̃m̄2 (17)

and

q̃ =
M̄

∑
m̄=0

(k− k0)
m̄

m̄!
q̃m̄1 +

M

∑
m̄=0

k(k− k0)
m̄

m̄!
q̃m̄2 (18)

where the respective solutions of the following system equations are
p̃m̄1 , p̃m̄2 , q̃m̄1 and q̃m̄2 .

∞

∑
m=0

(k− k0)
m

m!
{[Imp1 + kI

m
p2 + k

2Imp3] p̃
m̄
j − [I

m
q1 + kI

m
q2] q̃

m̄
j } = P̃

m̄
inc,j j = 1,2

(19)

The coefficient matrices Imp1, I
m
p2, I

m
p3, I

m
q1 and Imq2 ∈ ℂ

N×N in
Equation 19 are frequency unrelated.Thus, it only needs to be solved
once for wide-frequency acoustic problems, eliminating the need
for repetitive calculations of coefficient matrices in BEM systems.
However, there is another disadvantage of this method, which is that
it is still very difficult to solve the equations directly using GMRES
for large problems with multiple frequencies because the coefficient
matrices are full-rank and asymmetric and the truncation terms
require high storage capacity (O(5(M+ 1)N2)). It is evident from
observation that Equation 19 is the second-order system equation
concerning frequency. An efficient SOAR method is presented in
[48] to accelerate the broadband solution of Equation 19.

4 Dimension reduction of BEM system
for acoustic state analysis

In this section, an effective SOAR method is proposed to
expedite the solution of the coefficient matrix by reducing the
dimensionality of the 2D system. This projection technique is
predicated on the Krylov subspace of second order. By using the
method, a system with an equivalent second-order structure but
with a diminished state space dimension is created. In Equation 19,
the frequency-independent coefficients Imp1, I

m
p2, I

m
p3, I

m
q1 and Imq2

are utilized to construct the frequency-unrelated orthogonal basis
iteratively, implementing the SOAR algorithm.

In this work, the scattering of an incident wave by a rigid
structural surface is considered. The vectors q in Equation 5 vanish
because the particle velocity on the surface of the structure is
zero. Thus, Equation 19 can be rewritten as

∞

∑
m=0

(k− k0)
m

m!
[Imp1 + kI

m
p2 + k

2Imp3] p̃
m̄
j = P̃

m̄
inc,j j = 1,2 (20)

Whenm = 0, the coefficients in Equation 19 are utilized to create
frequency-independent orthogonal bases, then Equation 19 is re-
expressed as

(I0p1 + kI
0
p2 + k

2I0p3) p̃
m̄
j = P̃

m̄
inc,j j = 1,2 (21)

It should be noted that Equation 21 is not an approximation of
the original system equation; rather, it is used for the construction
of the orthogonal basis. Equation 21, approximated around a chosen
expansion point k0, can be expressed as Equation 22.

[I0p5 + (k− k0)I
0
p4 + (k− k0)

2I0p3] p̃
m̄
j = P̃

m̄
inc,j j = 1,2 (22)

where I0p5 = k
2
0I

0
p3 + k0I

0
p2 + I

0
p1 and I0p4 = 2k0I

0
p3 + I

0
p2.

Following the SOAR method procedure outlined in Ref. [48],
a sequence of frequency-independent orthogonal bases Qm̄

j was
constructed in the second-order Krylov subspace Gn(A,B;r0) using
the coefficients from Equation 19, where n≪ N as shown in
Equation 23.

span{Qm̄
j } = Gn (A,B;r0) = span{r0,r1,r2,…,rn−1} (23)

where the respective quantities are shown in Equation 24.

{{{{{{{{{{
{{{{{{{{{{
{

A = −(I0p5)
−1I0p4

B = −(I0p5)
−1I0p3

r0 = (I
0
p5)
−1P̃m̄

inc,j

r1 = Ar0
rℓ = Arℓ−1 +Brℓ−2 for ℓ ≥ 2

(24)

To define a reduced system equation of the initial Equation 20,
the projection subspace is constructed by spanning a sequence
of nonzero columns of Qm̄

j . Equation 20 is reformulated as
Equation 25.

p̃m̄j = [
M

∑
m=0

(k− k0)
m

m!
(Imp1 + kI

m
p2 + k

2Imp3)]
−1

P̃m̄
inc,j j = 1,2 (25)
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FIGURE 2
The constant element Sx is connected to an infinitesimal semicircle.
Normal derivatives at source points x and field points y are
represented by the notations n(x) and n(y), respectively.

FIGURE 3
The infinite cylinder serves as the design domain for sound scattering.

Subsequently, the simplified system equation at the expansion point
k0 can be stated as Equation 26.

bm̄j = [
M

∑
m=0

(k− k0)
m

m!
(Im,np1 + kI

m,n
p2 + k

2Im,np3 )]
−1

[Qm̄
j ]

TP̃m̄
inc,j j = 1,2

(26)

where the coefficient matrix is shown in Equation 27.

{{{{
{{{{
{

Im,np1 = [Q
m̄
j ]

TImp1Q
m̄
j

Im,np2 = [Q
m̄
j ]

TImp2Q
m̄
j

Im,np3 = [Q
m̄
j ]

TImp3Q
m̄
j

(27)

The relation between the solution of FOM and ROM is
expressed as

p̃m̄j =Q
m̄
j b

m̄
j (28)

p̃m̄j is the nth order Padé-type approximation of P̃m̄
inc,j about the

fixed expansion point k0, as shown in Equation 29.

p̃m̄j = P̃
m̄
inc,j +O((k− k0)

n) (29)

In the ROM, Im,np1 , Im,np2 and Im,np3 are n× n matrices where n≪
N. This significantly reduced storage requirements and improved
computational efficiency. At the collocation points on the structural
surface, the sound pressure can be obtained using Equation 28.
Afterward, at any point within the acoustic domain, Equation 6 can
be used to get the sound pressure value.

5 Singular integral in BEM

The boundary integral of the kernel function in Equation 11 can
be expressed as the sum of singular and non-singular terms.

∫
S
f (y)dS (y) = ∫

S\Sx
f (y)dS (y)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
non−singular

+∫
Sx
f (y)dS (y)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

singular

(30)

where Sx is the element that contains the source point x. S\Sx denotes
the boundary S that does not contain Sx. Since the integral does not
exhibit singularity on the boundary S\Sx, Gauss quadrature can be
employed for its solution. However, the integral over the boundary
Sx is singular and must be processed to do a numerical calculation.

The steps for handling singular integrals are as follows:

1. Suppose there is a singular function ̂f(x). First, perform a
singular order analysis on the integrand to obtain a simple
function ̂f0(x) that shares the same order of singularity.

2. Then, split the integral of the singular function into two parts:
one part is the integrand minus the simple function ̂f(x) −
̂f0(x), and the other part is the integral of the simple function
̂f0(x). Since ̂f(x) − ̂f0(x) is non-singular, it can be directly

computed using Gaussian-Legendre quadrature. Although
̂f0(x) retains its singularity, its simple form allows for accurate

integral results through various methods, such as integration
by parts, the Cauchy principal value, and the Hadamard finite
part integral.

3. Finally, adding these twoparts yields the accurate integral value
of the original singular function ̂f(x).

In this study, singular integrals are handled using the Cauchy
principal value and theHadamard finite part integralmethods.With
reference to Figure 2, let Sε represent a semicircle of radius ε, and
Γε represent Sx\Sε. Equation 30 can be used to rewrite the singular
integral term in Equation 31.

∫
Sx
f (y)dS (y) = limε→0∫

Γε
[ f (y) −D (y)]dS (y)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
nonsingular

+ limε→0∫
Sε
f (y)dS (y)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
singular

+ limε→0∫
Γε
D (y)dS (y)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
singular

(31)

When y ∈ Sx, then
∂r

∂n(x)
= ∂r

∂n(y)
= 0, hence Imf , I

m
k and Imh2 are all

zero.Therefore, the singular integrals in Equation 11 are present only
in Img and Imh1.

To facilitate the derivation of singular integrals, the singular
terms of Img and Imh1 are denoted as fmg and fmh1 respectively.

fmg = r
m[H(1)0 (kr)]

(m)

kr=k0r

fmh1 = r
m−1[H(1)1 (kr)]

(m)

kr=k0r

(32)
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FIGURE 4
The sound pressure amplitudes at the computational point located at (3 m, 0 m) in two different frequency ranges were obtained using the analytical
solution and SOAR Accelerated Taylor Extension-based BEM: (A). f = (300,400) Hz, (B). f = (400,500) Hz.

FIGURE 5
The sound pressure amplitudes at the computational point located at (3 m, 0 m) in four different frequency ranges were obtained using the analytical
solution and SOAR Accelerated Taylor Extension-based BEM: (A). f = (300,350) Hz, (B). f = (350,400) Hz, (C). f = (400,450) Hz, (D). f = (450,500) Hz.

Based on Equation 31 and Equation 32, the integrals Img and Imh1
in Sx can be restated as

∫
Sx
fmg dS (y) = lim

ε→0
∫

Γε
[ fmg −D

m
g ]dS (y)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
nonsinglar

+ lim
ε→0
∫
Sε
fmg dS (y)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gm0

+ lim
ε→0
∫

Γε
Dm

g dS (y)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

dm0

∫
Sx
fmh1dS (y) = lim

ε→0
∫

Γε
[ fmh1 −D

m
h1]dS (y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

nonsinglar

+ lim
ε→0
∫
Sε
fmh1dS (y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gm1

+ lim
ε→0
∫

Γε
Dm

h1dS (y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
dm1

(33)

where nj(x)nj(y) = 1 and dr = dS(y) in Sx.The non-singular terms in
Equation 33 are computed using Gaussian quadrature. The singular
part of H(1)0 (kr) is 2i ln (kr)/π and that of H(1)1 (kr) is 2i/(−πkr) +
i(kr) ln (kr)/π Thus, their m-th derivatives are represented as

Equations 34, 35.

Dm
g =
{
{
{

2i
π

ln(k0r) , m = 0

O(r0) , m ≠ 0
(34)

and

Dm
h1 =

{{{{{{
{{{{{{
{

−2i
π
k−10 r−2 +

ik0

π
ln(k0r) , m = 0

2i
π
k−20 r−2 + i

π
ln(k0r) , m = 1

−2i
π
(−1)mk−(m+1)0 r−2m!, m ≥ 2

(35)
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FIGURE 6
The relative error of the sound pressure at the point of calculation (3 m, 0 m) for different expansion terms was derived through the utilization of the
analytical solution and SOAR Accelerated Taylor Extension-based BEM: (A). f = (300,350) Hz, (B). f = (350,400) Hz, (C). f = (400,450) Hz, (D). f =
(450,500) Hz.

FIGURE 7
The sound pressure amplitudes at the computational point located at (3 m, 0 m) in two different frequency ranges were obtained using the analytical
solution and SOAR Accelerated Taylor Extension-based BEM: (A). Frequency step length = 0.5 Hz., (B). Frequency step length = 0.1 Hz.

By substituting Equation 34 into the first equation of
Equation 33, the two singular terms g00 and d0

0 in Equation 33 can be
expressed as Equation 36.

g00 = 0

d0
0 =

2iL
π
[ln(k0L/2) − 1]

(36)

where L is the length of the element.
Similarly, by substituting Equation 34 into the second

equation of Equation 33, the expressions for gm1 and dm1 are obtained.

gm1 = limε→0
[4i
π
(−1)mk0

−(m+1)m!1
ε
] (37)

and
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FIGURE 8
The design domain of the tree-shaped sound barrier model.

dm1 =

{{{{{{{{
{{{{{{{{
{

8i
πk0L
+

ik0L
π
[ln(k0L/2) − 1] − limε→0

4i
πk0ε

m = 0

−8i
πk0

2L
+ iL

π
[ln(k0L/2) − 1] + limε→0

4i
πk0

2ε
m = 1

8i
πL
(−1)mk−(m+1)0 m! − lim

ε→0
[4i
π
(−1)mk−(m+1)0 m!1

ε
] m ≥ 2

(38)

By combining Equation 37 and Equation 38, the expression for
the singular integral is derived as Equation 39.

gm1 + d
m
1 =

{{{{{{{
{{{{{{{
{

8i
πk0L
+

ik0L
π
[ln(k0L/2) − 1] m = 0

−8i
πk0

2L
+ iL

π
[ln(k0L/2) − 1] m = 1

8i
πL
(−1)mk−(m+1)0 m! m ≥ 2

(39)

6 Numerical example

Three computational examples are presented in this section to
evaluate the performance of the proposed algorithm. The research
employed the Fortran 90 programming language to conduct
numerical simulations. 64 GB of RAM and an Intel (R) Core (TM)
i9-10900H Central Processing Unit (CPU) were installed on a
desktop computer to perform calculations.

In the simulations, some common parameters are as follows: an
incidentwavewith an amplitude of p0 = 1 propagating in the positive
x-axis direction, expressed as pinc = p0e

ikr cos θ. The medium for the
acoustic wave is air, with a density of 1.21 kg/m3 and a speed of
343 m/s.

6.1 Acoustic scattering by an infinitely rigid
cylinder

The acoustic scattering from a cylinder can be reduced to
a two-dimensional problem by assuming that a plane wave

beam acts on an infinitely rigid cylinder (see Figure 3). And
a plane wave follows the positive x-axis of propagation. The
cylinder is centered at (0 m, 0 m) with a radius of 1 m, and
the circumference is discretized using 720 constant boundary
elements. Additionally, the coordinates of the calculation
point are (3 m, 0 m) (see Figure 3).

The problem of acoustic scattering by an infinitely rigid
cylinder has the analytical solution, which is represented
as Equation 40 [49].

p (r,θ) = −
∞

∑
n=0

εnin
nJn (kr0) − kr0Jn+1 (kr0)

nH(1)n (kr0) − kr0H
(1)
n+1 (kr0)

H(1)n (kr)cos (nθ) (40)

In the above equation, ε0 = 1 for n = 0, and εn = 2 otherwise, where
εn represents the Neumann symbols. The expansion consists of 50
terms, and at the detection point, θ = 0.

The relative error between the numerical result computed and
the analytical solution is evaluated, as shown in Equation 41, to
ensure that the proposed approach is accurate.

eΓ = (
N

∑
i=1
|pn (xi) − pe (xi) |

2)
1/2

/(
N

∑
i=1
|pe (xi) |

2)
1/2

(41)

where xi denotes the computational points within the domain, the
numerical solution for sound pressure is represented by pn(xi), and
the analytical solution for sound pressure is denoted by pe(xi). The
number of computed points,N = 720, is evenly distributed along the
perimeter of the circle shown in Figure 3, which has a radius of r =
3 m.

Figure 4 shows the sound pressure amplitude at the computed
location (3 m, 0 m) obtained using the proposed algorithm. The
analytical solution and this outcome are contrasted. Numerical
simulations considered two distinct intervals (300, 400) Hz
and (400, 500) Hz. In the frequency interval ( flef, frig), the
fixed expansion point is the midpoint frequency ( flef, frig)/2.
“Taylor_03”, “Taylor_06”, and “Taylor_08” denote the retention
of the first 3, 6, and 8 terms of the Taylor expansion,
respectively. The ROM attainments by the SOAR approach have
an order of 10.

Figure 4 demonstrates that the sound pressure amplitude
values derived from various Taylor series terms of the proposed
algorithm are comparatively consistent with the analytical
solution. Due to the fixed expansion point being the midpoint
of the frequency interval, significant differences occur at the
two ends of each frequency interval. In order to minimize the
disparity between the analytical and numerical solutions, we
subdivided the frequency intervals (300, 400) Hz and (400,
500) Hz into four sub-intervals each, and then recalculated the
numerical simulations.

Figure 5 presents the results of the analytical and numerical
solutions for the four sub-intervals after subdivision. It is evident
that the numerical solutions match the analytical solutions
very closely. Figure 6 shows the relative errors between them. Based
on the observations, it can be inferred that the relative error is
sufficiently minimal and exhibits little fluctuation when six or more
expansion terms are used.

Figure 7 illustrates how long it takes to compute the point
sound pressure amplitude using both the conventional boundary
element method (DBEM) and the proposed approach. The

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2024.1464716
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhong et al. 10.3389/fphy.2024.1464716

FIGURE 9
The sound pressure findings at a computing position (14 m, 2 m) that were acquired using DBEM and SOAR Accelerated Taylor Extension-based BEM:
(A). Real part, (B). Imaginary part, (C). Sound pressure amplitude.

FIGURE 10
At a point of computation (14 m, 2 m), the sound pressure amplitude were acquired using DBEM and SOAR Accelerated Taylor Extension-based BEM:
(A). f = (150,175) Hz, (B). f = (175,200) Hz.

frequency sweep range is (300, 400) Hz, with the number of
frequency sweeps set to 200 and 1,000, respectively. The ROM
attainments by the SOAR approach have an order of 10. It
can be observed that for wide-frequency sweep calculations,
when compared to the DBEM, the proposed method takes a

lot shorter amounts of time. Moreover, the more frequency
sweeps performed, the greater the time savings, indicating higher
efficiency. Based on the above analysis, six terms for the Taylor
series expansion are advised in computational simulations to
minimize CPU time.
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FIGURE 11
The relative error of the sound pressure at the point of calculation (14 m, 2 m) for different expansion terms was derived through the utilization of the
DBEM and SOAR Accelerated Taylor Extension-based BEM: (A). f = (150,175) Hz, (B). f = (175,200) Hz.

TABLE 1 Sound pressure values and relative errors for different taylor expansion terms.

Frequency DBEM Taylor_03 Taylor_06 Taylor_08 Taylor_10

|Sp| εr |Sp| εr |Sp| εr |Sp| εr

150 0.89217 0.90074 9× 10−3 0.89053 1× 10−3 0.89235 2× 10−4 0.89215 2× 10−5

155 1.08997 1.08959 3× 10−4 1.08995 2× 10−5 1.08998 9× 10−6 1.08998 9× 10−6

160 1.22135 1.22131 3× 10−5 1.22132 3× 10−5 1.22137 2× 10−5 1.22136 8× 10−6

165 1.29554 1.29557 2× 10−5 1.29556 2× 10−5 1.29555 9× 10−6 1.29555 8× 10−6

170 1.37634 1.37727 7× 10−4 1.37632 1× 10−5 1.37633 7× 10−6 1.37633 7× 10−6

175 1.52724 1.53539 5× 10−3 1.52657 4× 10−4 1.52733 6× 10−5 1.52723 7× 10−6

180 1.69679 1.69526 9× 10−4 1.69681 1× 10−5 1.69678 6× 10−6 1.69678 6× 10−6

185 1.67760 1.67758 1× 10−5 1.67759 6× 10−6 1.67759 6× 10−6 1.67759 6× 10−6

190 1.50347 1.50345 1× 10−5 1.50346 7× 10−6 1.50346 7× 10−6 1.50346 7× 10−6

195 1.32502 1.32549 4× 10−4 1.32500 2× 10−5 1.32501 8× 10−6 1.32501 8× 10−6

200 1.18539 1.17692 7× 10−3 1.18556 1× 10−4 1.18536 3× 10−5 1.18538 8× 10−6

FIGURE 12
Acoustic scattering design domain for two-dimensional room.

6.2 Acoustic scattering by tree-shaped
sound barriers

Traffic noise is a major source of environmental noise in urban
areas, significantly impacting health and quality of life. The use of
sound barriers can mitigate the effects of traffic noise on both the
environment and human health.

Figure 8 depicts a tree-shaped sound barrier model, where
the model boundary is discretized into 868 scattered points
by constant elements. The remaining parameters for the tree-
shaped sound barrier model are as follows: the trunk and four
branches of the tree-shaped sound barrier are each 0.5 m in
length and 0.3 m in width. The base of the trunk measures 0.8
m in length and 0.3 m in width. A Tree-shaped sound barrier
scatters a plane wave that is traveling along the positive x-axis
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with an amplitude of p0 = 1. The observation point is located
at (14 m, 2 m).

Figure 9 depicts the amplitude, imaginary part and real part
of the sound pressure at the observation point, obtained using the
traditional boundary element method and different Taylor series
expansion terms of the proposed algorithm.The figure shows that as
the number of Taylor expansion terms increases, the sound pressure
results obtained by the proposed approach converge. Due to the

fixed frequency expansion point being located at the midpoint of
the frequency range, discrepancies appear at the ends of the interval,
whereas other regions show good agreement. The frequency band
of (150, 200) Hz is split into two sub-intervals, and numerical
simulations are conducted separately for each sub-interval. The
simulation results are shown in Figure 10. From Figure 10, it can be
concluded that the results obtained with different Taylor expansion
terms are in high agreement with those obtained using the DBEM.

FIGURE 13
The sound pressure amplitudes at the computational point located at (10 m, 2 m) in four different frequency ranges were obtained using the DBEM and
SOAR Accelerated Taylor Extension-based BEM: (A). f = (200,250) Hz, (B). f = (250,300) Hz.

FIGURE 14
The sound pressure amplitudes at the computational point located at (10 m, 2 m) in four different frequency ranges were obtained using the DBEM and
SOAR Accelerated Taylor Extension-based BEM: (A). f = (200,225) Hz, (B). f = (225,250) Hz, (C). f = (250,275) Hz, (D). f = (275,300) Hz.
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FIGURE 15
The relative error of the sound pressure at the point of calculation (10 m, 2 m) for different expansion terms was derived through the utilization of the
DBEM and SOAR Accelerated Taylor Extension-based BEM: (A). f = (200,225) Hz, (B). f = (225,250) Hz, (C). f = (250,275) Hz, (D). f = (275,300) Hz.

Figure 11 presents the relative error between the results at the
calculation points for different expansion terms and those from
the traditional boundary element method. The figure indicates
that if there are six or more Taylor expansion terms, the relative
error remains consistently low and stable. Table 1 displays the
sound pressure amplitudes at various frequency points obtained
through two different algorithms, along with the relative errors
between them.

6.3 Acoustic scattering by room

This section demonstrates the calculation of sound pressure
amplitudes at observation points within a two-dimensional
room. Both the BEM and the Taylor series expansion-based
BEM accelerated by the SOAR algorithm are employed. The
results from these methods are then compared and analyzed.
As depicted in Figure 12, the two-dimensional room model
measures 4.5 m in height and 5.3 m in width. The boundary
is divided into 994 discrete points using constant elements. A
wave with an amplitude of 1, traveling in the positive x-direction,
is scattered by the room. The observation point is situated
at (10 m,2 m).

The frequency range scanned in Figure 13 spans from 200 Hz
to 250 Hz and from 250 Hz to 300 Hz. Figure 13 indicates that
the sound pressure amplitudes obtained by both methods exhibit

good agreement within the intervals of (210, 235) Hz and (260,
290) Hz, but show significant discrepancies at the ends of these
intervals. The discrepancy arises because the frequencies used for
calculations within each frequency sweep interval are centered on
the midpoint of the interval. Consequently, the further a frequency
is from the midpoint, the greater the error in the calculated
result. To enhance accuracy and diminish errors, the intervals
(200, 250) Hz and (250, 300) Hz are subdivided into four sub-
intervals each. Within each sub-interval, calculations are performed
using the midpoint frequency. The outcomes are illustrated in
Figure 14. Figure 14 indicates a high level of agreement between the
results obtained by the two algorithms, this suggests that narrowing
the intervals to enhance the precision of the algorithm proposed
is effective.

Figure 15 illustrates the errors between the two algorithms.
It is evident that with six or more terms in the Taylor
series expansion, the error remains stable and within
an acceptable range. Table 2 presents the sound pressure
amplitudes and corresponding relative errors at different
frequency points.

By comparing the three cases, it is evident that the
frequency sweep range is significantly reduced in more complex
models. This indicates that the complexity of the model affects
the accuracy of the proposed algorithm. However, precise
calculations can still be achieved by narrowing the frequency
sweep range.
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TABLE 2 Sound pressure values and relative errors for different taylor expansion terms.

Frequency DBEM Taylor_03 Taylor_06 Taylor_08 Taylor_10

|Sp| εr |Sp| εr |Sp| εr |Sp| εr

200 1.73971 1.65520 5× 10−2 1.73826 8× 10−4 1.73975 3× 10−5 1.73971 7× 10−7

205 3.77269 3.55690 6× 10−2 3.77243 7× 10−5 3.77270 5× 10−7 3.77269 7× 10−8

210 0.65607 0.65559 7× 10−4 0.65607 6× 10−8 0.65607 6× 10−8 0.65607 6× 10−8

215 1.69961 1.69936 1× 10−4 1.69961 5× 10−9 1.69961 5× 10−9 1.69961 5× 10−9

220 1.08095 1.06445 2× 10−2 1.08098 3× 10−5 1.08095 7× 10−7 1.08095 2× 10−7

225 2.33577 2.19804 6× 10−2 2.33345 1× 10−3 2.33582 2× 10−5 2.33577 4× 10−7

230 1.01752 1.05120 3× 10−2 1.01745 7× 10−5 1.01753 1× 10−6 1.01753 1× 10−7

235 0.89543 0.89551 9× 10−5 0.89543 5× 10−8 0.89543 6× 10−8 0.89543 6× 10−8

240 0.59929 0.60016 1× 10−3 0.59929 2× 10−7 0.59929 1× 10−7 0.59929 1× 10−7

245 1.25059 1.23222 1× 10−2 1.25055 4× 10−5 1.25059 5× 10−8 1.25059 5× 10−8

250 1.54559 1.15591 2× 10−1 1.54341 1× 10−3 1.54564 3× 10−5 1.54559 7× 10−7

255 0.85390 0.81109 5× 10−2 0.85373 2× 10−4 0.85390 1× 10−6 0.85390 2× 10−9

260 0.86751 0.86747 4× 10−5 0.86751 2× 10−8 0.86751 2× 10−8 0.86751 2× 10−8

265 0.44207 0.44203 1× 10−4 0.44207 1× 10−7 0.44207 8× 10−8 0.44207 8× 10−8

270 1.23592 1.32387 7× 10−2 1.23587 4× 10−5 1.23592 1× 10−7 1.23592 8× 10−7

275 4.30881 4.16733 3× 10−2 4.32828 5× 10−3 4.30844 9× 10−5 4.30882 1× 10−6

280 2.11202 2.16971 3× 10−2 2.11221 9× 10−5 2.11202 8× 10−7 2.11202 2× 10−7

285 1.22514 1.22547 3× 10−4 1.22514 2× 10−7 1.22514 2× 10−7 1.22514 2× 10−7

290 0.80695 0.80552 2× 10−3 0.80695 9× 10−8 0.80695 3× 10−8 0.80695 3× 10−8

295 0.97933 0.94893 3× 10−2 0.97935 2× 10−5 0.97933 1× 10−7 0.97933 2× 10−9

300 1.14332 1.48699 3× 10−1 1.14355 2× 10−4 1.14333 1× 10−5 1.14332 3× 10−7

7 Conclusion

This paper employs the BEM to compute sound pressure for
frequency scanning analysis. It introduces an efficient computational
approach, which includes:

1. The Taylor expansion method decomposes the integral of
boundary elements into frequency-related and frequency-
unrelated terms, thus eliminating the frequency dependence
in the coefficient matrix.

2. By reducing the order of the original system model through
the application of the SOAR method, the computational
performance for solving large-scale problems was improved.

The algorithm proposed in this paper has potential applications
in various engineering fields. For example, in the design of sound
barriers, it can be used to quickly assess the acoustic performance

of different design options, thereby optimizing the design process.
In noise control engineering, this method can be employed to
simulate and analyze noise propagation in complex environments,
enhancing the effectiveness of noise control measures. We believe
that these applications highlight the practical significance of our
research and its potential to contribute to real-world engineering
challenges. Future work will involve applying the proposed
algorithm to problems involving broadband sensitivity scanning and
topology optimization.
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