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Introduction: Orthogonal Frequency Division Multiplexing (OFDM) is widely
recognized for its high efficiency in modulation techniques and has been
extensively applied in underwater acoustic communication. However, the
unique sparsity and noise interference characteristics of the underwater
channel pose significant challenges to the performance of traditional channel
estimation methods.

Methods:To address these challenges, we propose a sparse underwater channel
estimation method that combines the Noise2Noise (N2N) algorithm with the
Sparsity Adaptive Matching Pursuit (SAMP) algorithm. This novel approach
integrates the N2N technique from image denoising theory with the SAMP
algorithm, utilizing a constant iteration termination threshold that does not
require prior information. The method leverages the U-net neural network
structure to denoise noisy pilot signals, thereby restoring channel sparsity and
enhancing the accuracy of channel estimation.

Results: Simulation results indicate that our proposed method demonstrates
commendable channel estimation performance across various signal-to-noise
ratio (SNR) conditions. Notably, in low SNR environments, the N2N-SAMP
algorithm significantly outperforms the traditional SAMP algorithm in terms of
Mean Squared Error (MSE) and Bit Error Rate (BER). Specifically, at SNR levels of
0 dB, 10 dB, and 20 dB, the MSE of channel estimation is reduced by 58.95%,
76.08%, and 19.42%, respectively, compared to the SAMP algorithm that selects
the optimal threshold based on noise power. Furthermore, the system’s BER is
decreased by 12.35%, 26.41%, and 29.62%, respectively.

Discussion: The findings suggest that the integration of N2N and SAMP
algorithms offers a promising solution for improving channel estimation in
underwater communication channels, especially under low SNR conditions.
The significant reduction in MSE and BER highlights the effectiveness of our
proposed method in enhancing the reliability and accuracy of underwater
communication systems.
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1 Introduction

In the process of ocean exploration and development,
underwater acoustic communication technology plays an essential
role. It is not only a bridge for marine resource development and
marine environmental monitoring but also an important part
of maritime safety and national defense. Currently, underwater
communication faces many challenges, especially in the complex
and variable underwater environment where the stability and
reliability of signal transmission are tested [1–3]. OFDM technology
has been widely applied in underwater communication systems due
to its excellent ability to resist multipath interference and its efficient
spectral utilization efficiency [4, 5]. However, the performance of
OFDM technology largely depends on the accuracy of channel
estimation. In the underwater environment, the channel exhibits
significant sparsity, meaning that the signal energy is mainly
concentrated on a few paths, which brings new opportunities and
challenges for channel estimation.

Traditional channel estimation methods, such as the Least
Squares (LS) method [6] and the Minimum Mean Square Error
(MMSE) method [7], encounter performance bottlenecks when
dealing with sparse channels. These methods often require a
large number of pilot signals, leading to the waste of spectral
resources and potentially reducing estimation accuracy due to noise
interference. The introduction of Compressed Sensing (CS) theory
has provided a novel solution for sparse channel estimation [8, 9].
Utilizing the sparsity of signals, CS theory enables high-precision
signal reconstruction from a small number of observation samples,
thereby reducing the need for pilot signals and improving spectral
utilization [10].

The problem of underwater channel estimation based on CS
is essentially the process of reconstructing sparse signals. The
reconstruction algorithms can be primarily divided into two
major categories: those based on convex optimization theory [11]
and those based on the greedy algorithm concept [10]. Convex
optimization algorithms offer high precision in the reconstruction
of sparse signals, with Basis Pursuit (BP) [12] being a quintessential
example of such an algorithm. Greedy algorithms have garnered
significant attention due to their lower computational complexity
and ease of implementation. Typical greedy algorithms include:
Orthogonal Matching Pursuit (OMP) [13], generalized Orthogonal
Matching Pursuit (gOMP) [14], Compressive Sampling Matching
Pursuit (CoSaMP) [15], and the SAMP algorithm [16], among
others. Berger et al. [17] utilized the OMP algorithm to achieve
channel estimation for multi-carrier underwater acoustic systems.
The experimental results indicated that in cases where the
channel is indeed sparse, the OMP algorithm outperforms the
LS algorithm, which is based on the assumption of a dense
channel. Huang et al. [11] compared the computational complexity
and channel estimation accuracy of three typical BP algorithms
and the OMP algorithm in OFDM underwater communication
systems through both simulation and real-data experiments. The
experiments demonstrated that the channel estimation performance
of the three BP algorithms was superior to that of the OMP
algorithm; however, their computational complexitywas higher than
that of the OMP algorithm.

In the field of compressed sensing, the SAMP algorithm
overcomes the challenges of traditional algorithms by adaptively

adjusting the step size of atom selection, without the need
to predetermined sparsity, thereby enhancing the flexibility and
accuracy of signal reconstruction [18]. However, the performance of
the SAMP algorithm in underwater channel estimation may still be
significantly affected by noise. Determining an appropriate iteration
termination threshold is crucial for the accuracy of the algorithm,
but setting this threshold becomes complex in the presence of noise.
Under ideal conditions, the iteration termination threshold can be
set to a very small value close to zero, allowing the algorithm to
closely approximate the true sparsity [19]. The interference of noise
makes it difficult to achieve this ideal threshold, thereby affecting the
accuracy of channel estimation.

Additionally, the SAMP algorithm is highly sensitive to noise
and heavily reliant on prior information such as the SNR
when setting the iteration termination threshold, which limits its
practicality in dynamic underwater acoustic environments [20].The
noise in the marine environment is characterized by its complexity
and variability, which sets higher demands for the robustness of
channel estimation algorithms. To overcome these limitations, it is
essential to design a new algorithm that can adapt to changes in
the noise environment without relying on the SNR or other prior
information.

In response to the aforementioned challenges, this study
proposes an innovative N2N-SAMP method for sparse underwater
acoustic channel estimation. This approach integrates the N2N
denoising technique [21] with the SAMP algorithm, eliminating
the need for prior information such as SNR and featuring a
constant iteration termination threshold. By designing a U-net
neural network suitable for denoising pilot signals, the algorithm
presented in this paper can effectively filter out noise interference,
restore the channel’s sparsity, and enhance the accuracy of channel
estimation.

The organizational structure of this paper is as follows: The
second section introduces the OFDM underwater communication
system model; the third section elaborates on the standard SAMP
and the N2N-SAMP method proposed in this paper; the fourth
section demonstrates the performance of the method through
simulation experiments; finally, the fifth section summarizes the
entire paper.

2 System model

In the OFDM architecture, the original high data rate serial
data stream is first converted into multiple low data rate parallel
data streams to reduce the risk of inter-symbol interference (ISI)
and inter-carrier interference (ICI). Subsequently, the data is
allocated to a set of orthogonal subcarriers through an inverse
fast fourier transform (IFFT), further optimizing the spectral
efficiency. To further mitigate the effects of ISI and ICI, guard
intervals (GI) and cyclic prefixes (CP) are inserted between
OFDM symbols [22].

Upon reaching the receiver, the signal effectively restores the
original serial data stream through steps such as performing a
fast fourier transform (FFT), parallel-to-serial conversion, and
demodulation. These steps ensure the accurate transmission and
reception of data, thereby achieving efficient OFDM acoustic
communication.
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This section will introduce the OFDM acoustic channel model
and the acoustic channel model based on compressed sensing
theory, respectively.

2.1 Underwater acoustic channel model

Taking an OFDM underwater communication system with a
subcarrier number N as an example, where Np is the number
of subcarriers used for transmitting pilot symbols and P =
{P1,P2,⋯PNp

} is the set of positions of the pilot subcarriers, the
transmitted signal is denoted as X. The received signal Y can be
expressed as follows:

Y = XH +N (1)

where Y is an N× 1 vector, X = diag(x1,x2,⋯,xN), H is the vector
representing the frequency response of the underwater acoustic
channel, and N is the noise vector. After applying the FFT, the
received signal Y in Equation 1 can be represented as:

Y = XFh+N (2)

where F is an N× L dimensional Discrete Fourier Transform
(DFT) matrix, and h represents the channel’s time-domain impulse
response.The received signalYP corresponding to the pilot positions
can be expressed as Equation 2:

YP = XPHp +Np = XPFph+Np (3)

where YP = [YP1
,YP2
,⋯,YPNP

]
T

is an N× 1 column vector,

XP = diag(XP1
,XP2
,⋯,XPNP

) represents the transmitted signal
corresponding to the pilot positions, Hp represents the channel
frequency-domain response vector corresponding to the pilot
positions, Np represents the noise vector corresponding to the pilot
positions, and Fp represents the DFT matrix with rows selected
according to the pilot positions from F, with dimensionsNp × L. Let
= XPFp, then YP in Equation 3can be re-expressed as:

YP = XPFph+Np = Ah+Np (4)

whereA = XPFp can be regarded as the sensingmatrix in CS, h is the
sparse time-domain response of the underwater acoustic channel,
and YP can be considered as the observation signal. With these,
the data from the transmitting end can be reconstructed using CS
reconstruction algorithms.

2.2 Underwater acoustic channel model
based on compressed sensing

According to the theory of compressed sensing, let the original
signal be x, which is an N-dimensional signal. x may not directly
exhibit sparsity; therefore, it is necessary to represent it sparsely in
some transform domain as shown in Equation 5:

y =Φx =ΦΨs = As (5)

where y is an M-dimensional observation vector (with M≪ N ),
Φ is an M×N observation matrix, and A =ΦΨ is referred to as

the sensing matrix, which is of size M×N. Since y, Ψ , and Φ
are all known, A is also known. The problem of original signal
reconstruction then becomes one of recovering the sparse signal s
from the observation y, and subsequently recovering the original
signal x based on the sparse matrix Ψ . The signal s can be
recovered by solving the minimum l0-norm problem as described
in Equation 6:

̂s = arg min‖s‖0s.ty = As (6)

where ̂s is the estimated signal of s. However, since solving the
minimum l0-norm problem is NP-hard, it is very difficult to apply
in practice.Therefore, theminimization of the l1-norm is commonly
used as an alternative method for solving it. In an underwater
OFDM system, y corresponds to the frequency-domain form of
the received pilot signals Y , and s corresponds to the time-
domain impulse response of the underwater acoustic channel h.
Thus, the underwater channel model based on compressed sensing
is given by Equation 7:

ĥ = arg min‖h‖1s.tY = XFh+N = Ah+N (7)

3 N2N-SAMP

Given the sparsity characteristic of the underwater acoustic
channel, the SAMP algorithm is commonly used for channel
estimation due to its effectiveness in reconstructing sparse signals.
In this section, we analyze the bottleneck of the SAMP channel
estimation algorithm and find that it is highly sensitive to noise,
with its performance heavily impacted by noise interference.
Additionally, the determination of its iterative stopping threshold
is highly dependent on prior information such as SNR. To
address these issues, we propose an N2N-SAMP algorithm
that does not require prior information like SNR and features
a constant iterative stopping threshold. By filtering out noise
from the pilot signals, this method ensures the accuracy of
channel reconstruction and reduces reliance on prior information
such as SNR.

3.1 Standard SAMP algorithm bottleneck

In the Compressed Sensing domain, the sparsity of a
signal is essential for the reconstruction process. Conventional
reconstruction algorithms necessitate prior knowledge of the signal’s
sparsity, which is often not known in real-world scenarios. The
SAMPalgorithm addresses this issue by adaptively adjusting the step
size for atom selection, thus removing the need to preset sparsity,
and consequently improving the flexibility and accuracy of signal
reconstruction.

Despite the advantages of the SAMP algorithm, its performance
in underwater channel estimation can still be significantly affected
by noise. Determining an appropriate iteration termination
threshold σ is crucial for the accuracy of the algorithm, but setting
this threshold becomes complex in the presence of noise. Under
ideal conditions, the iteration termination threshold could be set to
a very small value close to zero, allowing the algorithm to closely
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FIGURE 1
Equivalent time-domain discrete channel response under different noise levels. (A) No Noise (B) SNR=20dB (C) SNR=10dB (D) SNR=0dB.

approach the true sparsity. However, noise interference makes
it difficult to achieve this ideal threshold, thereby affecting the
precision of channel estimation.

Considering that noise can affect the performance of the
SAMP channel estimation algorithm, Equation 4 can be rewritten
as shown in Equation 8:

YP = XPFph+Np = Ah+Np = A(h+A−1Np) = Ahe (8)

where he is the equivalent time-domain channel response that takes
into account the effects of oceanic noise.

Figure 1 illustrates the equivalent time-domain discrete channel
response he under various noise power levels. It can be observed

from the figure that the sparsity of the underwater channel is
affected after being subjected to noise interference. The higher
the noise power, the more severe the sparsity of the underwater
channel is compromised. When the noise power reaches a
certain level, the number of non-zero coefficients in the channel
impulse response becomes so numerous that it can no longer
be considered sparse. In CS-based sparse underwater channel
estimation, the sparsity of the underwater channel is a core
assumption. When oceanic noise severely disrupts the sparsity
of the underwater channel, the SAMP algorithm reconstructs
not the true sparse underwater channel h, but the equivalent
underwater channel he after being disturbed by oceanic noise. Since
he no longer meets the assumption of sparsity, the reconstruction
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FIGURE 2
Marine noise statistical characteristic analysis.

accuracy of the SAMP algorithm is bound to decrease
significantly.

Noise levels have a significant impact on the sparsity of the
underwater acoustic channel. Under low noise conditions, the
channel maintains good sparsity, and a smaller iterative termination
threshold can be used to more accurately approximate the true
channel impulse response. However, as noise power increases, the
sparsity of the channel gradually decreases, necessitating an increase
in the threshold to prevent mistakenly identifying noise as a genuine
part of the channel.

To achieve effective channel estimation under various noise
environments, the iterative termination threshold of the SAMP
algorithm should be dynamically adjusted based on real-time noise
power, which typically relies on prior information such as the SNR.
An effective strategy is to reduce the impact of noise through
denoising processing, restoring the noise-affected equivalent time-
domain channel response he to the true sparse channel response
h, thereby ensuring sparsity. In this way, even with a smaller
threshold, the reconstruction accuracy of the SAMP algorithm and
the reliability of channel estimation can be ensured.

3.2 The principle of N2N denoising

Traditional image denoising models often utilize a vast
collection of image pairs, each comprising a noisy image xi and
its corresponding clean image yi, to train neural networks. This
training process aims to minimize the following loss function:

arg min
θ
∑
i
L( fθ(xi),yi) (9)

where fθ denotes the neural network and θ signifies the network
parameters. Acquiring paired training images in real-world
scenarios is typically challenging, necessitating a network model
designed for training with noisy images.

Assuming a set of room temperature measurements (y1,y2,⋯)
that are not highly accurate, a common method for more precisely

estimating the true room temperature is to minimize a specific
loss function L to find the true temperature value z that has
the smallest average deviation from all measured data yi as
described in Equation 10:

arg min
z

Ey{L(z,y)} (10)

Training a neural network can be regarded as an extension of
point estimation, where the objective is to train a neural network to
output an expected value of yi when given an input xi. The goal of
network training is to achieve this as outlined in Equation 11:

arg min
θ

E(x,y){L( fθ(x),y)} (11)

By continuously optimizing each image pair (xi,yi), the optimal
fθ can be obtained; however, this process is multifaceted and
unstable. Due to the randomness and uncertainty of noise, multiple
clean images, once noisy, might result in the same noisy image. This
implies that for a given noisy image, there may not be a uniquely
determined clean image that corresponds to it. Analyzing from an
expected value standpoint, if noise with a mean of zero is added to
yi, denoted as ̂yi, and the L(z,y) = (z− y)2 loss function is used for
expected value optimization, it will not affect the final outcome. The
optimal neural network parameters θ remain unchanged. Equation 9
can be transformed into:

arg min
θ
∑
i
L( fθ(xi), ̂yi) (12)

where xi and ̂yi represent noisy images, and it holds that E{ ̂yi|xi} = yi.
When the training samples are sufficiently numerous, Equation 12
can entirely replace Equation 9, and they are correct from an
expected value perspective.

To verifywhether the noise in themarine environmentmeets the
zero-mean assumption required by the N2N denoising method, a
statistical analysis of the collected marine noise data was conducted.
The marine noise data originated from a South China Sea trial
experiment conducted in August 2023, where continuous marine
noise observationwas carried out for 15 days in the SouthChina Sea.

Figure 2 presents the results of this analysis, where the histogram
depicts the cumulative counts of different voltage values, and the
black curve represents the estimated probability density function
based on these sample data. It is clear that the probability density
function exhibits symmetry about the voltage zero value, which
distinctly indicates that the frequency of occurrence of positive and
negative directions in marine noise is balanced. In other words,
positive and negative deviations are mutually balanced in the overall
distribution, thereby confirming the zero-mean property of marine
noise and ensuring the effectiveness of the N2N denoising method.

3.3 design of N2N denoising neural
network

In OFDM underwater communication, each frame of the signal
received by the receiver can be regarded as a two-dimensional
matrix. It corresponds to each OFDM symbol in the time domain
and to the frequencies of each subcarrier in the frequency domain,
as shown in Figure 3. Accordingly, the pilot signals are also presented
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FIGURE 3
Pilot matrix within a frame of OFDM data.

FIGURE 4
Structure of the proposed U-net denoising neural network.

in matrix form. Therefore, the denoising process for the pilot signals
can be considered as a matrix denoising problem. The essence
of image denoising is also to process the pixel values in a two-
dimensional matrix to remove or reduce the impact of noise,
thereby restoring the original noise-free image. Given the inherent
correlation between image denoising and pilot signal denoising,
the denoising process for pilot signals can be equivalent to image
denoising.

To address the challenge of denoising pilot signals, this study
employs an innovative N2N denoising approach. This method does
not require noise-free reference signals but achieves effective noise
suppression through training with pairs of noisy images. Given
the difficulty of obtaining noise-free pilot signals in underwater
communication systems and the zero-mean characteristic of oceanic
noise, theN2Ndenoising technique offers a practical solution for the
denoising of pilot matrices.

In the N2N-SAMP method designed in this study, the U-
net network model is selected. The structure of this model can
be divided into four core parts: down-sampling, up-sampling,
skip connections, and the output section. The down-sampling

part, composed of consecutive convolutional layers and pooling
layers, is specifically responsible for extracting key features from
the input image. The up-sampling part then enlarges the size
of the feature maps through transposed convolutions, thereby
restoring the original size of the image. Skip connections link the
corresponding layers of the down-sampling and up-sampling parts
to facilitate feature transfer. The U-net network, with its powerful
feature extraction capabilities, can more deeply understand the
content of the image and accurately restore the parts of the image
contaminated by noise.

In the simulation experiments of this study, the number of pilots
is 64, and a frame of data contains 16 OFDM symbols. The received
pilot signals are complex-valued matrices. Since general neural
networks cannot directly process complex numbers, the received
pilot matrix is divided into real and imaginary parts, corresponding
to two channels of an image. Furthermore, to adapt to the size and
characteristics of the pilot matrix, the network structure of U-Net
has been adjusted accordingly.

Figure 4 illustrates the schematic diagram of the U-Net network
structure employed in this paper. The left half of the network
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TABLE 1 U-net Network parameters.

Region Name Kernel
(size/depth/stride/padding)

Activation function The size of the output image

Input

InputLayer — — 64×16×2

Input_conv_1 3/64/1/1 ReLU 64×16×64

Input_conv_2 3/64/1/1 ReLU 64×16×64

Downsampling1

Down1_Maxpool 2/-/2/- — 32×8×64

Down1_conv_1 3/128/1/1 ReLU 32×8×128

Down1_conv_2 3/128/1/1 ReLU 32×8×128

Down1_dropout — — 32×8×128

Downsampling2

Down2_Maxpool 2/-/2/- — 16×4×128

Down2_conv_1 3/256/1/1 ReLU 16×4×256

Down2_conv_2 3/256/1/1 ReLU 16×4×256

Down1_dropout — — 16×4×256

Upsampling1

Up1_transposedconv 2/128/2/- ReLU 32×8×128

Up1_concatenation — 32×8×256

Up1_conv1 3/128/1/1 ReLU 32×8×128

Up1_conv2 3/128/1/1 ReLU 32×8×128

Upsampling 2

Up2_transposedconv 3/64/2/- ReLU 64×16×64

Up2_concatenation — 64×16×128

Up2_conv1 3/64/1/1 ReLU 64×16×64

Up2_conv2 3/64/1/1 ReLU 64×16×64

Output Output_conv 1/2/1/- — 64×16×2

structure consists of an input module and two downsampling
modules, which are responsible for extracting features from the
input pilot matrix; the right half is composed of two upsampling
modules and an output module, which are tasked with restoring a
clear pilot matrix based on the extracted features. Skip connections
are used between each level for information transfer and fusion. The
input module includes an image input layer and two convolutional
layers for preliminary processing of the input pilot matrix. Each
downsampling module contains a max pooling layer and two
convolutional layers for stepwise feature extraction and abstraction.
To prevent overfitting, a Dropout layer is added after each
downsampling module, which randomly sets the output of a
portion of the input neurons to zero. The upsampling modules
gradually restore the size of the pilot and refine the features
through transposed convolutional layers, feature concatenation
layers, and convolutional layers. The output module consists of a
convolutional layer that outputs the final denoised result. Except
for the last convolutional layer, a ReLU activation function is added

after each convolutional layer to enhance the network’s nonlinear
expressive power. The specific parameters of the U-Net network are
detailed in Table 1.

3.4 Procedure of the proposed N2N-SAMP

Based on the designed denoising neural network architecture,
the following sections provide a detailed introduction to the N2N-
SAMP method proposed in this study. The algorithmic process is
illustrated in the Figure 5 and is primarily divided into two steps:
training the denoising neural network and utilizing the denoised
data for channel estimation.

The first phase of this method involves generating OFDM
reception data by utilizing a simulated underwater acoustic channel
model and adding zero-mean noise at different SNR. Subsequently,
the received data undergoes preprocessing to extract the noisy
pilot signals matrix and process them into a complex-valued pilot
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FIGURE 5
Flowchart of N2N-SAMP.

matrix.With the noisy pilot data required for training, the U-net
network can be trained. The loss function used for this network is
the L2 loss function, which is defined Equation 13:

L2 =
1
n

n

∑
i=1
(Y′ − fθ(Y))

2 (13)

where fθ denotes the network with parameters θ, Y and Y′ represent
two pilot matrices containing noise.

After the model is trained, the network is evaluated using a
test set to obtain the denoised pilot matrices. The denoised pilot
signals are then used in conjunction with the SAMP algorithm
for channel estimation. At this point, the channel reconstructed by
SAMP is the denoised equivalent time-domain underwater acoustic
channel response, which is sparser than the original noisy channel,
and the reconstruction accuracy can be effectively improved. Since
the denoising process reduces noise, a smaller iterative termination
threshold can be set without the need for dynamic adjustment based
on the noise power.

4 Results and analysis

In this section, we will provide a detailed description of the
simulation experiment setup used to verify the performance of
the proposed N2N-SAMP algorithm. Initially, we will introduce
the constructed underwater acoustic channel model, including its
parameter selection andmodel characteristics. Subsequently, wewill
present the training results of theU-net network. Finally, this section
will showcase the performance of the N2N-SAMP algorithm under
different SNR conditions.

4.1 Simulation model construction

The initial stage of the study involves the simulation of
an underwater acoustic channel model to obtain the necessary

characteristics of the underwater channel. This study utilizes the
underwater acoustic channel model developed in Ref. [23], which
has beenproven effective throughnumerous at-sea experiments.The
model not only takes into account the fundamental physical laws
of acoustic propagation but also considers the impact of random
local displacements. It provides a more comprehensive and accurate
description of the underwater acoustic channel, aiding in a deeper
understanding of its characteristics and offering a crucial basis for
the design, optimization, and performance evaluation of underwater
acoustic communication systems.

Underwater acoustic channel parameters are presented in
Table 2. The center frequency of the transmitted signal is 10 kHz,
with a bandwidth of 6 kHz and a signal duration of 60 s. The
simulation results in a time-varying underwater acoustic channel
as depicted in Figure 6. The underwater acoustic channel exhibits
significant sparsity, with its energy primarily concentrated in seven
multipath components. The maximum multipath delay reaches
32 ms, and there is a distinct time-varying characteristic that
changes with the observation time.

After constructing the underwater acoustic channel, it is
necessary to design the arrangement of pilot tones. In channel
estimation based on CS, a pilot matrix composed of uniformly
placed pilots does not achieve the best estimation performance. In
this paper, a random pilot design method is selected, where the pilot
positions corresponding to the smallest cross-correlation values of
the sensing matrix are chosen from a certain number of randomly
generated pilot positions. The specific implementation process of
this method is as follows:

1. Initialize the parameters: μmin = +∞, t = 1, Pmin =Ø;
2. Randomly generate E pilot position sets Pk,k = 1,2,⋯E, each

containingNP elements, representing the index positions of the
pilot signals in N subcarriers.

3. Calculate the cross-correlation value corresponding to It and
denote it as μt. μt < μmin, then set μmin = μt, Pmin = Pt.

4. t = t+ 1, Check if the iteration number t has reached the limit.
If t ≤ E, go back to step 3. Otherwise, stop iterating and output
the final pilot positions Pmin.

After obtaining the required underwater acoustic channel
and pilot positions, OFDM underwater communication system
simulations can be conducted to obtain pilot data under different
SNR conditions. The simulation parameters for the OFDM
underwater system are shown inTable 3.

4.2 Denoising performance

Under the condition of a signal-to-noise ratio (SNR) ranging
from 0 dB to 20 dB, 20,000 frames of pilot complex matrix
data with zero-mean noise were generated using an underwater
acoustic channel simulation model. These complex matrices are
then transformed into two-channel image data. Since training the
network requires pairs of noisy images, after obtaining the dataset
of noisy pilots, 80% of the data is used as the training set, and 20%
as the test set. Finally, the U-Net network is trained using the Adam
optimization algorithm, with a maximum of 300 training epochs.
The dataset is shuffled after each training epoch. The initial learning
rate is set to 0.01, and the learning rate decay factor is 0.1. After 200
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TABLE 2 Underwater acoustic channel simulation parameters.

Parameters Values Parameters Values

Carrier frequency 10 kHz Bandwidth 6 kHz

Water depth 100 m Transmission distance 1,000 m

Transmitter depth 30 m Receiver depth 60 m

Sound speed in water 1500 m/s Sound speed in bottom 1,200 m/s

Variation of surface height N (−10, 10)m Variation of surface height N (−20, 20)m

Transmitter fluctuation height N (−5, 5)m Receiver fluctuation height N (−5, 5)m

Spreading factor 1.7 Number of intrapaths 20

Mean of the internal path amplitude 0.025 Variance of the internal path amplitude 10–6

Transmitter drifting angle 0.1 m/s Transmitter drifting angle 0.02 m/s

Transmitter drifting angle N (0, 2π)rad Receiver drifting angle N (0, 2π)rad

Transmitter speed 0 m/s Receiver speed 0 m/s

FIGURE 6
Underwater acoustic channel impulse response.

epochs, the learning rate begins to decrease, ultimately reaching a
very low level for the loss function value.

To verify the effectiveness of the denoiser in removing noise, the
noise energy contained in the pilotmatrix before and after denoising
was statistically analyzed. Figure 7 presents a comparison of noise
energy before and after denoising the pilot matrix at SNR levels
of 0, 5, 10, 15, and 20 dB. It is evident from the figure that the
denoiser effectively reduces the noise in the received pilot matrix.
After calculation, it was found that over the range of SNR from 0 to
20 dB, the noise energy was reduced by more than 50%. Specifically,
at an SNRof 20 dB, the least noise reduction of 52.66%was observed,
while at an SNR of 15 dB, the maximum noise reduction of 69.82%

TABLE 3 OFDM system simulation parameters.

Parameters Values

Carrier frequency 10 kHz

Channel bandwidth 6 kHz

Number of subcarriers 1,024

Subcarrier spacing 7.81 Hz

Length of the cyclic prefix 40 ms

Modulation type QPSK

Pilot number 64

Pilot value 1

The number of OFDM symbols contained in a frame 16

was achieved, indicating the best denoising effect. This experiment
demonstrates that the N2N algorithm can effectively reduce noise
interference in the pilot, laying the foundation for subsequent sparse
underwater channel reconstruction.

4.3 Simulation results

To verify the channel estimation performance of the N2N-
SAMP algorithm and the impact of the iterative threshold on the
algorithm, channel estimations are conducted using SAMP and
N2N-SAMP with different threshold values σ. In the experiment,
the threshold values are chosen as follows: Figure 8 displays the
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FIGURE 7
Comparison between the noise power before and after denoising under different SNRs.

MSE comparison between the SAMPalgorithm and theN2N-SAMP
algorithm for channel estimation as SNR varies from 0 dB to 20 dB
with different selections of σ. For the SAMP algorithm, σ is set to 6,
4.5, and 0.5, corresponding to the optimal choices when the SNR is
at 0, 10, and 20, respectively, where channel estimation performance
peaks. For the N2N-SAMP algorithm, σ is set to the smallest three
values: 1.5, 1, and 0.5.

From Figure 8, it is evident that the SAMP algorithm is highly
unstable, and the choice of σ significantly impacts performance.
When the SNR is low, σ should be relatively larger, and when
the SNR is high, σ should be relatively smaller. This implies
that to achieve better channel estimation performance, one must
carefully adjust σ according to different noise levels. In contrast,
the N2N-SAMP algorithm exhibits more stable channel estimation
performance when σ is set to smaller values, indicating that the
N2N-SAMP algorithm has certain robustness to noise variations
and can maintain good performance without frequent parameter
adjustments. Additionally, it can be observed from the figure that,
in most cases, the MSE performance of the N2N-SAMP algorithm
is significantly better than that of the SAMP algorithm. Figure 9
illustrates a comparison of the two algorithms in terms of system
BER. It can be observed from the figure that the N2N-SAMP
algorithm also demonstrates superior performance with respect to
system BER.

To further validate the performance of N2N-SAMP, during
the experimental process, the parameter σ of the SAMP algorithm
is dynamically adjusted according to the SNR to achieve optimal
performance under different SNR conditions. Figure 10 presents
a comparison of the MSE between the SAMP algorithm with
optimally chosen σ for different SNR levels and the N2N-SAMP
algorithm with different selections of σ for channel estimation.

From Figure 10, it can be observed that when σ = 1, the MSE
of SAMP channel estimation is already better than that of the
SAMP algorithm. At SNR levels of 0 dB, 10 dB, and 20 dB, the MSE
for underwater channel estimation is reduced by 58.95%, 76.08%,
and 19.42%, respectively. As σ decreases, at higher SNRs, the MSE
gradually decreases, indicating improving performance. However,
at lower SNRs, there is a loss in performance. This is because when
σ is reduced, the N2N-SAMP algorithm may consider more noise
components as effective paths during reconstruction, leading to a
decrease in accuracy. Since the N2N-SAMP algorithm has already
removed most of the noise in the first phase, even at low SNR
conditions, the performance of N2N-SAMP remains superior to
SAMP. More importantly, the influence of noise on the N2N-SAMP
algorithm is diminished, and the reconstructed channelmore closely
matches the true sparse underwater acoustic channel. At this point, σ
can be set to a smaller value. As shown in the Figure 10, when σ ≤ 1,
the performance of the N2N-SAMP algorithm is consistently better
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FIGURE 8
Comparison of MSE between SMAP algorithm and N2N-SAMP
algorithm.

FIGURE 9
Comparison of BER between SMAP algorithm and N2N-SAMP
algorithm.

than that of the SAMP algorithm, which selects the optimal σ based
on SNR. By denoising the received pilot signals, the N2N-SAMP
algorithm transforms the reconstruction target from the noisy time-
domain underwater acoustic channel response to the denoised one,
thereby improving algorithm performance and effectively avoiding
the issue of the SAMP algorithm needing to dynamically adjust
the iterative termination threshold based on prior information
such as SNR.

Figure 11 presents a comparison of the BER for the OFDM
system. It is evident from the figure that the N2N-SAMP algorithm
also demonstrates superiority in terms of system BER. Specifically,
when σ is set to 1, compared to the SAMP algorithm, the BER of the
N2N-SAMP algorithm is reduced by 12.35%, 26.41%, and 29.62%

FIGURE 10
Mse analysis of the N2N-SAMP algorithm.

FIGURE 11
Ber analysis of the N2N-SAMP algorithm.

respectively. This confirms that the N2N-SAMP algorithm offers
better performance in communication systems.

5 Conclusion

In response to the issue that the performance of the traditional
SAMP sparse underwater channel estimation algorithm largely
depends on the choice of its iterative stopping threshold, and that
the optimal threshold varies significantly under different noise
power conditions, this paper conducts a study on sparse underwater
channel estimation in OFDM underwater communication systems.
The paper first introduces the N2N algorithm from image denoising
theory and combines it with the SAMP algorithm to propose
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an N2N-SAMP sparse underwater channel estimation method
that does not require prior information such as SNR and has a
constant iterative stopping threshold. The denoising problem of
the pilot signal is transformed into an image denoising problem,
and considering the statistical characteristics of oceanic noise, a
U-net neural network suitable for pilot signal input is designed in
conjunction with the N2N algorithm. Simulation experiments are
conducted to verify the correctness and effectiveness of the proposed
method. In subsequent work, sea trials are needed to further verify
this algorithm in a real marine environment.
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