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Infrared thermography (IRT) is a non-destructive testing technique that can
detect the internal defects of materials. In the detection of austenitic
stainless-steel pipes with large curvature, image noise caused by uneven
heating is difficult to avoid. Traditional image processing methods are less
effective. According to previous works, a supervised neural network was
proposed in this paper using Unet network and convolutional block attention
module. Existing image processing method and networks were used to compare
with the proposed method. The results show that the proposed method can
remove the noise caused by uneven heating, and detect all subsurface defects in
stainless-steel pipe.

KEYWORDS

infrared thermography, image processing, neural network, finite element
analysis, pipeline

1 Introduction

Austenitic stainless steel is widely used in aviation, petroleum, machinery
manufacturing, chemical, new energy and other important parts of the industry because
of excellent corrosion resistance, oxidation resistance and low temperature toughness. Due
to the imperfection of the welding process and the harsh working environment, austenitic
stainless-steel pipes are susceptible to defects such as inclusions, cracks and holes, which
may cause a major safety hazard. Commonly non-destructive testing methods are
radiographic testing [1], penetrant testing [2], eddy current testing [3] and ultrasonic
testing [4]. Each of these techniques have its own advantages and limitations. In this
context, infrared thermography (IRT) is used to detect the surface defects in the austenitic
stainless-steel pipes.

Active thermal imaging technology based on infrared optical measurements has
developed rapidly in recent years. Compared with traditional non-destructive testing
(NDT) technology, this technology has the advantages of non-contact, wide application
object, large detection area, etc. It allows the external excitation source to heat the sample
and has received a lot of attention from scholars [5, 6]. Among them, Pulsed Thermography
(PT) mainly adopts the method of externally applied optical excitation to raise the
temperature of the material surface, and according to the thermal resistance effect at
the defect [7], the detection and characterization of the defect are achieved through infrared
thermography and image processing. However, the thermal conductivity of metallic
materials is high and the lateral diffusion effect of temperature is more serious, which
affects the detection effect of infrared thermography. For metal pipes with large curvature, it
is difficult to ensure that the heating of the pipe surface is uniform in practical inspection.
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Setting up a uniformly heating source on the outside of the specimen
without damaging or touching the specimen is expensive and not
universally applicable.

Thermal image processing techniques are crucial for infrared
NDT and can significantly reduce thermal signal noise, increase
the depth of defect detection and improve the quality of thermal
images. Unlike general image processing techniques, thermal
image processing techniques are based on the principle of
infrared thermography and analysis on the infrared
temperature history during or after heating of the sample
surface to extract the defect information. In recent years,
scholars have developed a variety of infrared thermal imaging
techniques for different heating methods and different materials
under testing. They have integrated these techniques into
infrared inspection post-processing software, enabling a large
number of popular applications. For example, Maldague et al. [8]
combined the advantages of lock-in thermography and pulsed
thermography, and proposed a Fourier transform-based thermal
image processing technique, namely, Pulsed Phase
Thermography (PPT). Rajic [9] applied Principal Component
Analysis (PCA) to thermal image processing and used the third
principal component to reconstruct thermal images, which
effectively improved the quality of thermal images. Moradi
et al. [10] proposed a thermal signal area (TSA) method based
on integration processing and combined it with wavelet
transform to achieve infrared detection of debonding defects
in composite materials. In recent years, image processing
based on supervised learning method has been widely adopted
in infrared thermography. Fang et al. [11] proposed a specific
depth quantifying technique by employing the Gated Recurrent
Units (GRUs) in composite material samples via pulsed
thermography. In summary, thermal image processing
techniques have unique advantages for different IR detection
systems, material properties, and defect types [12–14].
Ronneberger et al. [15] proposed a network named Unet
neural network, which has a structure of encode-decoder. He
et al. [16] establishes the AG-UNet defect detection model based
on spatial features and the 3D-Unet defect detection model based
on spatio-temporal features for the extraction and segmentation of
thermal imaging defect features. Luo et al. [17] used Unet network for
infrared thermal defect detection. The results indicate that the Unet
network significantly enhances contrast between defective and non-
defective areas. Attention mechanism is one of the main means to
solve the problem of information overload. It allocates the computing
resources to more important tasks. Hu et al. [18] proposed a channel
attention model (SENet). Woo et al. [19] expanded the SENet and
proposed an attention module named “Convolutional Block
Attention Module” (CBAM). Although these works have achieved
some outstanding advances in the detection of flat materials
containing defects. However, there is a lack of corresponding
studies on uneven heating caused by the surface morphology of
the sample, especially for the detection of large curvature pipes
containing defects.

In this paper, we proposed an improved neural network, which
combines the Unet network with the CBAM. Experiments and
simulation were used to build the training dataset, and the other
stainless-steel pipe with different defects were to build the prediction
dataset. Both testing process and prediction process were presented

to validate the advantage of the novel neural network. In addition,
the proposed method in this paper was compared with the
traditional method (including PCA, PPT, FOFD [13] and TSA)
and other deep learning model (including PSPNet, DeepLabv3+) to
verify the reliability of the proposed method in detecting defects.

2 Methodology

In this study, an improved neural network algorithm with
CBAM is developed for infrared thermography. Raw data was
collected from the IRT system and COMSOL software. Then, the
common neural networks and traditional image processing methods
for infrared thermography were used to process data. The proposed
strategy for defect detection is shown in Figure 1. Details of the
processing procedure are discussed in this section.

2.1 Improved network

The Unet is one of the famous architectures in image
segmentation. It was originally developed for biomedical image
segmentation, as shown in Figure 2. The Unet can be divided
into two parts: the first part is the contracting path that uses a
typical CNN architecture. Each block in the contracting path
consists of two successive 3 × 3 convolutions followed by a ReLU
activation unit and a max-pooling layer. This arrangement is
repeated several times. The novelty of Unet comes in the second
part, called the expansive path, in which each stage upsamples the
feature map using 2 × 2 up-convolution. Then, the feature map from
the corresponding layer in the contracting path is cropped and
concatenated onto the upsampled feature map. This is followed by
two successive 3 × 3 convolutions and ReLU activation. At the final
stage, an additional 1 × 1 convolution is applied to reduce the feature
map to the required number of channels and produce the segmented
image. The cropping is necessary since pixel features in the edges
have the least amount of contextual information and therefore need
to be discarded. This results in a network resembling a u-shape and,
more importantly, propagates contextual information along the
network, which allows it to segment objects in an area using
context from a large overlapping area.

The energy function for the network is given by Equation 1:

E � ∑ω x( )log pk x( ) x( )( ) (1)

where pk is the pixel-wise SoftMax function applied over the final
feature map, defined as Equation 2:

pk � exp ak x( )( )/∑K

k′�1 exp ak x( )′( ) (2)

and ak denotes the activation in channel k.
The CBAM consists of two parts, i.e., channel attention module

and spatial attention module. In channel attention module, both
average-pooling and max-pooling operations are used to aggregate
spatial information of a feature map. And two different spatial
context descriptors (Fc

avg and F c
max ) are generated, which denote

average-pooled features and max-pooled features respectively. Both
descriptors are then forwarded to a shared network to produce the
channel attention map Mc ∈ RC×1×1. The shared network is
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composed of multi-layer perceptron (MLP) with one hidden layer.
To reduce parameter overhead, the hidden activation size is set to
RC/r×1×1, where r is the reduction ratio. After the shared network is
applied to each descriptor, the output feature vectors are merged
using element-wise summation. The channel attention is computed
as Equation 3:

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( )
� σ W1 W0 Fc

avg( )( ) +W1 W0 F c
max( )( )( ) (3)

where σ denotes the sigmoed function, W0 ∈ RC/r×C, and
W1 ∈ RC×C/r. Note that the MLP weights, W0 and W1, are shared
for both inputs and the ReLU activation function is followed byW0.

FIGURE 1
Proposed strategy for segmentation of defect detectability. Insets: the evaluation methods will be explained in Section 4.

FIGURE 2
The schematic diagram of Unet network with CBAM.
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In the spatial attention module, the spatial attention map is
generated by utilizing the inter-spatial relationships of features.
Unlike channel attention, the spatial attention focuses on ‘where’
is an informative part, complementing the channel attention. To
compute the spatial attention, the average-pooling and max-pooling
operations along the channel axis are applied and concatenated to
generate an efficient feature descriptor. On the concatenated feature
descriptor, the convolution layer is applied to generate a spatial
attention map Ms(F) ∈ RH×W, which encodes where to emphasize
or suppress information. The spatial attention is computed as
Equation 4:

Ms F( ) � σ f7×7 AvgPool F( );MaxPool F( )[ ]( )( )
� σ f7×7 Fs

avg;F
s
max[ ]( )( ) (4)

where σ denotes the sigmoid function and f 7x7 represents a
convolution operation with the filter size of 7 × 7. Fs

avg ∈ R1×H×W

and F s
max ∈ R1×H×W denote average-pooled features and max-

pooled features across the channel.
The principle of CBAM is illustrated in Figure 2. Given an

intermediate feature map F as input, CBAM sequentially infers a 1D
channel attention map Mc and a 2D spatial attention map Ms. The
overall attention process can be summarized as Equation 5:

F′ � Mc F( ) ⊗ F
F″ � Ms F′( ) ⊗ F′ (5)

where ⊗ denotes element-wise multiplication. During
multiplication, the attention values are broadcasted accordingly:
channel attention values are broadcasted along the spatial
dimension, and vice versa. F’’ is the final refined output.

2.2 Traditional infrared image
processing method

In order to verify the effectiveness of the novel algorithm,
traditional image processing methods were used for comparison
in this paper. The principles of these methods are as follows.

On the surface of the sample, the temperature signal of each
pixel varies with time. Due to uneven heating, uneven surface
emissivity of the sample, and the surrounding environment, a lot
of noise will be generated in the infrared thermal image, resulting in
the reduction of image signal-to-noise ratio (SNR). This may lead to
false or missed detection of defects. The thermal image was divided
into two areas, namely, defect area and non-defect area. Each
thermal sequence image and its adjacent thermal image were
processed by using the first-order forward difference.

Pulse phase thermography [20–22] performs a discrete Fourier
transform on each pixel in the thermal sequence image to obtain the
amplitude sequence and phase sequence of the pixel. The amplitude
and phase of all pixels in the thermal image constitute the amplitude
and phase images.

Principal component analysis [23, 24] uses the idea of
dimensionality reduction to extract the main components that
can represent the defect information. The obtained principal
components can reflect most of the original useful signal
information, and the information vectors contained are
unrelated. Before processing, the thermal images should be

vectorized and transformed into a column vector matrix. Then,
covariance matrix A with sizeM × N (M > N) is calculated. Singular
value decomposition is performed on matrix A to obtain
characteristic values, as detailed in Equation 6:

A � URVT (6)
where U is the eigenvector matrix of dimension M × N, R is the
diagonal matrix of N × N, and VT is the transpose of N × N matrix.
The feature vector matrix U obtained by the solution is transformed
into the inverse process of the quantization, and the feature vector Pi
of each principal component image obtained by singular value
decomposition can be obtained, can be expressed using Equation 7:

Pi �
a11,i · · · a1n,i

..

.
1..
.

am1,i · · · amn,i

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠, i � 1, 2, . . . , l (7)

3 Material and experimental setup

The experimental setup of the IRT system is shown in Figure 3.
The infrared thermal camera (FAST M100K) was used to record the
temperature profile. The camera spatial resolution was 640 ×
512 pixels, and the maximum frame rate could reach 120,000 Hz.
Two 1000W halogen lamps were employed to generate square wave
heating in this setup. A time relay was used to accurately control the
heating time. The heating time was set at 10 s, and the cooling time
was set to 15 s. The frame frequency of the infrared camera was set
to 60 Hz.

The samples are two 304 stainless-steel pipes. The outer
diameter and thickness are 100 mm and 5 mm. As shown in
Figure 4A, there are six holes on the Sample 1. The diameters of
the defects are 3, 8, 10, 12, 13 and 15 mm. The distances from the
inspected surface to the bottom of six holes are all 0.5 mm. As
shown in Figure 4B, there are six holes on the Sample 2. The
diameters of six holes are all 10 mm. The distances from the
inspected surface to the bottom of six holes are 0.23, 0.51, 0.98,
1.21, 1.52 and 2.03 mm. The material properties of the samples
are shown in Table 1. In order to improve the surface emissivity
of the metallic pipe, a layer of black paint was sprayed to
its surface.

In Comsol software, solid heat transfer module was used to
simulate the infrared thermography. The simulation samples are the
same as Sample 2. To expand the dataset for deep learning, the
diameters of six holes were changed from 3 mm to 15 mm, and the
depths of six holes were varied from 0.1 to 3 mm. Uniform heating
mode and uneven heating mode were set to simulate ideal condition
and actual condition, respectively. For uniform heating mode, heat
flux was set to 2 × 104W/m2. For uneven heating mode, heat flux was
set as Equation 8:

ql � 20000 sin α − 45+( )
qr � 20000 sin α + 45+( ){ (8)

where ql is the heat flux load on the left surface of the sample, qr is
the heat flux load on the right surface of the sample,
sin α � y/

������
x2 + y2

√
, cos α � x/

������
x2 + y2

√
. The heating time is

10 s, cooling time is 5 s, and the step length is 150. To
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increase the simulation data required for deep learning,
we performed 20 groups of simulations. Parameters such as
defect location, defect size, defect depth and heat energy
were changed.

4 Methodology

4.1 Experimental results

The thermal sequence images of the sample surface after
long-pulse heating were acquired using an infrared camera.
Figure 5 shows the thermal images of Sample 1 during
heating and cooling, respectively. During the heating process,
due to the large radius of curvature of the pipe, the two halogen
lamps could not transfer heat uniformly to the surface of the
pipe, resulting in a sharp increase in temperature at the location
closest to the lamps. The uneven heating completely conceals
the information about the defect location. During the cooling

FIGURE 3
Experimental setup of the testing system.

FIGURE 4
(A) Sample 1; (B) sample 2.

TABLE 1 The material parameter of stainless steel.

Parameter Value Unit

Density (ρ) 7,900 kg m-3

Specific Heat (C) 477 J kg-1oC-1

Thermal Conductivity (k) 16.2 W m-1oC-1
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process, the temperature of sample surface drops sharply and
a temperature difference between the defective and non-
defective areas emerges due to different thermal resistances.
However, the “light column” area concentrates a large amount
of heat during heating. Even if the internal thermal resistances
of defect area and non-defect area are different, it is difficult to
make the heat to dissipate quickly. The heat flow transmits in
three dimensions in space, and the lateral diffusion of
temperature tends to interfere with the temperature signal in
the defect area. In addition, metallic materials have high
thermal conductivity, and their internal temperature
changes rapidly. These factors lead to a temperature
difference between the defect and non-defect areas for a
short period of time. Therefore, it is crucial to find an image
processing method that can attenuate the noise caused by
uneven heating and improve the detection depth of infrared
thermography.

4.2 Image processing

During the detection process, noise caused by uneven heating,
uneven emissivity, and environmental effects is difficult to avoid.
Yang et al. [25] categorized defects in infrared thermography and
concluded that thermal noise is mainly classified into multiplicative
noise (uneven emissivity on the sample surface) and additive noise
(uneven heating, camera noise, environmental noise and random
noise). Multiplicative noise can be reduced by spraying a black paint
with high emissivity on the sample surface. To address additive
noise, an aluminum box can be used to eliminate the ambient noise
generated by reflections from other heating sources. The noise
caused by uneven heating can be eliminated by image processing
algorithms. Traditional image processing algorithms include
principal component analysis, pulse phase thermography, and
thermal signal area. In the experimental study of metallic pipes,
the main noise comes from uneven heating. In this section, all image

FIGURE 5
Performance comparison of traditional methods for sample 1.
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processing methods are applied to process the experimental results
of sample 1.

Based on the original images shown in Figure 5, it can be
observed that the detectability of all defects is relatively low.
According to empirical rules, as the defect aspect ratio decreases,
both thermal contrast and phase contrast decrease. However, due to
the effects of uneven heating, the detection of smaller defects in the
middle-lower positions is slightly better compared to the larger
defects in the upper-right positions.

As shown in Figure 5, the principal component analysis
enhances the contrast of the defective area and makes the three
defects above the pipe clearer. In particular, the hole defect at the top
right of the image could not be detected in the raw image, it could be
detected in the fourth principal component of PCA. The location
information of this defect is very clear after the processing of
principal component analysis. However, for the three defects at
the bottom of the image, the principal component analysis does not
work well. Especially for the blue part in the middle position, it is
easy to be mis-detected during the actual detection process. In
addition, PCA did not reduce the noise on the surface of the
sample, instead it contaminated the non-defective areas.

Pulse phase thermography reduces image noise. Three defects at
the top of the image are fully visible. However, for the three defects at
the bottom of the image, the pulse phase thermography does not

play the role of image enhancement. It makes the defects that can be
detected in the raw image disappear. This is easy to miss detection in
the actual detection process, resulting in huge safety hazards. As
shown in Figure 5, the amplitude diagram of PPT and TSA methods
miss all the defect information. By using FOFD method, five defects
can be detected. The location and size of all defects are almost
identical to the real defect location and size. Therefore, the FOFD
method has excellent results and simple operation procedures in
dealing with the problem of large curvature stainless steel pipes
containing defects. It can be applied to the detection of various
engineering equipment, and even online monitoring. However, the
FOFDmethod does not effectively eliminate the two “light columns”
caused by uneven heating.

The processing effects of traditional methods are quantitatively
analysed. The signal-to-noise ratio (SNR) is selected as the
comparison criterion. The equation for the SNR is as Equation 9:

SNR � TD − TN

δ
(9)

where TD is the average value of the pixels in defective area, TN is the
average value of pixels in non-defective area, δ is the standard
deviation of the pixels in non-defective area. Considering the
difference of the image pixel units processed by different
methods, each image was converted into JPG format for
evaluation. A window of 15 × 15 pixels was selected to intercept
the pixel values of the defective and non-defective areas in turn. The
values of the maximum SNR in the images processed by each
method were selected for comparison, as shown in Table 2.
Among them, both the PCA and the PPT processed images
improved the SNR of the raw image by 49.73% and 51.91%. The
image processed by FOFD improved the SNR of the raw image by
69.36%. Although the FOFD method improves the defect
detectability, it does not reduce the noise caused by uneven
heating. This may lead to false detection in actual testing.

TABLE 2 The results of image processing.

Method Maximum SNR Location

Raw image 39.6956 614 fps

PCA 59.4370 4th principal component

PPT (phase) 60.3014 f = 0.12 Hz

FOFD 67.2298 640 fps

TABLE 3 Performance comparison of different datasets using different neural networks.

Datasets Evaluation Models

Unet-CBAM Unet PSPNet DeepLabv3+

1 mIoU 94.22 94.22 72.91 86.49

mPA 96.41 96.15 74.20 92.81

Accuracy 99.68 99.68 98.54 99.09

Recall 97.18 92.42 48.47 86.13

2 mIoU 90.58 90.51 78.47 85.77

mPA 94.94 94.84 81.45 90.07

Accuracy 99.40 99.39 98.64 99.08

Recall 90.19 89.99 63.16 80.48

3 mIoU 86.77 84.92 79.11 85.31

mPA 93.31 91.96 81.62 89.59

Accuracy 99.17 98.98 98.77 99.10

Recall 87.29 84.31 57.35 77.56
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FIGURE 6
The mIoU curves of different neural networks suing datasets 2.

FIGURE 7
Performance comparison of four networks.
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Deep learning is an effective image processing method in infrared
thermography. Here we adopt the deep learning method to process
the thermal sequences. All experimental training data were derived
from sample 2, because prediction data should differ from training
and testing data. The whole thermal image information is divided into
two categories as the target input. The first category is the temperature
of defective area (defined as 1). The second category is the temperature
of non-defective area (defined as 0). Furthermore, there are three
training sets used for training. The first training set was derived from
simulation data without noise. The second training set was derived
from simulation data with noise. The third training set was derived
from the experimental data and the former two training sets. The
training set and test set are divided 7 to 3.

A model that can identify the defective and non-defective
regions is constructed using the Unet neural network. Then, the
Unet model is combined with the CBAM to improve the defect
detectability. PSPNet and DeepLabv3+ neural networks are used to
compare with the proposed Unet -CBAM model. To evaluate the
performance of different neural networks, we adopted the mean
Pixel Accuracy (mPA) and the mean Intersection over Union
(mIoU), Accuracy and Recall as the evaluation indicators of the
detection precision. They are formulated as Equations 10–13:

mPA � 1
M + 1

∑M
n�1

TPn

TPn + FNn
(10)

mIoU � 1
M + 1

∑M
n�1

TPn

TPn + FPn + FNn
(11)

Accuracy � TP + TN

TP + TN + FP + FN
(12)

Recall � TP

TP + FN
(13)

where TP, FP, TN and FN refer to true positive, false positive, true
negative and false negative, M is the total number of defects. The
evaluation indicators for different neural network are shown in Table 3.
The Unet -CBAM not only improves prediction accuracy on the origin
Unetmodel, but also has the highest indicators among all neural network
and all training sets. Figure 6 shows themIoU curves of four networks. It
can be seen that both the Unet network and the Unet -CBAM network
significantly enhances the detection precision of defects.

The trained models were used to predict the steel pipe with six
known defects, i.e., sample 1. The results are shown in Figure 7. The
image processed by Unet -CBAM model can completely eliminate
the “light column” phenomenon caused by uneven heating. It can
also identify all subsurface defects. However, there is still a small
amount of noise in the image, especially around the image. The
detection effects of other networks were bad. It can be seen that they
either eliminate the noise while ignoring the defect information, or
they predict the wrong defects. Compared with existing networks,
the proposed network achieved the expected results.

5 Conclusion

The curvature effect of austenitic stainless-steel pipes has a
strong interference effect on infrared nondestructive testing. The

traditional image processing methods have poor processing effects
and fail to remove image noise caused by uneven heating. In order to
solve this problem, a novel image processing method based on Unet
neural network and convolutional block attention module is
proposed and applied to detect large curvature austenitic
stainless-steel pipes containing defects. Three datasets were used
to train the models. Furthermore, traditional image processing
methods and existing networks were compared with the
proposed method. The results demonstrate that the proposed
network can significantly reduce the noise caused by uneven
heating and improve the defect detectability.
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