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The recently reported compactified hyperboloidal method has found wide use in
the numerical computation of quasinormal modes, with implications for fields as
diverse as gravitational physics and optics. We extend this intrinsically relativistic
method into the non-relativistic domain, demonstrating its use to calculate the
quasinormal modes of the Schrödinger equation and solve related bound-state
problems. We also describe how to further generalize this method, offering a
perspective on the importance of non-relativistic quasinormal modes for the
programme of black hole spectroscopy.
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Introduction

Quasinormal modes (QNMs) are complex frequency modes which characterize the
resonant response of a system to linear perturbations. They are prevalent in the physics of
waves, with special prominence in optics and gravitational physics. In optics, QNMs are
useful for understanding the behaviour of resonant photonic structures, such as plasmonic
crystals, nanoparticle traps, metal gratings, and optical sensors [1–5]. In gravitational
physics, they are thought relevant to tests of black hole no-hair conjectures [6–8], and
central to the emerging project of black hole spectroscopy with gravitational waves [9, 10].
While the QNM literature in optics treats dispersion as a matter of necessity [11, 12], the
prevailing methods in gravitational physics are concerned with non-dispersive, relativistic
wave propagation [13–15]. We believe there are good reasons to go beyond relativistic wave
propagation in the gravitational context. A variety of quantum gravity models predict the
dispersive propagation of gravitational waves [16–19], for example, in models with a non-
zero graviton mass, violation of Lorentz invariance, and higher dimensions [20–22]. Indeed,
it has been proposed that QNMs may be used to probe gravity beyond general relativity,
through imprints on radiative emission from black holes [23–27]. More generally, we
anticipate that developments of QNM methods for non-relativistic operators will broaden
the scope of existing questions in QNM theory.

Numerical methods underpin much of the progress in QNMs over recent years. Indeed,
efficient schemes for computing the QNMs of potentials are likely indispensable for future
developments in both theory and the modelling of observations. Recently, the so-called
compactified hyperboloidal method [28–31] has proven to be a powerful tool, finding wide
use in the computation of black hole QNM spectra and bringing within reach the systematic
exploration of their connection to pseudospectra [32–39]. Beyond this, it is natural to ask
whether the method can also find use in optical systems. We believe it can, but it cannot be
widely applied in optics without modification. This is because optical media create non-
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relativistic and dispersive dynamics, while the present formulation
of the method treats only relativistic and non-dispersive dynamics,
as may be seen from its use of hyperbolic spatial slices penetrating
the black hole horizon and future null infinity.

A notable optical system that motivates the development of a
hyperboloidal method for optics is the fiber optical soliton, which
has recently been established as a black hole analogue with an exactly
known QNM spectrum [40]. As such, the soliton is the ideal system
with which to develop the method, as the resulting numerics can be
compared both to known analytical results and to the numerics of
the corresponding relativistic system. Moreover, perturbations to
the soliton realize the Schrödinger equation with a Pöschl-Teller
potential, making the soliton a promising experimental platform
with which to address questions in QNM theory, such as the physical
status of spectral instabilities observed in QNM numerics, where the
Pöschl-Teller potential is paradigmatic [30, 41–44].

In this article, we outline a new method for the numerical
computation of QNM spectra for operators with a non-
relativistic dispersion relation, by adapting the compactified
hyperboloidal method. We begin by showing how to compute
the QNMs of the Schrödinger equation for an arbitrary potential,
noting that the relativistic and non-relativistic spectra are related by
a simple endomorphism. We subsequently demonstrate the method
for the Pöschl-Teller potential, explicitly calculating the soliton
QNM spectrum numerically. Finally, we sketch how to develop
these ideas in order to treat generalized non-relativistic dispersion
relations, and discuss potential applications of the more general
method, with emphasis on its future use in black hole spectroscopy.

Compactified hyperboloidal method
for the Schrödinger equation

We begin by considering a scalar field ϕ which obeys a
Schrödinger equation of the form,

i∂t − ∂2r + V( )ϕ � 0, (1)
with V a potential that vanishes for r →± ∞. The boundary
conditions for QNMs describe solutions that transport energy
away from the potential, as discussed in more detail in [40]. It
can be shown, using the asymptotic dispersion relation of Equation
1, that QNM solutions must diverge for r →± ∞. That is, the
asymptotic form of the solution must be ϕ ~ exp(iKr − iΩt), with
the requirement that Im(K) is positive and negative on the left and
right, respectively. These spatial divergences are problematic for
numerical methods, but they can be removed by using a
hyperboloidal coordinate transformation. Following [30], we
adopt coordinates,

t � τ − h x( ), r � g x( ), (2)
where g(x), h(x) are yet to be given, and ∂τ � ∂t by construction. In
the relativistic context, these are used to compute QNMs of black
holes, with h(x) chosen so that contours of τ tend to null curves that
intersect the horizon and future null infinity. There, Equation 2 is
intended to respect the asymptotic hyperbolic geometry of the
spacetime, giving rise to bounded and well-behaved QNM
solutions. However, there is no preferred speed in our non-
relativistic system, meaning that no coordinate transformation

will consistently give rise to bounded solutions. This requires a
different approach.

In order to construct bounded QNM solutions, we first
parameterize h(x) by a new variable vg such that contours of τ
tend asymptotically to trajectories directed outwards with
|dr/dt| � vg. In particular, we write

g x( ) � arctanhx, h x( ) � 2vg( )−1 log 1 − x2( ), (3)

where g(x) compactifies the space such that the real line of r gives
x ∈ [−1, 1] if we close the set by including the boundaries. In the
Supplementary Appendix, we show that QNMs whose asymptotic
group velocity is vg in (r, t) coordinates are finite at the spatial
boundaries, x � ± 1. This enforces the boundary conditions for
these modes, but does not guarantee that any such modes exist.

In contrast to the relativistic case, dispersion in non-relativistic
systems means that group and phase velocities are not the same. As a
result, QNMs whose asymptotic phase velocity is vp ≠ vg in (r, t)
coordinates will undergo phase divergences at the boundaries. This
can be removed by a phase-rotation of the field,

ϕ̂ � e−Δ log 1−x2( )/2ϕ, (4)
where we introduce Δ � i(vg − vp)/2, so that the phase rotation is
parameterized by both vg and vp. The form of the required phase
rotation follows from the asymptotic dispersion relation of Equation
1 and the choice of height function, h(x). Intuitively, it depends on
the mismatch of the two velocities. The result is that the field ϕ̂ is
bounded and well-defined on the new space.

The cost of the above construction is that we introduce two
unknown real parameters, vg and vp, into the problem. In fact,
identifying velocity pairs that correspond to actual QNM solutions is
as difficult a problem as determining the QNM spectrum itself. This
may be seen by the relation,

Ω � −1
2
vg vp + i

�����������
vg vg − 2vp( )√( ), (5)

which we derive, in the Supplementary Appendix, from the
asymptotic dispersion relation of Equation 1. This holds true for
any mode whose asymptotic group and phase velocities are vg and
vp, respectively. The existence of a relation such as Equation 5 is a
direct consequence of dispersion. In a relativistic system, all
asymptotic speeds are the speed of light, so Ω cannot be
expressed in terms of asymptotic velocities. This difference
between the relativistic and non-relativistic methods is crucial.
Equations 3, 4 mean we obtain an equation of motion, and an
eigenvalue equation for the complex frequency Ω, both of which are
parameterized by vg and vp. The significance of Equation 5 is that
these additional parameters can ultimately be eliminated, leaving Ω
as the only unknown in the problem.

We proceed as in [30], by rewriting Equation 1 in the new
coordinates and performing a first-order reduction in time,
introducing the auxiliary field ψ̂. The equation of motion
becomes ∂τ ϕ̂ � ψ̂ with

x2∂τ ψ̂ � J1ϕ̂ + J2ψ̂, (6)
where J1 and J2, given in the Supplementary Appendix, are spatial
operators depending on the potential and the asymptotic velocities.
In contrast to the relativistic method, ∂τ ψ̂ cannot be isolated by
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division in Equation 6 because its pre-factor vanishes at x � 0. This
occurs because the contours of τ have to “turn around” in order to be
outgoing in the (r, t) coordinates. Our alternative approach is to
construct ∂τ ψ̂ using a Taylor series around x � 0, obtaining the
required derivatives by repeated differentiation of Equation 6. In
fact, this treatment is necessary only for terms indivisible by x2, and
we obtain a simpler result if we initially separate the terms in this
way. This separation is mostly trivial, but for the potential, where we
write V � V0 + xV1 + x2 ~V(x), with V0 and V1 Taylor series
coefficients about x � 0 and ~V accounting for the remaining
terms. We obtain

∂τ ψ̂ � L1ϕ̂ + L2ψ̂, (7)
where L1 and L2 are spatial operators that we derive in the
Supplementary Appendix. Equation 7 is formally identical to that
obtained in the relativistic method [30], but the operators are quite
different, containing arbitrarily high spatial derivatives and
depending on the asymptotic velocities.

In matrix form, we write i∂τu � Lu with

u ≡ ϕ̂
ψ̂

( ), L ≡ i
0 1
L1 L2

( ),
and obtain the mode equation

Lu � Ωu. (8)
The operator L is parameterized by vg and vp, giving rise to a family
of operators. For each operator, Equation 8 defines a unique
eigenvalue problem and a corresponding spectrum. However,
only a subset of the frequencies from these spectra obey
Equation 5, and it is this subset which comprises the QNM
spectrum of Equation 1. Using Equation 5 to eliminate vg and
vp, one obtains a problem in which the frequency Ω is the only
unknown and all solutions correspond to QNMs. In this
formulation, L is parameterized by Ω, which constitutes an
essential difference from the relativistic method, wherein the
corresponding operator does not depend on Ω [30]. Importantly,
Equation 8 unambiguously determines the QNM spectrum.

Equation 8 is discretized usingN-point Chebyshev nodes of the
second kind. In this way, fields are approximated byN-dimensional
vectors and spatial operators by N-dimensional matrices. It follows
that the vector u and the operator L are approximated by
2N-dimensional vectors and matrices, respectively. The result is

LNuN � ΩuN. (9)
The QNM spectrum may then be obtained from Equation 9 in the
usual way using det(LN −Ω Id) � 0. In the Supplementary
Appendix, we show that this determinant may be rewritten as
that of a smaller N-dimensional matrix, M. Its elements are
quadratic in the square root of the QNM frequency, giving rise
to a polynomial of degree 2N in

��
Ω

√
. For a given potential V, the

roots may be numerically determined in order to give 2N of the
QNM frequencies. The fact that the frequency enters via its square
root is a result of the Schrödinger equation having a first derivative
in time, rather than a second derivative in time like the wave
equation. Indeed, the exact QNM spectra of the Schrödinger and
wave equations are related to each other by i

��
Ω

√ � ω, as was
elaborated in [40]. This means we can relate the results of the

non-relativistic method to those of the relativistic method, allowing
us to better evaluate the accuracy of the new method.

Quasinormal modes of the Pöschl-
Teller potential

In this section, we use the above numerical method to calculate
the QNMs of the Schrödinger equation with the Pöschl-
Teller potential,

V � V0 sech
2 r( ) � V0 1 − x2( ), (10)

which serves as an exemplar for both the relativistic and non-
relativistic methods. The QNMs of Equation 10 are finite
polynomials in the compactified spatial coordinate, with the
result that an N-point discretization reproduces the first 2N
QNMs to arbitrary precision. The Pöschl-Teller potential is also
ideal because the corresponding QNM spectrum of the Schrödinger
equation is given analytically by

Ωn � n + 1
2
− i

������
V0 − 1

4

√[ ]2, (11)

allowing us to verify our results [40]. In regards to the non-
relativistic method, we note that the Pöschl-Teller potential is
especially simple because all its QNMs have the same vg
parameter, which is a result of the fact that i

��
Ω

√
is aligned along

vertical lines in the complex plane for this potential. While this
simplicity does not influence the operation of the method, it does
allow us to more easily assess the spectrum. Lastly, we partition the
Pöschl-Teller potential with V1 � 0 and ~V � −V0, which reinforces
the simplicity of the potential.

Now, we make some comments on the specifics of our
implementation of the method. We find the calculation is
significantly more efficient for odd N. This is a consequence of
discretization. The Taylor series expansions of L1 and L2 involve
spatial derivatives at x � 0, which are obtained by integration with a
Dirac delta function in the continuous case, and by matrix
multiplications in the discretized case. For odd N, the relevant
matrix is zero everywhere but a central column whose entries are
unity. However, for evenN, the matrix is everywhere populated, and
this increases the computational cost of the calculation. We also find
that evaluating the determinant of the large symbolic matrix M is
inefficient, so we instead sample the determinant in the complex
plane and reconstruct the symbolic determinant using polynomial
interpolation. This uses that the method produces a polynomial of
degree 2N in

��
Ω

√
. Importantly, this is true no matter what potential

we consider.
In Figure 1A, we plot the exact QNM frequencies of the

unperturbed Pöschl-Teller potential, given in Equation 11 [40]
alongside those calculated by the new numerical method, with a
resolution of N � 201. We find excellent agreement for all
frequencies, with an error which may be made arbitrarily small
by increasing the working precision. These results are given in
Figure 2. We also calculate the QNM spectrum of a perturbed
Pöschl-Teller potential,

V � V0 1 − x2( ) + ϵΔV, (12)
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where ϵ � 10−30 and ΔV is a randomly chosen polynomial of degree
9, shown in the inset of Figure 1. We find that the spectrum for
Equation 12 closely resembles the unperturbed spectrum up to the
10th overtone index, beyond which the frequencies are significantly
displaced from their unperturbed values, as shown in Figure 2. These
numerical results are then indicative of spectral instabilities that
have been reported by previous authors [30, 45, 46].

The simple relationship between the QNMs of the Schrödinger
and wave equations becomes visible under the transformation
Ω → i

��
Ω

√
, which maps the spectrum of the former onto that of

the latter. In Figure 1B, we plot i
��
Ω

√
for the same spectra as above,

obtaining the recognizable vertical lines in the complex plane that
are characteristic of the wave equation with a Pöschl-Teller
potential. In this way, we illustrate how one can cross-verify the
results of the relativistic and non-relativistic methods against each
other, for arbitrary potentials.

Discussion

In this section, we discuss potential applications of the non-
relativistic compactified hyperboloidal method that we developed in

the preceding text, suggesting well-motivated directions in which to
further develop the method and providing a sketch of how this can
be achieved. The main motivations for this method were the
modelling of QNMs of optical solitons, and the development of a
framework within which one can treat QNMs in quantum gravity
models with dispersive gravitational wave propagation. Beyond
these, we note that this non-relativistic method may be employed
equally well in any system governed by a Schrödinger equation
equipped with a general potential. In this paper, we numerically
calculated QNM spectra for the Pöschl-Teller potential and
perturbations of that potential, finding agreement with earlier
works [40, 47, 50]. For potentials with different long-range
behaviour than the Pöschl-Teller potential, one typically requires
different choices of height function h(x), but this requirement is
shared by the relativistic method, and may be addressed by the same
techniques [29, 48, 49]. In addition, we note that this method may
also be used to numerically solve for the quantum mechanical
bound-states of a general potential well, using the well-known
connection between the QNMs of a potential barrier and the
bound-states of the corresponding well [41, 51–53].

As described above, the non-relativistic method we have
presented is closely related to the relativistic method, sharing

FIGURE 1
QNM spectra for the Schrödinger equation with a potential V � V0 sech

2(r) + ϵΔV, where V0 � 1 and ΔV is the perturbation shown in green in the
inset, alongside the unperturbed Pöschl-Teller potential in blue. The red dots and blue boxes correspond to the unperturbed Pöschl-Teller potential
(ϵ � 0), with red dots ( ) given by the exact formula and blue boxes ( ) numerically determined by the newmethod. The green crosses ( ) correspond to a
perturbed potential (ϵ � 10−30) and are also numerically determined. (A) Displays the three QNM spectra, while (B) Displays the same spectra under
the transformation Ω → i

��
Ω

√
, which relates the spectra to those of a corresponding relativistic operator.
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many essential features with it. For instance, the classes of potentials
that can be treated by the two methods are the same, and they have
the same maximum achievable accuracy for a given resolution. As a
result, the methods are comparable in their scope and power. They
also share the same advantages and disadvantages when compared
to other popular numerical methods, such as Leaver’s continued
fraction method [54]. For example, in this case, both the relativistic
and non-relativistic methods enjoy the advantage that they recover
the entire spectrum simultaneously, and do not require initial seed
values close to the QNM frequencies one wishes to compute
[30, 54–56].

The non-relativistic method we have presented readily
generalizes beyond the Schrödinger equation, allowing us to treat
a large class of more general non-relativistic operators. Indeed, the
method presented in this paper primarily serves a didactic purpose,
as a demonstration of a general approach with which one may
calculate QNMs of these more general operators. The primary
motivation for this is to facilitate the efficient computation of
QNMs of operators that deviate from the wave equation only by
the presence of weak dispersion, as are known to arise in models of
quantum gravity, where a thoroughgoing understanding of QNMs is
of special interest. The modelling of dispersive gravitational wave
propagation and its influence on the observable QNM spectrum will
be essential if black hole spectroscopy is to be an effective probe into
the domain of quantum gravity.

A further motivation for generalizing the non-relativistic
method is to shed light on QNM spectral instabilities, and
facilitate experimental tests of the recent ultraviolet universality
conjecture, which posits that sufficiently high overtones converge to
logarithmic Regge branches in the complex plane, in the high-
frequency limit of potential perturbations [30, 36]. This effect is
easily seen in numerical calculations of the Pöschl-Teller spectrum,
on account of its simplicity, but has yet to be experimentally

confirmed. Using the optical soliton, whose perturbations realize
this potential, experimental tests become possible. The numerical
method presented above is essential for the modelling of these
experiments, as one cannot realize an exact soliton in practice,
and must always work with near-soliton potentials. In addition,
higher-order dispersive effects will also be present in any
experiment, and these must be understood in order to interpret
observations of QNM spectral migration with the soliton. In
particular, the influence of weak third-order dispersion acting on
the perturbative probe field should be incorporated into the analysis,
in order to provide the best test of the above conjecture. This
motivates the development of the non-relativistic method beyond
the Schrödinger equation, to include higher-order dispersive terms.

In view of the above reasons to generalize the non-relativistic
method, we present a sketch of the more general method, which we
will elaborate in future work. Suppose we have a non-relativistic
equation of the form

α i∂t( ) + β i∂r( ) + V( )ϕ � 0, (13)
with α(z) and β(z) finite polynomials in z, and d the larger degree
among the two polynomials. In principle, we can apply a
hyperboloidal coordinate transformation and a phase rotation of
the fields, parameterised by the asymptotic velocities, vg and vp.
Then, we introduce auxiliary fields to effect a dth-order reduction in
time, defining

ϕ1 � ϕ, ϕk+1 � ∂τϕk, (14)
with 1≤ k< d. Equation 14 closely mirrors the treatment of
resonator QNMs in optics [11]. The equations of motion of these
fields are trivial for all fields but ϕd, whose equation of motion more
closely resembles Equation 6. If we use a Taylor series expansion of
∂τϕd around zero, we can write it in terms of spatial operators acting

FIGURE 2
Comparisons of exact and numerically determined QNM frequencies for the Schrödinger equation with a potential V � V0 sech

2(r) + ϵΔV, where
V0 � 1 and ΔV is the perturbation shown in Figure 1. The first 21 QNM frequencies are displayed. The unperturbed (ϵ � 0) spectrum is recovered well by
the new numerical method, with errors smaller than 10−37 for the chosen working precision. We also obtain the perturbed (ϵ � 10−30) spectrum and find
the deviation from the exact spectrum grows rapidly with overtone index, n, as in previous works on spectral instability.

Frontiers in Physics frontiersin.org05

Burgess and König 10.3389/fphy.2024.1457543

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1457543


on the fields. The general form of the now d-dimensional operator
L is

L �

0 1 0 / 0
0 0 1 / 0
0 0 0 / 0
..
. ..

. ..
.

1 1
L1 L2 L3 / Ld

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (15)

which we discretize as before. Then, we use the asymptotic
dispersion relation of Equation 13 to eliminate the asymptotic
velocities, obtaining a vector equation for the QNM frequencies.
From Equation 15, it can be shown that it is always possible to
construct anN-dimensional matrixM whose determinant is a finite
polynomial for the QNM frequencies. This may then be solved
numerically and the frequencies Ω determined. This generalization
is largely straight-forward. However, the divergences in space are
multi-exponential with higher derivatives, leading to non-
polynomial modes in the compactified coordinates. This
complicates the imposition of QNM boundary conditions, and
further work is required to address this. For example, approaches
that augment the function space to include additional non-
polynomial functions can be investigated. Future work can
investigate how this generalized method compares with other
numerical schemes, as the connection to the relativistic method
is less concrete in this case.

The method presented is primarily intended for the gravitational
context and long-range potentials, but the authors note that
extensions to optical cavities or plasmonic resonators may be
possible. Beyond QNMs, the non-relativistic method can be
applied to spectra of non-selfadjoint operators, connecting with a
larger research effort. We believe an explicit formulation in this
context is a promising research direction. In addition, future works
can develop the method, along the lines of [30], in order to calculate
the pseudospectra of non-relativistic operators. It is our view that the
relationship between perturbed QNM spectra and the
pseudospectrum is best understood from a broader perspective,
not limited to relativistic wave operators. We expect that numerical
methods will become increasingly important for addressing
questions in the theory of QNMs, and anticipate that
investigations into the QNMs of non-relativistic fields will
provide new avenues to explore these questions.
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