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Composite structure is widely used in various technological fields because of its
superiormaterial properties. Composite structure detection technology has been
exploring efficient and fast damage detection technology. In this paper, image-
based NDT technology is proposed to detect composite damage using deep
learning. A data set was established through literature, which contained images of
damaged and non-damaged composite material structures. Then, five
convolutional neural network models Alexnet, VGG16, ResNet-34, ResNet-50,
and GoogleNet were used to automatically classify the damage. Finally, the
performance of five pre-trained network architectures is evaluated, and the
results show that RESNET-50 technology can successfully detect damage in a
reasonable computation time with the highest accuracy and low complexity
using relatively small image datasets.
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1 Introduction

Composite materials are newmaterials with excellent properties that are composed of at
least two different materials combined, which are harder, more wear resistant, and lighter
than the original materials of composition. Therefore, composites have become the
materials of choice in the aerospace, aviation, navy, and automotive industries. Despite
these excellent advantages, composite structures are prone to various kinds of damage
during manufacturing and use, which significantly changes their structural behavior and
ultimately leads to structural failure or reduced service life [1]. Most polymer composites are
brittle and laminated, and the lack of material reinforcement in the normal direction makes
the normal direction more vulnerable to damage. Different damage mechanisms may occur
in composite structures, which can be roughly divided into matrix crack, fiber fracture and
delamination damage [2].

In order to ensure the structural safety of composite structures, it is very important to
know the details of the damage as soon as possible when the structure is damaged. However,
the anisotropic properties of composite materials make it difficult to evaluate the damage by
common detection methods. At present, there are many nondestructive testing techniques
(NDT) that can be used to detect defects inside composite structures, such as infrared
thermal imaging testing [3, 4], ultrasonic testing [5], acoustic emission testing [6], optical
testing [7], etc. Although these NDT technologies are well established today, most of them
do not perform NDT directly with the testing equipment as originally envisioned. They
require a skilled operator and a specific testing environment in addition to the relevant
equipment. If you want to achieve the goal of nondestructive testing of composite materials,
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the process is very complicated, which needs a lot of time and
money. For example, acoustic emission detection technology needs
to detect the elastic wave emitted from the damaged position of the
composite structure through sensors installed on the surface of the
structure or embedded sensors in the structure. Embedded sensors
are more sensitive to acoustic emission monitoring than sensors
installed on the surface, but integrated sensors loaded in the
structure may shorten the life of the main structure [8].
Therefore, it is necessary to provide a feasible detection solution,
which is both cost-effective and reliable to ensure the safety,
reliability and longer service life of the composite structure.

Visual inspection is often used for the damage of structural
surface [9]. Not only that, visual inspection is the most basic type of
NDT used in many instances. Because it can save the time and
money needed for testing by reducing other kinds of testing
measures, or reduce the need for other kinds of testing at the
same time in some special cases, the main advantages of visual
inspection are its fast speed and high relative endurance [10].
Nondestructive testing of composite material structure, for
example, when performing visual inspection, first send skilled
inspectors to detect the scene, and then observe whether there is
a crack or dent on the surface of composite structure, if it is found
that the composite material structure exists serious damage, the
inspector may request relevant departments use other NDT
technology for nondestructive testing of structures, Such as
infrared thermal imaging to further assess the extent of damage
to the internal structure, and ultimately determine whether the
tested components need to be repaired or replaced. However, this
method also has its inherent disadvantages, because the popular
visual inspection is carried out by skilled inspectors, so the accuracy
of the test also depends on the judgment of the inspector. Lighting,
inspection time, inspector’s fatigue and experience, environmental
conditions and other factors will affect the judgment of inspectors,
further affect the reliability of visual inspection and the probability
of successful detection, and then bring about health and safety risks
and other problems [11].

In recent years, due to the rapid development of computer
network technology, people have made great progress in
automation, data analysis, image acquisition technology, artificial
intelligence technology, etc., which makes the computing capacity of
low-cost hardware meet the computing needs of software, which
also makes it possible to build a practical automatic visual inspection
system [12]. Artificial neural network belongs to a semi-supervised
machine learning field. In order to improve the performance of
machine learning, genetic algorithms can be used to select the
optimal kernel function [13, 14]. The neural network algorithm
for image classification and detection tasks gains the actual target
through the use of advanced equipment of high quality image data
set to train the neural network structure. Network has the capability
of classification or detecting the target. Choosing the appropriate
neural network can even reach and exceed human right recognition
accuracy. Among all kinds of artificial neural networks,
convolutional neural networks (CNNs) have been highly
concerned by researchers in the effective processing of image-
based data due to their excellent ability to extract deep patterns.
In the field of deep learning, deep convolutional neural networks
(DCNNs) are important branches. DCNNs use multiple hidden
layers for multilevel feature extraction, and then the hierarchical

features of the input image can be obtained for further
interpretation. And DCNNs adopt the method of “weight
sharing,” which greatly improves the efficiency of target
recognition. With the advent of data set enhancement and
transfer learning techniques, models trained on limited data are
more accurate and faster. At present, many CNN architectures have
been successfully used for image classification, such as AlexNet [15],
VGG [16], GoogleNet [17] and ResNet [18].

Min Ma et al. [19] used one-dimensional multi-scale residual
convolutional neural network (1D-MSK-ResNet) to detect the
damage of carbon fiber reinforced polymers (CFRPs), and
obtained the damage images of CFRPs based on simulation
software and experiments. Training validation and test data sets
are constructed to train the algorithm and the training results of
the test data sets are used to verify and evaluate the algorithm. The
determination coefficient R̂2 of this method is as high as 0.885, which
is the highest network structure in this group, indicating that the
fitting effect of the model is the best. Hidir Selcuk Nogay et al. [20]
designed a deep learning model based on acoustic noise data and
transfer learning technology to detect cracks in ceramic plates. They
applied the same amplitude of shock to the ceramic experimental plate
by impact pendulum, and the noise curve generated formed the
training dataset. Then, the pre-trained deep learning model
AlexNet is trained and tested for crack detection of ceramic plates.
Hyun-tae Bang et al. [21] proposed a framework to identify defects in
composite materials by combining thermal imaging testing and deep
learning techniques. The network was trained using a dataset of
thermal imaging images of composites collected from the
literature, and the trained network model was then tested using
lab-made composite samples. The results show that the technique
is widely used. The performance of the system was evaluated by
evaluating the ability of the system to identify defects from artificially
defective samples. The overall average accuracy of the system reached
75.05%. Bubryur Kim et al. [22] proposed a surface concrete crack
detection structure based on shallow convolutional neural network
(CNN). They used the Middle East University of Science and
Technology (METU) dataset for training, then achieved higher
accuracy by fine-tuning the architecture of the LENet-5 model and
optimizing some hyperparameters, and finally compared the
performance with the other three pre-trained models, VGG16,
Inception, and ResNet. The evaluation results show that the
proposed model does not rely on high-quality images and high-
end computing equipment to build a real-time crack detection model,
and can achieve real-time crack detection with the minimum amount
of computation. In order to improve detection accuracy, genetic
algorithms are often chosen to optimize the structure and
initialization weights of convolutional neural networks [23, 24].

In the past proposed applications of CNN on image-based data,
the acquired images were obtained by NDT techniques, such as
thermal imaging and X-ray, which required professional equipment
and experienced operators to acquire. The professionalism and
difficulty of these studies are not conducive to the understanding
of scholars from other disciplines. In order to solve this problem, this
paper proposes a nondestructive testing technique based on deep
learning for quantitative assessment of service damage in composite
laminates. To address the scarcity of composite datasets, a
comprehensive dataset of images of common service injury
mechanisms was collected from the literature. This dataset was
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used to train CNN to evaluate its accuracy and robustness in
identifying damaged conditions in composite laminates. In this
paper, five methods for detecting composite laminates are
proposed. A large number of damaged and undamaged images of
composite laminates are collected from the literature. After data
enhancement and preprocessing of the obtained images, a dataset is
formed for network training. The damage detection process of
composite laminate is shown in Figure 1.

This paper studies the application of deep learning to the field of
composite material damage detection, but due to the fact that there are
fewer composite material datasets that can be used for model training,
and the research content in this area is relatively sparse. The author of
the reference 34 applies deep learning to the field of damage detection,
and successfully trains a neural network model through several
improved measures. This paper improves on the reference 34 and
uses several classical network models to verify the feasibility of deep
learning in the field of composite material damage detection.The
structure of this paper is as follows. In the section “Dataset,” the
method of obtaining training data and the data enhancement
method used are introduced. In the “Deep Learning” section, the
basic concepts of Deep learning and the components of CNN are
introduced. Then, in the section of “Deep Learning Model,” the five
network models used in this paper and the corresponding network
architecture are introduced in detail. Then the “RESULTS AND
DISCUSSIONS” section compares the results of the five experiments
and discussions based on the results. At last, in the section of
“CONCLUSIONS AND FUTURE WORK,” it expounded the key
conclusions and the outlook for the future research.

2 Dataset

2.1 Dataset acquisition

Part of the image data collected in this study are shown in Figure 2,
including un-damaged and damaged images. Most of the damaged
images are caused by impact dam-age because they are easy to

distinguish. A comprehensive set of images has been collect-ed from
the literature on laminated composites of different thicknesses,
materials, laminations, textures, etc. It is visually obvious to classify
each image as damaged or undamaged. 177 images related to damage
were collected from literature [25–32], and 63 images of composite
laminate with intact surface were collected from literature [33–38].

2.2 Data augmentation

The excellent generalization ability of convolutional neural
networks (CNNs) de-pends on a large amount of training data,

FIGURE 1
General block diagram.

FIGURE 2
Some composite laminate images. (A) Damage pictures, (B)
Undamaged pictures.
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which is difficult to obtain in industrial practice. Data augmentation
is usually considered as an effective strategy to solve this problem.
Data enhancement can generate more data based on the limited
number of data, not only increase the number and diversity of
training samples, but also improve the robustness of the model. By
randomly changing the training samples, the dependence of the
model on some attributes can be reduced and the generalization
ability of the model can be im-proved.

The popular enhancement strategies are divided into geometric
transformation and pixel transformation. Geometric
transformations include flipping, rotation, cropping, scaling, and
translation. Pixel transformation methods include adding salt and
pepper noise, Gaussian noise, Gaussian blur, adjusting brightness
and saturation, etc. The method described next will be used in the
experiment. The first is the rotation method, which rotates the image
at an Angle of 90 and 180. The second is Gaussian noise, which is
added to the image with probability density function following
Gaussian distribution. The third is salt and pepper noise, which
refers to the random addition of a white dot (255) or a black dot (0),
similar to sprinkling salt and pepper on an image.

Using the data enhancement method to obtain more learning
data, a total of five images were produced for each original image.
Since the aspect ratio of the collected images is inconsistent, each
image is enhanced in different forms according to its own conditions
[39]. The results of four enhanced images are shown in Figure 3. In
this paper, two enhancement methods are prepared to be used,
including rotation of 90° and 180° (Figures 3B, C) and addition of
Gaussian noise and salt and pepper noise (Figures 3D, E). In this
paper, 1,081 and 119 images out of 1,200 image data including data
enhancement results are used for training and validation,
respectively.

3 Deep learning

Deep learning is a subset of machine learning that mimics how
the human brain processes data by learning tasks directly from
sounds, text, and images. In recent years, with the continuous
development of automatic tools and advanced Graphical
Processing Units (GPUs) hardware, deep learning has become a
powerful method that involves a wide range of problems. It can

identify targets by automatically learning feature representations
from given data. The purpose of deep learning is to determine
whether the recognized object exists in a predefined category, and if
so, the neural network will return the location of the object and the
confidence of the predicted category.

CNN is an important branch of deep learning, which is used to
automatically and adaptively process structured data array, and has
achieved a lot in image processing. By means of local connection,
weight sharing and pooling, CNN can reduce the number of
parameters of the model and reduce the difficulty of training the
network model, so as to achieve the purpose of optimizing the
network structure. The main layers of CNN include convolutional
layer, activation layer, pooling layer, fully connected layer and
output layer, as shown in Figure 4. The convolutional layer is a
basic building block of the CNN model, which uses kernels and
filters to help reduce the input original image size. When the image
size is reduced, all important features of the image can still be kept
unchanged. Reducing the size of the image through the
convolutional layer and then identifying the image can reduce a
lot of data processing and reduce the overall processing time.

The convolution method is used for automatic feature
extraction, which is defined as Formula 1.

C m, n( ) � M,w( ) m, n( ) � ∑∑M m − k + 1, n − l + 1( )w k, l( )
(1)

where M represents the input image matrix, w is the convolution
kernel, and m, n, k, l are the corresponding horizontal and
vertical indexes.

The convolutional layer consists of a set of filters with learnable
weights, and the input data is convolved with each filter by
considering fill, stride length, and filter size. Figure 5 is an
example of a convolution operation using a 3 × 3 filter with a
step size of 2 and a fill size of 1.

As shown in Figure 5, the convolution operation convolves the
input layer by sliding the filter horizontally and vertically,
computing the dot product of the weight and the input, and then
adding a bias term. The step length of filter movement is determined
by the stride size. When you do convolution sometimes you do a fill
operation depending on the experimental requirements. The fill
operation adds a specified number of layers to the image boundary.

FIGURE 3
The result of the image augmentation from (A) original image using (B) 90° Rotation, (C) 180° Rotation, (D) Gaussian noise,and (E) salt noise
generation.

Frontiers in Physics frontiersin.org04

Jiang and Wang 10.3389/fphy.2024.1456236

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1456236


The newly added elements within the layer are all 0 elements.
Because image edge pixels are only covered once in the process
of convolution operation, and the output image size will keep getting
smaller, it is easy to ignore the image boundary information. In
order to avoid this problem, filling operation can effectively prevent
data shrinkage and image boundary information loss, which makes
image analysis more accurate.

The pooling layer is usually placed behind the convolution layer,
and the pooling mechanism is used to further reduce the size of the
convolution image. As the size of the image decreases, the pooling layer
helps to minimize the computational power needed to process the data.
It downsamples the feature (activation) map output from the
convolution step. This step is to slide a filter over the feature map
and output representative values such as maximum, mean, or l2 norm
values from the subregions. In the average pooling method, the average
of the images covered by the filter kernel is returned. Although the
information will be lost, the main features can still be extracted and the
quality of the image will not be lost. Finally, the number of iterations
and weights are reduced, and the computation cost is reduced. Figure 6
is an example of a pooling operation with a 2 × 2 filter and a 2 step.

In the process of the convolution image input to the pooling
layer, it will first enter the activation layer. Active layer is
composed of the activation function, its main function is to
add a line to image nonlinear is added to the whole network
nonlinear, because most of the operation of the neural network is
linear, the actual basic are complex nonlinear problems, so in
order to make the network output results more realistic logic,
adding the activation layer is very necessary. There are many
kinds of activation functions known for neural networks,
including sigmoid, tanh, Rectified Linear Activation function
(ReLU), etc. All models in this paper use ReLU activation
function. In the rectifying linear unit (ReLU) activation
function, a threshold operation is used for each element, in
which any input value smaller than zero is set to zero, while
the rest values remain unchanged [40]. The ReLU activation
function can overcome the gradient disappearance problem and
its definition is shown in Equation 2.

ReLU x( ) � max x, 0( ) (2)
where x represents the input of the function.

FIGURE 4
An example of CNN.

FIGURE 5
An example of convolution and padding operations with a 3 × 3 filter, stride size of two and padding size of one.
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The fully connected layer is located at the tail of the network,
which is helpful to classify images into a specific class. The output
high-level feature maps of the convolution layer and pooling layer
will finally be input into the fully connected layer for further
processing. The final output layer uses either the SoftMax
function or the sigmoid function depending on the classification
task. If the number of pre-categories is more than 3, SoftMax
function is often selected, and sigmoid function is generally used
for binary classification tasks. Either of these can be used in the final
output layer. In this paper, all five models use the SoftMax function
in the output layer to set the number of classification categories to 2.
The SoftMax activation function is given in Equation 3, and SoftMax
activates neurons by limiting the output to (0,1).

SoftMax zi( ) � exp zi( )
∑n

j�1exp zj( ) (3)

where zi is the output value of the ith node, and n is the number of
output nodes, that is, the number of classification categories.

From previous CNN application results, it can be found that if
the dataset is large, then the classification result is good, and vice
versa. Therefore, labeled datasets with a large amount of training
data are the prerequisite for high precision image classification.
However, the data images of some specific detection tasks are
difficult to obtain, and the cost of constructing a large dataset is
very expensive. In this case, the application of transfer learning
technology is very necessary for the purpose of effective
classification. Deep models need to be trained from scratch in
image recognition tasks, but if the training dataset is too small,
the expected training effect cannot be achieved. Transfer learning is
a new machine learning method to effectively solve this problem. It
places the pre-trained model into a new classification task for image
recognition, and the model can recognize the learned features again.
Pre-trained model refers to a model that trains parameters on a large
training set of a domain, which is usually independent of the

classification task. The most commonly used training set for
image classification is ImageNet. This pre-trained model can be
applied to other classification problems by applying transfer
learning. The workflow of transfer learning is to first build the
network model to be used, then load the pre-trained weights during
model training, freeze the base layer of the model, then fine-tune the
model for the new data set, adjust the parameters according to the
requirements, and finally train on the new data set. Therefore,
transfer learning only needs to use a small amount of data to
provide reliable results in the shortest time.

4 Deep learning model

In order to perform automatic damage detection, it is necessary to
select an appropriate network model. In this paper, five different deep
learning models are considered for classification, each with different
constraints, features, architecture, and different trainable variables. The
first step is to create a dataset based on damaged and non-damaged
images of composite laminates by literature review and online collection.
Then the model is trained and validated using these image data. Finally,
according to the training and verification accuracy of different network
models, the most appropriate model architecture is selected as the neural
network for composite laminate damage detection.

4.1 AlexNet model

AlexNet network, one of the most commonly used CNN
architectures, has successfully trained more than 1 million images, is
the most influential CNN widely used in image classification, and won
first place in ImageNet LSVRC-2012 competitionwith a small error rate
of 15.3% [41]. The significance of the model lies in the ability to extract
the actual information about the image and understand the features

FIGURE 6
An example of pooling operation with a 2 × 2 filter and stride size of two.
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added in each layer. When using ImageNet to train AlexNet,
1,000 categories of input images are classified. Since damage
detection only contains 2 categories (damage and undamage), this
paper modifies the output vector to only 2 classes. The network
architecture of AlexNet is shown in Figure 7. AlexNet architecture is
composed of a total of 8 learning layers, among which 5 layers are the
combination of convolution layer and maximum pooling layer, and the
remaining three layers are fully connected layer.

4.2 VGG16 model

VGG network was first proposed by the Visual Geometry Group
(by Oxford University), and the network is also named after the
Group. This model achieves a top-5 test accuracy of 92.7% in
ImageNet [42]. The standard VGG16 model is shown in Figure 8.
VGG network mainly studies the relationship between the depth and
the performance of convolutional neural network, which is
characterized by its concise structure. This model enhances AlexNet
by replacing larger size convolution kernels with many 3 × 3 size
kernels. In this model, its goal is not to have more hyperparameters, but
to repeatedly stack the convolution layer with a 3 × 3 filter with a stride
of 1 and themaximumpooling layer with a 2 × 2 filter with a stride of 2.
VGG16 is a unidirectional multilayer structure with 16 in its name
representing the number of network layers, and it contains
approximately 138 million parameters. In addition, a stable
implementation of the pre-trained version of VGG was developed in
PyTorch used in this study. The number ofmodel classifications trained
on ImageNet is 1,000. For the damage detection task studied in this
paper, the output classification is changed to two classes.

4.3 ResNet-34 model

The residual network is a convolutional neural network
proposed by He Kaiming and others from former Microsoft

Research Institute. It won the title of image classification and
object recognition in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2015 [43]. Since VGG was
proposed, researchers have begun to believe that the prediction
accuracy can be directly and simply increased by improving the
network depth. However, the actual experiment results are
different. The deeper the convolutional neural network is, the
exponential growth of its model parameters will occur, leading to
difficulties in network optimization and gradient disappearance.
The design concept of ResNet changes the development direction
of deep learning. The residual blocks in the network solve the
problem of gradient disappearance caused by adding depth in the
deep neural network by using jump connection, which makes the
parameters easy to optimize and finally improves the
performance of the network. Figure 9 is the residual block,
where x represents the input, and the output of the residual
block is F(x)+G(x) instead of F(x) in the traditional network
layer. When the dimensions of the input and output are the same,
the value of G(x) is x itself. In this case, the jump connection is
called the identity map. Learning the identity map by eliminating
the weight of the middle layer makes the network training easier.
If the input and output dimensions are not equal, select the
replacement of the Identity Connection with the Projection
Connection for the residual. The function G(x) changes the
dimension of the input x to equal the dimension of
the output F(x).

There are already many versions of the ResNetXX
architecture, where “XX” denotes the number of layers. In
ResNet-34 [44], the number of network layers is 34. The
network structure of ResNet-34 is shown in Table 1, from
which you can see the fill, stride, input layer, and output layer.
By default, the classification output of the pre-trained model is
1,000 as shown in the table, but the number of experimental
classifications performed in this paper is 2, so the first two network
models are processed in the same way, and the final SoftMax
classification layer is changed to 2.

FIGURE 7
Architecture of AlexNet network.
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4.4 ResNet-50 model

ResNet-50, the Residual Network-50 model [45], is composed of
five stages and one output module. The second stage to the fourth stage
are all composed of a CONVBLOCK and IDBLOCK. The network
accepts images with the size of 224 × 224 as input images. It can be seen
from Figure 10 that the network is stacked by multiple residual blocks.
CONVBLOCK and IDBLOCK have three convolutional layers.
CONVBLOCK is mainly used to change the dimension of the

network. The dimension of the input data in the residual block is
different from that of the output, while IDBLOCK is used to deepen the
network in series. In the name ResNet-50, the number 50 represents the
number of layers. There are many variants, and the principle is similar,
but each variant network has different layers. And ResNet-50 is used to
describe variants that can work with 50 neural network layers. Just like
ResNet-34, the final SoftMax output classification layer is changed to
2 when ResNet-50 network is used to train the collected dataset in this
experiment.

FIGURE 8
VGG16 model.

FIGURE 9
Residual block image.

FIGURE 10
ResNet-50 architecture.
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4.5 GoogleNet model

GoogleNet was proposed by Google team in 2014 and won the
first prize of Classification Task in ImageNet competition of that
year [46]. The original convolutional neural networks, such as
AlexNet and VGG-Net, are composed of sequential connections
of some convolutional layers and pooling layers. As long as the width
and depth of the network are increased, the accuracy of such series
networks can be improved. However, it will also bring some
problems, such as the need for too many parameters and the
network is easy to cause the problem of overfitting. Therefore, to
solve these problems, researchers proposed the Inception module.
Rather than connecting convolution layers and pooling layers
sequentially like traditional series networks, the Inception module
combines layers with different filter sizes whose outputs are
connected into a single output vector, as shown in Figure 11. In
this way, it can extract different feature maps in the same layer and
achieve the same performance with a greatly reduced number of
parameters. According to the data, the VGG-NET model contains a
total of 138,357,544 parameters, and the number of parameters of
the GoogleNet network model is about 6,994,392, which is one
twentieth of the VGG-NET. GoogleNet mainly includes nine
modular structures, Inception, which are deeply connected in
series. The network structure is shown in Figure 12.

5 Results and discussion

This section describes the experimental setup and parameters
for the dataset of five different models used for composite laminate
damage classification. The initial dataset is divided into two parts:
the training dataset and the validation dataset. 1,200 images
(including damaged and undamaged) were randomly divided
into 1,081 images for training and 119 images for verification.
All models were trained on a device with Intel I7-7700HQ
(2.80 GHz) CPU, 8 GB RAM, NVIDIA GeForce GTX1050 Ti,
based on PyTorch to build the model framework.

The AlexNet network structure requires the size of the input
image to be 227 × 227, while the size of the input image for VGG16,
ResNet-34, ResNet-50 and GoogleNet model is 224 × 224. In order

to make the training data consistent in the experiment, all the images
were cropped to 224 × 224 at the original data preprocessing stage.
For all five models, the following parameters are consistent: The
learning rate of Adam optimizer is 0.0001, the batch size of AlexNet,
Resnet-34, Resnet-50 and GoogleNet is set to 32, while the batch size
of VGG16 is set to 4, because if the VGG model still maintains the
batch size of 32, the GPUmemory will be short. All models were run
for 20 epochs and the number of epochs at which maximum
accuracy was achieved for the validation dataset was recorded.
All five models choose to use the cross-entropy loss function,
which can be written in the form of Equation 4.

L � 1
N

∑
i
− yi · log pi( ) + 1 − yi( ) · log 1 − pi( )[ ] (4)

where yi represents the label of sample i, the positive class is 1, and
the negative class is 0. pi represents the probability that the sample i
is predicted to be of positive class.

The validation and test results of the network are compared to
obtain good results for a given dataset. In order to improve the
accuracy, it is necessary to evaluate whether the network has been
correctly verified, and the network verification accuracy is
defined as:

accuracy � TP + TN( )
TP + TN + FP + FN( ) (5)

where TP, FP, FN and TN represent true positive, false positive, false
negative and true negative respectively.

According to Equation 5, the accuracy of the model can be
calculated. Accuracy refers to the number of correctly classified
images among all images. The experimental results of the five
models are shown in Table 2. As can be seen from the figure, the
verification accuracy of the five network models is very high,
basically above 99%. Among them, the verification accuracy of
AlexNet and VGG16 networks, which were proposed earlier,
both reached 99.16%. The validation accuracy of the later more
advanced network models RESNET-34, RESNET-50 and
GoogleNet all reached 100%, which also shows that the
technology of neural network is more and more advanced, and
the classification performance of the model is also getting better
and better.

The specific training process and results of the five models are
shown in Figures 13–17.

No single learning model consistently performs best across all
domains. Therefore, a most appropriate model needs to be explored.
From the above five images, it can be found that when the number of
training epochs is 20 and the learning rate is consistent to 0.0001, the
batch size of VGG16 is 4. The whole training process takes 586min and
22 s, nearly 10 h, and reaches the highest accuracy of 99.16% at the 14th
epoch. The minimum training loss was 0.148. When the batch size of
AlexNet is 32, the highest accuracy is as high as 99.16% of the
VGG16 network, but the time consumed is greatly reduced. The
optimal accuracy is achieved in the 12th epoch training, and the
total training time is only 7 min and 4 s, which is about one of the
84 times of the former. The speed is greatly increased. There are two
main reasons for this phenomenon. First, due to the memory limitation
of the device, the batch size of VGG16 can only be set to 4. In this way,
the network can use fewer images for training in each batch, and the
number of training times in each epochwill bemore. The second reason

TABLE 1 ResNet-34 model architecture.

Layer name Output size 34-layer

conv1 112 × 112 7 × 7, 64, stride 2

conv_2x 56 × 56 3 × 3 max pool, stride 2

3 × 3 64
3 × 3 64

[ ] × 3

conv_3x 28 × 28 3 × 3 128
3 × 3 128

[ ] × 4

conv_4x 14 × 14 3 × 3 256
3 × 3 256

[ ] × 6

conv_5x 7 × 7 3 × 3 512
3 × 3 512

[ ] × 3

1 × 1 Average pool, 1000-d fc, SoftMax
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is that VGG is a deep neural network, and the number of weight
parameters that need to be updated is more, so the time for each
training will be more. Then, compared with ResNet-34 and ResNet-50
networks, the highest accuracy of the two networks is 100%, indicating
that the performance of the models is very excellent. However, due to
the different layers of the network models, there are still differences in
the training results. The total training time of ResNet-34 was 11 min
and 43 s with a minimum loss of 0.037. The Resnet-50 has a training
time of 14 min and 50 s with a minimum loss of 0.038. In terms of
overall training time, the former was 3min and 7 s faster than the latter.

FIGURE 11
Inception modules in GoogleNet: (A) initial version (B) dimension reduction version.

FIGURE 12
GoogleNet architecture.

TABLE 2 Comparison of the models.

Model Accuracy (%) Epoch Elapsed time (min)

VGG 99.16 14 586.37

AlexNet 99.16 8 7.07

ResNet-34 100 5 11.72

ResNet-50 100 3 14.83

GoogleNet 100 9 11.18
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However, ResNet-34 achieved a maximum accuracy of 100% at epoch
5, while ResNet-50 achieved the same maximum accuracy at epoch 3.
Therefore, although the training time of RESNET-50 is a little longer
under the same epoch conditions, the training speed of this model is
faster and the optimal accuracy can be achieved in a short time. Finally,
for GoogleNet, the highest accuracy is 100%, theminimum loss is 0.048,
and the optimal accuracy is achieved at the 9th epoch. As a result,
GoogleNet performs worse than ResNet on the basis of the above data
comparison.

In conclusion, the most suitable model for automatic damage
detection of composite laminates is the ResNet-50 model. Because
this model takes very little time compared to other models, the
minimum number of epochs also helps to reduce the computational
time of the model. In addition, more epochs may cause the model to

overfit. The results obtained in this paper are consistent with the
claims made by Khan et al. [47]. In that article, it points out that the
ResNet model has 20 and 8 times deeper model layers than the
AlexNet and VGG models. Because of the presence of jump
connections, the computational complexity of the proposed
network is also lower compared to Alexnet and VGG models.

6 Conclusion and future work

6.1 Conclusion

Deep learning technology was used to detect the damage of
composite laminates. This paper compares the performance of five

FIGURE 13
The accuracy of VGG in the classification of validation images.

FIGURE 14
The accuracy of AlexNet in the classification of validation images.
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different models, AlexNet, VGG16Net, ResNet-34, ResNet-50 and
GoogleNet, in terms of validation and accuracy, as well as the time to
train the model. All models were trained with Adam optimizer for
20 epochs with a learning rate of 0.0001.

The Alexnet model has the lowest validation accuracy of 99.16%
in the second phase, but it performs faster (about 7 min) compared
to the VGG16 model. ResNet-50 had the highest validation accuracy
of 100% compared to all other models, reaching this accuracy at
epoch 3. In addition, its training sample took very little time (only
14 min and 50 s).

Deep learning solves complex problems by deeply
understanding the complex relationships between a large number
of interdependent variables. It can be concluded from the analysis
that ResNet-50 is suitable for the classification of composite
laminate images because it takes less time and has the highest
accuracy compared to other models. In this paper, the model is

trained and validated using composite material images collected
from literature and the Internet.

6.2 Future work

This paper describes the potential of deep learning technology in
automatic damage detection of composite structures. However,
many factors need to be considered when applying this
technology to the actual scene. Because the computing power of
the equipment in this study is limited, it may not achieve the ideal
effect. In the future, equipment with stronger computing power can
be considered to achieve the highest detection accuracy in a shorter
time. In addition this paper only by training network to detect
whether composite structure damage, and no classifying damage
types, the future can collect more different kinds of composite

FIGURE 15
The accuracy of ResNet-34 in the classification of validation images.

FIGURE 16
The accuracy of ResNet-50 in the classification of validation images.
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structure damage (such as shock, erosion, etc.), the image data to
carry out further experiments and modeling research, to develop a
number of large, high quality and category of the whole data set,
Based on this dataset, deep learn-based autonomous inspection can
be performed reliably, and even neural networks can measure the
surface damage size of composite materials and predict the
remaining life of composite structures containing damage.
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