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The notion of Fréchet mean (also known as “barycenter”) network is the
workhorse of most machine learning algorithms that require the estimation of
a “location” parameter to analyse network-valued data. In this context, it is critical
that the network barycenter inherits the topological structure of the networks in
the training dataset. The metric–which measures the proximity between
networks–controls the structural properties of the barycenter. This work is
significant because it provides for the first time analytical estimates of the
sample Fréchet mean for the stochastic blockmodel, which is at the cutting
edge of rigorous probabilistic analysis of random networks. We show that the
mean network computed with the Hamming distance is unable to capture the
topology of the networks in the training sample, whereas the mean network
computed using the effective resistance distance recovers the correct partitions
and associated edge density. From a practical standpoint, our work informs the
choice of metrics in the context where the sample Fréchet mean network is used
to characterize the topology of networks for network-valued machine learning.
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1 Introduction

There has been recently a flurry of activity around the design of machine learning
algorithms that can analyze “network-valued random variables” (e.g. [1–8], and references
therein). A prominent question that is central to many such algorithms is the estimation of
the mean of a set of networks. To characterize the mean network we borrow the notion of
barycenter from physics, and define the Fréchet mean as the network that minimizes the
sum of the squared distances to all the networks in the ensemble. This notion of centrality is
well adapted to metric spaces (e.g., [4, 9, 10]), and the Fréchet mean network has become a
standard tool for the statistical analysis of network-valued data.

In practice, given a training set of networks, it is important that the topology of the
sample Fréchet mean captures the mean topology of the training set. To provide a
theoretical answer to this question, we estimate the mean network when the networks
are sampled from a stochastic block model. The stochastic block models [11, 12] have great
practical importance since they provide tractable models that capture the topology of real
networks that exhibit community structure. In addition, the theoretical properties (e.g.,
degree distribution, eigenvalues distributions, etc.) of this ensemble are well understood.
Finally, stochastic block models provide universal approximants to networks and can be
used as building blocks to analyse more complex networks [13–15].

OPEN ACCESS

EDITED BY

Víctor M. Eguíluz,
Spanish National Research Council (CSIC),
Spain

REVIEWED BY

Renaud Lambiotte,
University of Oxford, United Kingdom
Mingao Yuan,
North Dakota State University, United States

*CORRESPONDENCE

François G. Meyer,
fmeyer@colorado.edu

RECEIVED 27 June 2024
ACCEPTED 21 August 2024
PUBLISHED 08 October 2024

CITATION

Meyer FG (2024) When does the mean network
capture the topology of a sample of networks?
Front. Phys. 12:1455988.
doi: 10.3389/fphy.2024.1455988

COPYRIGHT

© 2024 Meyer. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 08 October 2024
DOI 10.3389/fphy.2024.1455988

https://www.frontiersin.org/articles/10.3389/fphy.2024.1455988/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1455988/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1455988/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1455988&domain=pdf&date_stamp=2024-10-08
mailto:fmeyer@colorado.edu
mailto:fmeyer@colorado.edu
https://doi.org/10.3389/fphy.2024.1455988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1455988


In this work, we derive the expression of the sample Fréchet mean
of a stochastic block model for two very different distances: the
Hamming distance [16] and the effective resistance perturbation
distance [17]. The Hamming distance, which counts the number of
edges that need to be added or subtracted to align two networks defined
on the same vertex set, is very sensitive to fine scale fluctuations of the
network connectivity. To detect larger scale changes in connectivity, we
use the resistance perturbation distance [17]. This network distance can
be tuned to quantify configurational changes that occur on a network at
different scales: from the local scale formed by the neighbors of each
vertex, to the largest scale that quantifies the connections between
clusters, or communities [17]. See ([18–20], and references therein) for
recent surveys on network distances.

Our analysis shows that the sample Fréchet mean network
computed with the Hamming distance is unable to capture the
topology of networks in the sample. In the case of a sparse stochastic
block model, the Fréchet mean network is always the empty
network. Conversely, the Fréchet mean computed using the
effective resistance distance recovers the underlying network
topology associated with the generating process: the Fréchet
mean discovers the correct partitions and associated edge densities.

1.1 Relation to existing work

To the best of our knowledge, we are not aware of any theoretical
derivation of the sample Fréchet mean for any of the classic
ensemble of random networks. Nevertheless, our work share
some strong connections with related research questions.

1.1.1 The Fréchet mean network as a
location parameter

Several authors have proposed simple models of probability
measures defined on spaces of networks, which are parameterized
by a location and a scale parameter [5, 21]. These probabilitymeasures
can be used to assign a likelihood to an observed network by
measuring the distance of that network to a central network,
which characterizes the location of the distribution. The authors in
[5] explore two choices for the distance: the Hamming distance, and a
diffusion distance. Our choice of distances is similar to that of [5].

1.1.2 Existingmetrics for the Fréchetmean network
The concept of Fréchet mean necessitates a choice of metric (or

distance) on the probability space of networks. The metric will
influence the characteristics that the mean will inherit from the
network ensemble. For instance, if the distance is primarily sensitive
to large scale features (e.g., community structure or the existence of
highly connected “hubs”), then the mean will capture these large
scale features, but may not faithfully reproduce the fine scale
connectivity (e.g., the degree of a vertex, or the presence of triangles).

One sometimes needs to compare networks of different sizes; the
edit distance, which allows for creation and removal of vertices, provides
an elegant solution to this problem. When the networks are defined on
the same vertex set, the edit distance becomes the Hamming distance
[22], which can also be interpreted as the entrywise ℓ1 norm between
the two adjacency matrices. Replacing the ℓ1 norm with the ℓ2 norm
yields the Frobenius norm, which has also been used to compare
networks (modulo an unknown permutation of the vertices–or

equivalently by comparing the respective classes in the quotient set
induced by the action of the group of permutations [4, 10]). We note
that the computation of the sample Fréchet mean network using the
Hamming distance is NP-hard (e.g., [23]). For this reason, several
alternatives have been proposed (e.g., [3]). Both the Hamming distance
and Frobenius norm are very sensitive to the fine scale edge
connectivity. To probe a larger range of scales, one can compute the
mean network using the eigenvalues and eigenvectors of the respective
network adjacency matrices [14, 24, 25].

1.2 Content of the paper: our main
contributions

Our contributions consists of two results.

1.2.1 The network distance is the
Hamming distance

We prove that when the probability space is equipped with the
Hamming distance, then the sample Fréchet mean network
converges in probability to the sample median network
(computed using the majority rule), in the limit of large sample
size. This result has significant practical consequences. Consider the
case where one needs to estimate a “central network” that captures
the connectivity structure of a training set of sparse networks. Our
work implies that if one uses the Hamming distance, then the sample
Fréchet mean will be the empty network.

1.2.2 The network distance is the resistance
perturbation distance

We prove that when the probability space is equipped with the
resistance perturbation distance, then the adjacency matrix of the
sample Fréchet mean converges to the sample mean adjacency matrix
with high probability, in the limit of large network size. Our theoretical
analysis is based on the stochastic blockmodel [12], amodel of random
networks that exhibit community structure. In practical applications,
our work suggests that one should use the effective resistance distance
to learn the mean topology of a sample of networks.

1.3 Outline of the paper

In Section 2, we describe the stochastic block model, the
Hamming and resistance distances that are defined on this
probability space. The reader who is already familiar with the
network models and distances can skip to Section 3 wherein we
detail the main results, along with the proofs of the key results. In
Section 4, we discuss the implications of our work. The proofs of
some technical lemmata are left aside in Section 5.

2 Network ensemble and distances

2.1 The network ensemble

Let G be the set of all simple labeled networks with vertex set
[n] �def 1, . . . , n{ }, and let S be the set of n × n adjacency matrices of
networks in G,
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S � A ∈ 0, 1{ }n×n;where aij � aji, and ai,i � 0; 1≤ i< j≤ n{ }. (1)

Because there is a unique correspondence between a network G �
(V, E) and its adjacency matrix A, we sometimes (by an abuse of the
language) refer to an adjacency matrix A as a network. Also, without
loss of generality we assume throughout the paper that the network
size n is even.

We define the matrix P that encodes the edge density within
each community and across communities. P can be written as the
Kronecker product of the following two matrices,

P � p q
q p
[ ] ⊗ Jn/2 (2)

where Jn/2 is the n/2 × n/2 matrix with all entries equal to 1. We
denote by G(n, p, q), the probability space S equipped with the
probability measure,

∀A ∈ S, P A( ) � ∏
1≤j≤n/2
1≤i≤n/2

paij 1 − p[ ]1−aij ∏
n/2+1≤j≤n

1≤i≤n/2

qaij 1 − q[ ]1−aij . (3)

G(n, p, q) is referred to as a two-community stochastic
blockmodel [12]. One can interpret the stochastic blockmodel
as follows: the nodes of a network G ∈ G(n, p, q) are partitioned
into two communities. The first n/2 nodes constitute community
C1; the second community, C2, comprises the remaining n/2
nodes. Edges in the graph are drawn from independent
Bernoulli random variables with the following probability of
success: p for edges within each community, and q for the
across-community edges.

2.2 The Hamming distance
between networks

Let A and A′ be the adjacency matrices of two unweighted
networks defined on the same vertex set. The Hamming distance
[16] is defined as follows.

Definition 1. The Hamming distance between A and A′ is
defined as

dH A,A′( ) � 1
2
‖A − A′‖1, (4)

where the elementwise ℓ1 norm of a matrix A is given by ‖A‖1 �∑1≤i,j≤n|aij|.
Because the distance dH is not concerned about the locations

of the edges that are different between the two graphs, dH(A,A′)
is oblivious to topological differences between A and A′. For
instance, if A and A′ are sampled from G(n, p, q), then the
complete removal of the across-community edges induces the
same distance as the removal, or addition, of that same number of
edges in either community. In other words, a catastrophic change
in the network topology cannot be distinguished from benign
fluctuations in the local connectivity within either community.
To address the limitation of the Hamming distance we define the
resistance distance [17].

2.3 The resistance (perturbation) distance
between networks

For the sake of completeness, we review the concept of effective
resistance (e.g., [26, 27]). Let A denote the adjacency matrix of a
network G � (V, E), and let D denote the diagonal degree matrix,
dii � ∑n

j�1aij. We consider the combinatorial Laplacian matrix [28]
defined by

L � D − A. (5)
We denote by L† the Moore-Penrose pseudoinverse of L. Let i, j be
two nodes of the network, the effective resistance between i and j is
given by

Rij � L†
ii + L†

jj − 2L†
ij. (6)

Intuitively, Rij depends on the abundance of paths between i and j.
We have the following lower bound that quantifies the burgeoning
of connections around the nodes i and j,

1
di

+ 1
dj

≤Rij, (7)

where di and dj are the degrees of nodes i and j respectively. As
shown in [29], this lower bound is attained for a large class of graphs
(see also Remark 3).

The resistance-perturbation distance (or resistance distance for
short) is based on comparing the effective resistances matrices R and
R′ of G and G′ respectively. To simplify the discussion, we only
consider networks that are connected with high probability. All the
results can be extended to disconnected networks as
explained in [17].

Definition 2. Let G � (V, E) and G′ � (V, E′) be two networks
defined on the same vertex set [n]. Let R and R′ denote the effective
resistances of G and G′ respectively. We define the resistance-
perturbation distance [17] to be

drp G,G′( ) � ∑
1≤i<j≤n

Rij − Rij′
∣∣∣∣ ∣∣∣∣2. (8)

3 Main results

We first review the concept of sample Fréchet mean, and then
present the main results. We consider the probability space (S,P)
formed by the adjacency matrices of networks sampled from
G(n, p, q). We equip S with a distance d, which is either the
Hamming distance or the resistance distance. Let A(k), 1≤ k≤N
be adjacency matrices sampled independently from G(n, p, q).

3.1 The sample Fréchet mean

The sample Fréchet function evaluated at B ∈ S is defined by

F̂2(B) � 1
N
∑N
k�1

d2 B,A(k)( ). (9)
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The minimization of the Fréchet function F̂2(B) gives rise to the
concept of sample Fréchet mean [30], or network barycenter [31].

Definition 3. The sample Fréchet mean network is the set of
adjacency matrices μ̂[P] solutions to

μ̂ P[ ] � argmin
B∈S

1
N
∑N
k�1

d2 B,A(k)( ). (10)

Solutions to the minimization problem in Equation 10 always
exist, but need not be unique. In Theorem 1 and Theorem 2, we
prove that the sample Fréchet mean network of G(n, p, q) is unique,
when d is either the Hamming distance or the resistance distance.

A word on notations is in order here. It is customary to denote by
μ[P] the population Fréchet network of the probability distribution P,
(e.g., [31]), since the adjacency matrix μ[P] characterizes the location
of the probability distribution P. Because we use hats to denote sample
(empirical) estimates, we denote by μ̂[P] the adjacency matrix of the
sample Fréchet mean network.

3.2 The sample Fréchet mean of G(n,p,q)
computed with the Hamming distance

The following theorem shows that the sample Fréchet mean
network converges in probability to the sample Fréchet median
network, computed using the majority rule, in the limit of large
sample size, N.

Theorem 1. Let μ̂[P] be the sample Fréchet mean network
computed using the Hamming distance. Then,

∀ε> 0,∃N0,∀N≥N0,P dH μ̂ P[ ], m̂ P[ ]( )< ε( )≥ 1 − ε. (11)
where m̂[P] is the adjacency matrix computed using the
majority rule,

∀i, j ∈ n[ ], m̂ P[ ]ij � 1 if ∑N
k�1a

(k)
ij ≥N/2,

0 otherwise.
{ (12)

Remark 1. The matrix m̂[P] is the sample Fréchet median network
(e.g., [32], solution to the following minimization problem [21],

m̂ P[ ] � argmin
B∈S

F̂1(B), (13)

where F̂1 is the Fréchet function associated to the sample Fréchet
median, defined by

F̂1(B) � 1
N
∑N
k�1

dH A(k),B( ). (14)

Remark 2. The network size n in Theorem 1 is assumed to be
constant; the convergence in probability in Theorem 1 happens
when the sample size N → ∞. The proof of theorem 1 involves
constants that are sublogarithmic functions of n (see α and β in the
proof of lemma 3 in Section 5.2.)

One could envision a scenario where the network size n would
grow with the sample size N. In that case, we need N � ω(log n) to

ensure that lemma 3 provides a useful bound. This is a very weak
upper bound on n, satisfied for instance for n � exp(Nc), with
0< c< 1. Finally, theorem 1 holds for any values of the edge densities
p and q (whether these depend on n orN), as long as they are always
distinct from 1/2 (to avoid the instability that occurs when
estimating μ̂[P]; see lemma 4 for details).

Before deriving the proof of theorem 1, we present an extension
of the Hamming distance to weighted networks. We remember that
the sample Fréchet mean network computed using the Hamming
distance has to be an unweighted network, since the Hamming
distance is only defined for unweighted networks. This theoretical
observation notwithstanding, the proof of theorem 1 becomes much
simpler if we introduce an extension of the Hamming distance to
weighted networks; in truth, we extend a slightly different
formulation of the Hamming distance.

Let A,B ∈ S be two unweighted adjacency matrices. Because
dH(A,B) counts the number of (unweighted) edges that are
different between the graphs, we have

dH A,B( ) � ∑
1≤i<j≤n

aij + ∑
1≤i<j≤n

bij − 2 ∑
1≤i<j≤n

aijbij. (15)

Now, assume that A and B are two weighted adjacency matrices,
with aij, bij ∈ [0, 1]. A natural extension of Equation 15 to matrices
with entries in [0,1] is therefore given by

δ A,B( ) � ∑
1≤i<j≤n

aij + ∑
1≤i<j≤n

bij − 2 ∑
1≤i<j≤n

aijbij. (16)

The function δ, defined on the space of weighted adjacency matrices
with weights in [0,1], satisfies all the properties of a distance, except
for the triangle inequality.

We now present the sample probability matrix P̂ and the sample
correlation ρ̂. Let A(k), 1≤ k≤N be adjacency matrices sampled
independently from G(n, p, q). We define

P̂ij �def Ê aij[ ] �def 1
N
∑N
k�1

a(k)ij . (17)

and

ρ̂ij,i′j′ �def Ê ρij,i′j′[ ] �def 1
N
∑N
k�1

a(k)ij a(k)i′j′ . (18)

We can combine the definitions of δ and P̂ to derive the following
expression for the Fréchet function F̂1 for the sample median,
defined by Equation 14,

F̂1(B) � δ B, P̂( ). (19)

The proof of this simple identity is very similar to the proof of
lemma 1, and is omitted for brevity. We are now ready to present the
proof of theorem 1.

Proof of Theorem 1. The proof relies on the observation
(formalized in lemma 1) that the Fréchet function F̂2(B) can be
expressed as the sum of a dominant term and a residual. The residual
becomes increasingly small in the limit of large sample size (see
lemma 3) and can be neglected. We show in lemma 2 that the
dominant term is minimum for the sample Fréchet median network
m̂[P] [defined by Equation 12]. We start with the decomposition of
F̂2(B) in terms of a dominant term and a residual.
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Lemma 1. Let B ∈ S. We denote by E(B) the set of edges of the
network with adjacency matrix B, we denote by �E(B) the set of
“nonedges.” Then

F̂2(B) � δ2 B, P̂( ) − ∑
1≤i′ < j′≤ n
1≤ i< j≤ n

P̂ijP̂i′,j′ − Ê ρij,i′j′[ ]( )
+ 4 ∑

[i′,j′]∈E B( )
[i,j]∈ �E B( )

P̂ijP̂i′,j′ − Ê ρij,i′j′[ ]( ). (20)

where P̂ is defined by Equation 17, and ρ̂ is defined by
Equation 18.

Proof. The proof of lemma 1 is provided in Section 5.
To call attention to the distinct roles played by the terms in

Equation 20, we define the dominant term of F̂2(B),

F̂(B) �defδ2 B, P̂( ) − ∑
1≤i′< j′≤ n
1≤ i< j≤ n

P̂ijP̂i′,j′ − Ê ρij,i′j′[ ][ ], (21)

and the residual ζN is defined by

ζN(B) � 4 ∑
[i′,j′]∈E B( )

[i,j]∈ �E B( )
P̂ijP̂i′,j′ − Ê ρij,i′j′[ ]( ), (22)

so that F̂2(B) � F̂(B) + ζN(B).
The next step of the proof of theorem 1 involves showing that

the sample median network, m̂[P], [see Equation 12], which is the
minimizer of F̂1(B) [see Equation 14], is also the minimizer of F̂(B).

Lemma 2. m̂[P] satisfies: ∀B ∈ S, F̂(m̂[P])≤ F̂(B).
Proof of lemma 2. We have

F̂(B) � δ2 B, P̂( ) − ∑
1≤i′ < j′ ≤ n
1≤ i< j≤ n

P̂ijP̂i′,j′ − Ê ρij,i′j′[ ]( ) (23)

Because m̂[P] is the minimizer of F̂1(B) � δ(B, P̂) [see Equation
19], m̂[P] is also the minimizer of δ2(B, P̂). Finally, since∑

1≤i′< j′≤ n
1≤ i< j≤ n (P̂ijP̂i′,j′ − Ê[ρij,i′j′]) does not depend on B, m̂[P] is

the minimizer of F̂(B).
We now turn our attention to the residual and we confirm in the

next lemma that ζN(B) � OP( 1��
N

√ ); to wit ζN(B)
��
N

√
is bounded

with high probability.

Lemma 3. ∀ε> 0,∃c> 0,∀ N≥ 1,

P A(k) ~ G n, p, q( ); ζN(B)∣∣∣ ∣∣∣< c��
N

√( )> 1 − ε. (24)

Proof. The proof of lemma 3 is provided in Section 5.2.
The last technical lemma that is needed to complete the proof of

theorem 1 is a variance inequality [31] for F̂. We assume that the
entries of P are uniformly away from 1/2 (this technical condition on
P prevents the instability that occurs when estimating μ̂[P]
for pij � 1/2).

Lemma 4. We assume that there exists η> 0 such that
1≤ i< j≤ n, |pij − 1/2|> η. Then, ∃α> 0

∀B ∈ S, α‖B − m̂ P[ ]‖21 ≤ F̂(B) − F̂ m̂ P[ ]( )∣∣∣∣ ∣∣∣∣, (25)

with high probability.
Proof. The proof of lemma 4 is provided in Section 5.3.
We are now in position to combine the lemmata and complete

the proof of theorem 1.
Let μ̂[P] be the sample Fréchet mean network, and let m̂[P] be

the sample Fréchet median network. By definition, μ̂[P] is the
minimizer of F̂2, and thus

F̂(μ̂ P[ ]) � F̂2(μ̂ P[ ]) − ζN μ̂ P[ ]( )≤ F̂2 m̂ P[ ]( ) − ζN μ̂ P[ ]( ) (26)
Now, by definition of F̂ in Equation 21, we have

F̂2 m̂ P[ ]( ) − ζN μ̂ P[ ]( ) � F̂ m̂ P[ ]( ) + ζN m̂ P[ ]( ) − ζN μ̂ P[ ]( ), (27)
and therefore,

0≤ F̂(μ̂ P[ ]) − F̂ m̂ P[ ]( )≤ ζN m̂ P[ ]( ) − ζN μ̂ P[ ]( ). (28)

This last inequality, combined with Equation 24 proves that
F̂(μ̂[P]) − F̂(m̂[P]) converges to zero for largeN. We can say more;
using the variance inequality Equation 25, we prove that
dH(μ̂[P], m̂[P]) � ‖μ̂[P] − m̂[P]‖1 converges in probability to
zero for large N.

Let ε> 0, from lemma 4, there exists α> 0 such that

P A(k) ~ G n, p, q( ); α‖μ̂ P[ ] − m̂ P[ ]‖12 ≤ F̂(μ̂ P[ ]) − F̂ m̂ P[ ]( )∣∣∣∣ ∣∣∣∣( )> 1 − ε.

(29)
The term ζN(m̂[P]) − ζN(μ̂[P]) is controlled using Lemma 3,

∃C,∀N≥ 1,P ∀P ∈ S, ζN m̂ P[ ]( ) − ζN μ̂ P[ ]( )∣∣∣∣ ∣∣∣∣< C��
N

√( )≥ 1 − ε

(30)
Combining Equations 28–30 we get

∀N≥ 1, P ‖μ̂ P[ ] − m̂ P[ ]‖12 < C

α
��
N

√( )> 1 − ε. (31)

We conclude that ∃N1 such that

∀N≥N1, P ‖μ̂ P[ ] − m̂ P[ ]‖1 < ε( )> 1 − ε, (32)
which completes the proof of the theorem.

3.3 The sample Fréchet mean of G(n,p,q)
computed with the resistance distance

Here we equip the probability space (S,P) with the resistance
metric defined by Equation 8. Let A(k), 1≤ k≤N be adjacency
matrices sampled independently from G(n, p, q), and let R(k) be
their effective resistances. Because the resistance metric relies on the
comparison of connectivity at multiple scales, we expect that the
sample Fréchet mean network recovers the topology induced by the
communities.

In the following, we need to ensure that the effective resistances
are always well defined for networks sampled from G(n, p, q), and
we therefore require a very mild condition of the edge density. We
assume that p � ω(log n/n) and q � ω(log n/n). For instance, this
condition is satisfied if p � a1(logc1 n)/n, and q � a2(logc2 n)/n, with
a1, a2 > 0, c1, c2 > 1.
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The next theorem proves that the sample Fréchet mean
converges toward the expected adjacency matrix P (see Section
2) in the limit of large networks.

Theorem 2. Let μ̂[P] be the sample Fréchet mean computed using
the effective resistance distance. Then

μ̂ P[ ] � E A[ ] � P, (33)
in the limit of large network size n, with high probability.

Proof of theorem 2. The proof combines three elements. We first
observe that the effective resistance of the sample Fréchet mean is
the sample mean effective resistance.

Lemma 5. Let μ̂[P] be the sample Fréchet mean computed using
the resistance distance. Then

R̂ij �defRij μ̂ P[ ]( ) � 1
N
∑N
k�1

R k( )
ij (34)

Proof of lemma 5. The proof relies on the observation that the
Fréchet function in Equation 10, is a quadratic function of
R̂ij � Rij(μ̂[P]). Indeed, we have

1
N
∑N
k�1

∑
1≤i<j≤n

R̂ij − R k( )
ij

∣∣∣∣∣ ∣∣∣∣∣2 � ∑
1≤i<j≤n

1
N
∑N
k�1

R̂ij − R k( )
ij

∣∣∣∣∣ ∣∣∣∣∣2 (35)

where we have used the definition of the effective resistance distance
given by Equation 8. The minimum of Equation 35 is given by
Equation 34.

The second element of the proof of theorem 2 is a concentration
result for the effective resistance Rij for networks in G(n, p, q), when
the network size n becomes large. Our technique of proof is different
from that of Theorem 1. In Theorem 1, we rely on laws of large
numbers (for large sample size N) to compute the minimum of the
Fréchet function F̂2.

In contrast, the proof of theorem 2 follows a different line of
attack, where we replace the law of large number with a
concentration result for the effective resistance Rij of G(n, p, q)
for large network size n. Our estimates are independent of the
sample size N; they only become sharper as the graph size n → ∞.
Others have derived similar results (e.g., [29, 33–36]).

In the next lemma, we prove that (1/N)∑N
k�1R

(k)
ij concentrates

around R*ij in the limit of large network size n.

Lemma 6. Let G � (V, E) a graph sampled from G(n, p, q). Let i, j
be two nodes inV. Then the effective resistance Rij between i and j is
given by

Rij � R*ij + ℴP
1
n
( ), (36)

where

R*ij �

4
n p + q( ) if i and j are in the same community,

4
n p + q( ) + p − q( )

p + q( ) 4

n2 q
if i and j are in different communities.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(37)

Before deriving the proof of lemma 6 we make a few remarks to
help guide the reader’s intuition.

Remark 3. We justify Equation 37 with a simple circuit argument.
We first analyse the case where i and j belong to the same
community, say C1. In this case, we can neglect the other
community C2 because of the bottleneck created by the across-
community edges. Consequently, C1 is approximately an Erdős-
Rényi network wherein the effective resistance Rij concentrates
around 4/(n(p + q)) [29], and we obtain the first term in
Equation 37.

On the other hand, when the vertices i and j are in distinct
communities, then a simple circuit argument shows that

Rij ≈
2

n p + q( ) + 1
k
+ 2
n p + q( ), (38)

where k is the number of across-community edges, creating a
bottleneck with effective resistance 1/k between the two
communities [37]; each term 2/(n(p + q)) accounts for the
effective resistance from node i (respectively j) to a node
incident to an across-community edge. Because the number of
across-community edges, k, is a binomial random variable, it
concentrates around its mean, qn2/4. Finally, 1/k is a binomial
reciprocal whose mean is given by 4/(qn2) + ø1/n3 [38], and we
recover the second term of Equation 37.

Our proof of lemma 6, requires that we introduce another
operator on the graph, the normalized Laplacian matrix (e.g.,
[28]). Let A be the adjacency matrix of a network (V, E), and let
D be the diagonal matrix of degrees, di � ∑n

j�1aij. We normalizeA in
a symmetric manner, and we define

Â � D−1/2AD−1/2, (39)
where D−1/2 is the diagonal matrix with entries 1/

��
di
√

. The
normalized Laplacian matrix is defined by

L � I − Â, (40)
where I is the identity matrix.L is positive semi-definite [28], and we
will consider its Moore-Penrose pseudoinverse, L†.

Proof of lemma 6. The lemma relies on the characterization of R
in terms of L† [28],

Rij � 〈ui − uj,L† ui − uj( )〉, (41)

where ui � (1/ ��di√ )ei, and ei is the ith vector of the canonical basis.
Let 1 � λ1 ≥ λ2 ≥ . . . λn ≥ − 1 be the eigenvalues of Â, and let
Π1, . . . ,Πn be the corresponding orthogonal projectors,

Â � ∑n
m�1

λmΠm, (42)

where Π1 � τ−1d1/2d1/2T, with d1/2 � [ ��
d1
√

/
��
dn
√ ]T, and

τ � ∑n
i�1di. Because Π1 is also the orthogonal projection on the

null space of L, we have

L† � L +Π1( )−1 −Π1 � I − Â −Π1( )( )−1 −Π1

� I −Π1 + λ2
1 − λ2

Π2 + Q, (43)

where

Q � ∑n
m�3

λm
1 − λm

Πm. (44)
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Substituting Equation 43 into Equation 41, we get

Rij � 〈ui − uj, I −Π1( ) ui − uj( )〉 + λ2
1 − λ2

〈ui − uj,Π2 ui − uj( )〉
+ 〈ui − uj,Q ui − uj( )〉

(45)
The first (and dominant) term of Equation 45 is

〈ui − uj, I −Π1( ) ui − uj( )〉 � 〈ui − uj, ui − uj〉 � 1
di

+ 1
dj
. (46)

Let us examine the second term of Equation 45. Löwe and Terveer
[39] provide the following estimate for λ2,

λ2 � p − q

p + q
+ ω n( ),whereω n( ) � O

�������
2 log n
n p + q( )
√⎛⎝ ⎞⎠. (47)

The corresponding eigenvector z is given, with probability (1 −O1),
by [40],

zi � σ i
1�
n

√ + ℴ
1�
n

√( ), (48)

where the “sign” vector σ, which encodes the community, is given by

σ i � 1 if1≤ i≤ n/2,
−1 ifn/2 + 1≤ i≤ n.

{ (49)

We derive from Equation 48 the following approximation
to 〈ui,Π2uj〉,

〈ui,Π2uj〉 � uT
i zz

Tuj � 1����
didj

√ zizj � 1
n
����
didj

√ σ iσj + ℴP
1
n
( ). (50)

We therefore have

〈ui − uj,Π2 ui − uj( )〉 � 1
ndi

+ 1
ndj

− 2
n
����
didj

√ σ iσj + ℴP
1
n
( ). (51)

The degree di of node i is a binomial random variable, which
concentrates around its mean, p(n/2 − 1) + qn/2 ≈ n(p + q)/2 for
large network size n. Also, 1/di is a binomial reciprocal that also
concentrates around its mean, which is given by 2/((p + q)n) +
ø1/n2 [38]. We conclude that in the limit of large network size,

〈ui − uj,Π2 ui − uj( )〉 � 4
n2 p + q( ) 1 − σ iσj( ) + ℴP

1
n
( ). (52)

Combining Equations 47, 52 yields

〈ui − uj,
λ2

1 − λ2
Π2 ui − uj( )〉 � p − q( )

p + q( ) 4
n2q

1 − σ iσj( )
2

+ ℴP
1
n
( ).
(53)

We note that

p − q( )
p + q( ) 4

n2q

1 − σ iσj( )
2

�

4
n p + q( ) if i and j are in the same community

4
n p + q( ) + p − q( )

p + q( ) 4

n2q
if i and j are in different communities,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(54)

which confirms that 〈ui − uj,
λ2

1−λ2Π2(ui − uj)〉 provides the
correction in Equation 37 created by the bottleneck between the
communities. Finally, we show in Section 5.4 that the last term in the
expansion of Rij Equation 45 can be neglected,

〈ui − uj,Q ui − uj( )〉∣∣∣∣∣ ∣∣∣∣∣≤ 1
di

+ 1
dj

( ) 8
�
2

√

np( )3/2 almost surely. (55)

This concludes the proof the lemma.

Remark 4. Lemma 6 can be extended to a stochastic block model of
any geometry for which we can derive the analytic expression of the
dominant eigenvalues; see (see e.g., [39, 41]) for equal size
communities, and (see e.g., [42]) for the more general case of
inhomogeneous random networks.

We can apply Lemma 6 to derive an approximation to the
sample mean effective resistance.

Corollary 1. Let A(k), 1≤ k≤N be adjacency matrices sampled
independently from G(n, p, q), and let R(k), 1≤ k≤N be the
respective effective resistance matrices. Then

1
N
∑N
k�1

R k( )
ij � R*ij + ℴP

1
n
( ), (56)

where R*ij is given by Equation 37.
Lastly, the final ingredient of the proof of theorem 2 is Lemma 7

that shows that matrix R*, given by Equation 37, is the effective
resistance of the expected adjacency matrix of (S,P), R* � R[E[A]].

Lemma 7. Let R be the n × n effective resistance matrix of a
network with adjacency matrix A. If

R � 4
n p + q( ) J + p − q

p + q

4
n2q

K , (57)

where J � Jn, and K is the n × n matrix associated with the cross-
community edges,

K � 0 1
1 0
[ ] ⊗ Jn/2. (58)

Then A � P, where P is given by Equation 2.
Proof of lemma 7. The proof is elementary and relies on the

following three identities. First, we recover L†, the pseudo-inverse of
the combinatorial Laplacian L � D − A, from R,

L† � −1
2

I − 1
n
J[ ]R I − 1

n
J[ ]. (59)

We can then recover L from L†; for every α ≠ 0, we have

L � L† + α

n
J[ ]−1 − α

n
J. (60)

Finally, A � −L + diag(L).
This concludes the proof of theorem 2.

4 Discussion of our results

This paper provides analytical estimates of the sample Fréchet
mean network when the sample is generated from a stochastic block
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model. We derived the expression of the sample Fréchet mean when
the probability space G(n, p, q) is equipped with two very different
distances: the Hamming distance and the resistance distance. This
work answers the question raised by Lunagómez et al. [5] “what is
the “mean” network (rather than how do we estimate the success-
probabilities of an inhomogeneous random network), and do we
want the “mean” itself to be a network?”.

We show that the sample mean network is an unweighted
network whose topology is usually very different from the
average topology of the sample. Specifically, in the regime of
networks where minpij < 1/2 (e.g., networks with øn2 but ω(n)
edges), then the sample Fréchet mean is the empty network, and is
pointless. In contrast, the resistance distance leads to a sample
Fréchet mean that recovers the correct topology induced by the
community structure; the edge density of the sample Fréchet mean
network is the expected edge density of the random network
ensemble. The effective resistance distance is thus able to capture
the large scale (community structure) and the mesoscale, which
spans scales from the global to the local scales (the degree of
a vertex).

This work is significant because it provides for the first time
analytical estimates of the sample Fréchet mean for the stochastic
blockmodel, which is at the cutting edge of rigorous probabilistic
analysis of random networks [12]. The technique of proof that is
used to compute the sample Fréchet mean for the Hamming
distance can be extended to the large class of inhomogeneous
random networks [43]. It should also be possible to extend our
computation of the Fréchet mean with the resistance distance to
stochastic block models with K communities of arbitrary size, and
varying edge density.

From a practical standpoint, our work informs the choice of
distance in the context where the sample Fréchet mean network
has been used to characterize the topology of networks for
network-valued machine learning (e.g., detecting change
points in sequences of networks [2, 8], computing Fréchet
regression [6], or cluster network datasets [7]). Future work
includes the analysis of the sample Fréchet mean when the
distance is based on the eigenvalues of the normalized
Laplacian Wills and Meyer [20].

5 Additional proofs

5.1 Proof of lemma 1

We start with a simple result that provides an expression for the
Hamming distance squared. Let A,B ∈ S, and let E(B) denote the
set of edges of B, and �E(B) denote the set of “nonedges” of B. We
denote by |E(B)| the number of edges in B. Then, the Hamming
distance squared is given by

d2
H A,B( ) � E B( )| |2 + 2 E B( )| | ∑

i,j[ ]∈�E B( )
aij − ∑

i′,j′[ ]∈E B( )
ai′j′

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦
−4 ∑

[i,j]∈�E B( )
[i′,j′]∈E B( )

aijai′j′ + ∑
1≤i<j≤n

aij⎡⎢⎢⎣ ⎤⎥⎥⎦2 (61)

The proof of Equation 61 is elementary, and is omitted for brevity.
We now provide the proof of lemma 1.

Proof of lemma 1. Applying Equation 61 for each network G(k),
we get

F̂2(B) � E B( )| |2 + 2 E B( )| |

× ∑
i,j[ ]∈�E B( )

1
N
∑N
k�1

a(k)ij − ∑
i′,j′[ ]∈E B( )

1
N
∑N
k�1

a(k)i′j′
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦

−4 ∑
[i,j]∈�E B( )
[i′,j′]∈E B( )

1
N
∑N
k�1

a(k)ij a(k)i′j′
⎡⎣ ⎤⎦ + 1

N
∑N
k�1

∑
1≤i<j≤n

a(k)ij
⎡⎢⎢⎣ ⎤⎥⎥⎦2 (62)

Using the expressions for the sample mean Equation 17 and
correlation Equation 18, and observing that

1
N
∑N
k�1

∑
1≤i<j≤n

a(k)ij
⎡⎢⎢⎣ ⎤⎥⎥⎦2 � ∑

1≤i<j≤n
1≤i′< j′≤ n

1
N
∑N
k�1

a(k)ij a(k)i′j′ � ∑
1≤i<j≤n

1≤i′< j′≤ n

Ê ρij,i′j′[ ],
(63)

we get

F̂2(B) � E B( )| |2 + 2 E B( )| | ∑
i,j[ ]∈�E B( )

P̂ij − ∑
i′,j′[ ]∈E B( )

P̂i′,j′
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦

− 4 ∑
[i,j]∈�E B( )
[i′,j′]∈E B( )

Ê ρij,i′j′[ ] + ∑
1≤i<j≤n

1≤i′< j′≤ n

Ê ρij,i′j′[ ]. (64)

Also, we have

E B( )| |2 + 2 E B( )| | ∑
i,j[ ]∈�E B( )

P̂ij − ∑
i′,j′[ ]∈E B( )

P̂i′,j′
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦

� E B( )| |[ −2 ∑
i′,j′( )∈E B( )

P̂i′,j′
⎤⎥⎥⎥⎥⎥⎥⎥⎦ E B( )| | + 2 ∑

i,j( )∈�E B( )
P̂ij

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ 4 ∑

[i,j]∈�E B( )
[i′,j′]∈E B( )

P̂ijP̂i′,j′.

Whence

E B( )| |2 + 2 E B( )| | ∑
i,j[ ]∈�E B( )

P̂ij − ∑
i′,j′[ ]∈E B( )

P̂i′,j′
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦

� E B( )| |[ −2 ∑
i′,j′( )∈E B( )

P̂i′,j′
⎤⎥⎥⎥⎥⎥⎥⎥⎦

× E B( )| | − 2 ∑
i′,j′( )∈E B( )

P̂i′,j′ + 2 ∑
1≤i<j≤n

P̂ij
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ + 4 ∑

[i,j]∈�E B( )
[i′,j′]∈E B( )

P̂ijP̂i′,j′

� E B( )| |[ −2 ∑
i′,j′( ) ∈ E B( )

P̂i′,j′
⎤⎥⎥⎥⎥⎥⎥⎥⎦2 + 2

× ∑
1≤i<j≤n

P̂ij E B( )| | − 2 ∑
i′,j′( )∈E B( )

P̂i′,j′
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ + ∑

1≤i<j≤n
P̂ij

⎡⎢⎢⎣ ⎤⎥⎥⎦2 + 4

× ∑
[i,j]∈�E B( )
[i′,j′]∈E B( )

P̂ijP̂i′,j′ − ∑
1≤i<j≤n

P̂ij
⎡⎢⎢⎣ ⎤⎥⎥⎦2
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Completing the square yields

E B( )| |2 + 2 E B( )| | ∑
i,j[ ]∈�E B( )

P̂ij − ∑
i′,j′[ ]∈E B( )

P̂i′,j′
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦

� E B( )| | − 2 ∑
i′,j′( ) ∈ E B( )

P̂i′,j′ + ∑
1≤i<j≤n

P̂ij
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦2 + 4 ∑

i,j[ ]∈�E B( )
i′,j′( )∈E B( )

P̂ijP̂i′,j′

− ∑
1≤i<j≤n

P̂ij
⎡⎢⎢⎣ ⎤⎥⎥⎦2

� ∑
i′,j′( )∈E B( )

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1 − 2P̂i′,j′( ) + ∑
1≤i<j≤n

P̂ij
⎤⎥⎥⎦2 + 4 ∑

[i,j]∈�E B( )
[i′,j′]∈E B( )

P̂ijP̂i′,j′

− ∑
1≤i<j≤n

1≤i′< j′≤ n

P̂ijP̂i′,j′.

(65)
We can then substitute Equations 63, 65 into Equation 64, and we
get the result advertised in the lemma,

F̂2(B) � ∑
i,j[ ]∈E B( )

1 − 2P̂ij( ) + ∑
1≤i<j≤n

P̂ij
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦2 − ∑

1≤i<j≤n
1≤i′< j′≤ n

P̂ijP̂i′,j′P̂i′,j′

− Ê ρij,i′j′[ ] + 4 ∑
[i,j]∈�E B( )
[i′,j′]∈E B( )

P̂ijP̂i′,j′ − Ê ρij,i′j′[ ],
(66)

where we recognize the first term as δ2(B, P̂).

5.2 Proof of lemma 3

Proof of lemma 3. We recall that the residual ζN(B) is a sum of
two types of terms,

ζN B( ) � ∑
[i,j]∈�E B( )
[i′,j′]∈E B( )

P̂ijP̂i′,j′ − Ê ρij,i′j′[ ]. (67)

The sample mean P̂ij, Equation 17, is the sum of N independent
Bernoulli random variables, and it concentrates around its mean
pij. The variation of P̂ij around pij is bounded by Hoeffding
inequality,

∀1≤ i< j≤ n,∀N≥ 1, P A(k) ~ G n, p, q( );(
P̂ij − pij

∣∣∣∣ ∣∣∣∣≥ δ)≤ exp −2Nδ2( ). (68)

Let ε> 0, and let α �def
����������
log(n/ ���ε/2√ )
√

, a union bound yields

∀N≥ 1,P A(k) ~ G n, p, q( ); ∀1≤ i< j< n, P̂ij − pij

∣∣∣∣ ∣∣∣∣≤ α��
N

√( )
> 1 − ε/4. (69)

The sample correlation, ρ̂ij,i′j′, Equation 18, is evaluated in
Equation 67 for [i, j] ∈ E(B) and [i′, j′] ∈ �E(B). In this case,
the edges [i, j] and [i′, j′] are always distinct, thus a(k)ij and

a(k)i′j′ are independent, and a(k)ij a(k)i′j′ is a Bernoulli random
variable with parameter pijpi′j′. We conclude that ρ̂ij,i′j′ is the
sum of N independent Bernoulli random variables, and thus
concentrates around its mean, pijpi′j′.

Let ε> 0, and let β �def
�����������
log(n2/ ��2ε√ )
√

, Hoeffding inequality and a
union bound yield

∀N≥ 1, P 1≤ i< j≤ n, 1≤ i′< j′≤ n,(
i, j[ ] ≠ i′, j′[ ], Ê ρij,i′j′[ ] − pijpi′j′

∣∣∣∣∣ ∣∣∣∣∣≤ β��
N

√ )> 1 − ε/2,
(70)

Combining Equations 69, 70 yields

∀ε> 0, ∃α1, α2, β,∀N≥ 1, ∀ 1≤ i< j≤ n,∀1≤ i′< j′≤ n,

i, j[ ] ≠ i′, j′[ ], P̂ij − pij

∣∣∣∣ ∣∣∣∣≤ α1��
N

√ , P̂i′,j′ − pi′j′
∣∣∣∣ ∣∣∣∣≤ 1��

N
√ ,

and Ê ρij,i′j′[ ] − pijpi′j′
∣∣∣∣∣ ∣∣∣∣∣≤ β��

N
√ , (71)

with probability 1 − ε. Lastly, combining Equations 67, 71, we get the
advertised result,

∀ ε> 0,∃ c> 0,∀ N≥ 1,

P⎛⎝∣∣∣∣∣∣∣∣∣∣ ∑
[i,j]∈�E B( )
[i′,j′]∈E B( )

P̂ijP̂i′,j′ − pijpi′j′ − Ê ρij,i′j′[ ] + pijpi′j′

∣∣∣∣∣∣∣∣∣∣≤ c��
N

√ ⎞⎠
� P ζN B( )∣∣∣ ∣∣∣≤ c��

N
√( )> 1 − ε. (72)

5.3 Proof of lemma 4

We first provide some inequalities (the proof of which are
omitted) that relate δ to the matrix norm ‖ ‖1.

Lemma 8. Let A,B and C be weighted adjacency matrices, with
aij, bij, cij ∈ [0, 1]. We have

1
2
‖A − B‖1 ≤ δ A,B( ), and 1

2
‖A − C‖1 ≤ δ A,B( ) + δ B,C( ). (73)

Proof of lemma 4. Let B, m̂[P] ∈ S. From the definition of F̂ (see
Equation 21) we have

F̂(B) − F̂ m̂ P[ ]( ) � δ2 B, P̂( ) − δ2 m̂ P[ ], P̂( )
� δ B, P̂( ) − δ m̂ P[ ], P̂( )( )

× δ B, P̂( ) + δ m̂ P[ ], P̂( )( ). (74)

Because of Lemma 8, we have

δ B, P̂( ) + δ m̂ P[ ], P̂( )≥ ‖B − m̂ P[ ]‖1. (75)
Also,

δ B, P̂( ) − δ m̂ P[ ], P̂( ) � ∑
1≤i<j≤n

bij − m̂ P[ ]ij − 2 ∑
1≤i<j≤n

p̂ij bij − m̂ P[ ]ij( )
� ∑

1≤i<j≤n
1 − 2p̂ij( ) bij − m̂ P[ ]ij( ).

(76)
The entries of m̂[P] are equal to 1 only along E(m̂[P]), and 0 along
�E(m̂[P]). Therefore,
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δ B, P̂( ) − δ m̂ P[ ], P̂( ) � ∑
i,j[ ]∈�E m̂ P[ ]( )

bij 1 − 2p̂ij( )
+ ∑

i,j[ ]∈E m̂ P[ ]( )
1 − bij( ) 2p̂ij − 1( ). (77)

Let ε> 0, because of the concentration of p̂ij � P̂ij around pij,
∃N0, ∀N≥N0,

P 1≤ i< j≤ n, P̂ij − pij

∣∣∣∣ ∣∣∣∣< ε/2( )> 1 − ε. (78)

We recall that we assume that |pij − 1/2|> η, 1≤ i< j≤ n, and
therefore we get that for all 0< ε< 2η,

P 1≤ i< j≤ n, 2P̂ij − 1
∣∣∣∣ ∣∣∣∣> 2η − ε( )> 1 − ε. (79)

Because m̂[P] is constructed using the majority rule, we have

2P̂ij − 1
∣∣∣∣ ∣∣∣∣ � 2p̂ij − 1 if i, j[ ] ∈ E m̂ P[ ]( ),

1 − 2p̂ij if i, j[ ] ∈ �E m̂ P[ ]( ).{ (80)

Substituting the expression of |2P̂ij − 1| in Equation 79 yields the
following lower bounds, with probability 1 − ε,

2p̂ij − 1> 2η − ε if i, j[ ] ∈ E m̂ P[ ]( ),
1 − 2p̂ij > 2η − ε if i, j[ ] ∈ �E m̂ P[ ]( ).{ (81)

Inserting the inequalities given by Equation 81 into Equation 77
gives the following lower bound that happens with probability 1 − ε,

δ B, P̂( ) − δ m̂ P[ ], P̂( )≥ 2η − ε( )
× ∑

i,j[ ]∈E m̂ P[ ]( )
1 − bij( ) + ∑

i,j[ ]∈�E m̂ P[ ]ij( )
bij

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦. (82)

We bring the proof to an end by observing that

‖B − m̂ P[ ]‖1 � ∑
1≤i<j≤n

bij − m̂ P[ ]ij
∣∣∣∣ ∣∣∣∣

� ∑
i,j[ ]∈E m̂ P[ ]( )

bij − 1
∣∣∣∣ ∣∣∣∣ + ∑

i,j[ ]∈�E m̂ P[ ]( )
bij
∣∣∣∣ ∣∣∣∣

� ∑
i,j[ ]∈E m̂ P[ ]( )

1 − bij( ) + ∑
i,j[ ]∈�E m̂ P[ ]( )

bij, (83)

whence we conclude that

δ B, P̂( ) − δ m̂ P[ ], P̂( )≥ 2η − ε( )‖B − m̂ P[ ]‖1, (84)

with probability 1 − ε. Finally, combining Equations 75, 84, and
letting α �def2η − ε, we get the inequality advertised in Lemma 4,

α‖B − m̂ P[ ]‖21 ≤ F̂(B) − F̂ m̂ P[ ]( )∣∣∣∣ ∣∣∣∣, (85)

with probability 1 − ε.

5.4 Proof of Equation 55

We show that |〈ui − uj,Q(ui − uj)〉|≤ ( 1
di
+ 1

dj
) 8

�
2

√
(np)3/2

almost surely.
Proof. Let i, j ∈ [n]. We have.

〈ui − uj,Q ui − uj( )〉∣∣∣∣∣ ∣∣∣∣∣ � 〈ui − uj,∑n
m�3

λm
1 − λm

Πm ui − uj( )〉∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (86)

≤ ‖∑n
m�3

λm
1 − λm

Πm‖‖ui − uj‖2

≤
1
di

+ 1
dj

{ }‖∑n
m�3

λm
1 − λm

Πm‖. (87)

Now

‖∑n
m�3

λm
1 − λm

Πm‖2

� ∑n
m�3

λm
1 − λm

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2 Πm‖ ‖2 ≤ ∑n
m�3

2 λm| |2 Πm‖ ‖2 ≤ 2 max
n

m�2
λm| |[ ]2,

(88)

because the Πm are orthonormal projectors such that ∑n
m�1Πm � I.

Using the following concentration result (e.g., Theorem 3.6 in [44]),

max
n

m�3
λm| | ≤ 8���

np
√ almost surely. (89)

we conclude that

〈ui − uj,Q ui − uj( )〉∣∣∣∣∣ ∣∣∣∣∣ ≤ 1
di

+ 1
dj

( ) 8
�
2

√

np( )3/2 almost surely. (90)
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