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Nitrogen fixation is crucial for plant growth and global agriculture, especially with
the projected population growth requiring a significant increase in food
production. Traditional nitrogen fixation relies on the Haber-Bosch (H-B)
process, which is energy-intensive and environmentally harmful due to
greenhouse gas emissions. Emerging technologies, such as cold plasma, offer
promising alternatives with lower energy consumption. Cold plasma facilitates
reactive nitrogen species generation under ambient conditions, potentially
improving the production efficiency of nitrogen oxides (NOx). However,
optimizing cold plasma nitrogen fixation requires a synergy between
experimental and theoretical approaches. Accurate input data are essential for
refining theoretical models, which can then guide the design of more efficient
processes. This integrated approach can leverage renewable energy, operate on
smaller scales, and minimize environmental impacts, making cold plasma a
sustainable solution for future nitrogen fixation needs.
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1 Introduction

Nitrogen (N) is essential for plant development, as it is needed for synthesizing proteins
and nucleic acids. Nitrogen fixation is a crucial process for providing these compounds. This
is a big issue considering an expected population of nine billion people by 2050 that would
require an expansion of global agricultural output by 70%–100% [1].

The established synthesis technology for N fertilizers relies strongly on the Haber-Bosch
(H-B) process, to convert N2 gas into biologically available ammonia (NH3). The current
industrial production of reactive N (RNS) is 120 teragrams per year (Tg yr−1), twice the
amount from all-natural land processes (63 Tg yr−1 [2]). Fertilizer production consumes
about 80% of this RNS [3], and is essential for sustaining half of the global human
population [4]. However, the efficiency of RNS utilization is poor, with 50%–70% lost to the
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environment [5, 6]. The accumulation of excess RNS, such as NH3,
nitrous oxide (N2O), and nitrate (NO3

−), in the atmosphere and
ecosystems leads to serious environmental and climate issues [2, 3, 7,
8]. These issues encompass alterations in ecosystem productivity
and biodiversity [9, 10], the eutrophication and nitrate pollution of
freshwater [10, 11], the deterioration of ozone and air quality [11,
12], and the exacerbation of climate change due to greenhouse
gases [3, 7].

At the beginning of the 20th century, the fertilizers produced by
H-B substituted the non-renewable mineral ones. Nowadays, the
H–B process drains more than 1% of the globally produced energy,
releasing more than 3 × 1011 kg year−1 of CO2, and requiring about
2% of the global natural gas production, to synthesize the needed
hydrogen for NH3 synthesis [13–15]. Therefore, while H-B
processes should be made more sustainable [16], greener
strategies in nitrogen fixation should also be pursued. In Figure 1
the energy consumption in terms of MJ consumed per N mole of
various processes is represented together with the calculated
theoretical limits. Among the explored processes for nitrogen
fixation, the most efficient is still the H-B, surpassed only by
biological nitrogen fixation. Other industrial-scale processes
adopted in the past like the thermal plasma-based Birkeland-
Eyde, or the Frank-Caro process leading to calcium cyanamide
are far more energy-consuming. Metallo-complexes fixation
currently has poor efficiency and a theoretical limit far from the H-B.

Since the 1970s, plasma technologies have been pointed to as a
possible alternative for large-scale NH3 production, in the presence
of a catalyst or not. Different plasma sources have been proposed for
ammonia synthesis, such as glow discharge, gliding arc, microwave,
radio frequency, pulsed discharges, and dielectric barrier discharges.
The current reported energy yield for the plasma and catalytic
materials process is ranging from 1.71–58.8 MJ/mol N [17–33].
Best performances are achieved by pulsed discharge systems and
dielectric barrier discharge reactors at atmospheric pressure that
facilitates the integration of catalytic materials.

Novel approaches based on Cold Plasma are currently being
extensively investigated and promise versatile applications. These
innovative methods entail subjecting agricultural systems to non-

thermal plasma, generating reactive species such as reactive oxygen
species (ROS) and reactive nitrogen species (RNS) [34, 35]. One
crucial allure of these technologies is the achievement of lower
energy consumption (EC) than the H-B process, according to
theoretical calculations [36]. It is our opinion, that the main
advantage of cold plasma technology is related to their intrinsic
non-thermal nature and the energy transfer processes involved in
reactive species productions. We will try to give our opinion on the
elementary processes leading to nitrogen oxide production and their
potential impact on the agrifood industry of this technology
reporting briefly on the current status of the ongoing research.

2 Plasma nitrogen fixation in dry air

Direct, efficient production of NOx from air, at variance with
current indirect production by NH3 synthesis, using H-B process,
would open plenty of possibilities in recycling. NOx allows the direct
synthesis of nitric acid (HNO3) [37], which can be used for chemical
fertilizers production, but also the fast maturation of natural
fertilizers from livestock slurry, an environment-friendly process,
which is currently being developed [38].

2.1 Plasma production of NOx from air:
the mechanism

Plasma production of NOx from air, such as in lightning, by a
thermal plasma was industrially realized by the Birkeland-Eyde
process. The NOx production efficiency of a few percent limits its
application to a handful of special uses thus making the process not
competitive with current industrial processes.

An energy analysis [15, 36] on the use of cold plasma can
however envisage a completely different development, with a
theoretical maximum limit of 35% efficiency [36], exceeding the
current total efficiency of industrial NOx production [37].

Cold plasma behavior is complex and influenced by numerous
parameters and conditions. For instance, electron temperatures

FIGURE 1
Comparison of the energy consumption for nitrogen fixation with different methods (Reprinted from [15] with permission of Elsevier B.V.).
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might reach 10000 K while gas remains at 400 K and molecular
vibrational temperature at 3000 K [39]. To properly study the
kinetics of a cold plasma, therefore we need to know vibrational
state-to-state processes involving, at least, electron-molecule (e-M)
and molecule-molecule collisions. e-M processes transfer electron
energy from the discharge to the internal energy, mostly vibrational,
of air molecular species. Then, by molecular collisions and
vibration-to-vibration (VV) exchange processes, as in N2 (v1)+N2

(v2)→N2 (v1-1)+N2 (v2+1), a significant fraction of molecules
increases its vibrational energy [36, 40], provided low-lying levels
are continuously replenished by e-M processes. When vibrational
energy reaches oxygen dissociation energy (≈5eV), O atoms can
initiate the Zel’dovich chain (Equations 1, 2), while N2 remains
mostly undissociated.

O + N2 v( ) → NO v’( ) +N 1st Zel′dovich reaction (1)
N +O2 v( ) → NO v’( ) +O 2nd Zel′dovich reaction (2)

This is favorable for energy efficiency because it is more efficient
to make N2 react rather than obtaining N atoms from dissociation.
For the same reasons processes involving excited electronic states of
N2 and O2 should be avoided. The ideal Zel’dovich reaction path of
Equations 1, 2 is thought to be the most efficient one [36, 40].
However, many other concurrent collision processes take place, such
as, for example,: vibration-to-translation (VT) deactivation
processes (as in N + O2(v)→N + O2 (v-1)); the reverse of the
Zel’dovich (Equation 1) reaction; plasma–walls vibrational
deactivation collision; NO dissociation/reaction by collisions with
other air species.

2.2 Cold plasma production of NOx from air:
coupling modeling with experiment issue

The non-equilibrium nature of cold plasmas requires a guiding
model to design experiments to investigate the possible reaction
pathways occurring in the discharge systems. Therefore, chemical
kinetics modelling is crucial in this context, provided the data used
as input for this modelling is accurate and detailed. Up to now, no
one has been able to replicate the predictions reported in Ref. [36]
(except for [41]) by detailed modelling. Indeed, the main problem
for modelling is the extremely approximate data taken as input. For
example, the first Zel’dovich reaction Equation 1, i.e., the core of the
NO production mechanism from air, has been known for many
years only by empirical models. The model of Gordiets [42]
considered the possibility of reaction once the reaction threshold
has been reached, which occurs, at room temperature, when N2 is at
least in v = 12 state. More recent studies [43–46] contemplating the
adiabatic path to reaction on the triplet potential energy surfaces
(PES), showed a much more complex situation. In [45] a complete
compilation of vibrationally detailed data (i.e., considering the whole
vibrational ladder of reagents and products) concerning the
adiabatic path has been calculated, with an excellent agreement
with the experimental thermal rate. The differences in results
obtained from the simple models adopted in the past and still
used in the literature are huge (orders of magnitude, see [45,
47]), particularly in the energy region between vibrational levels
v = 12–30 where most of the reaction occurs. Another aspect of great

impact is the determination of the final NO vibration in reaction
(Equation 1). In [48] a comparison of a kinetic scheme in air is
presented using the same set of rate coefficients calculated in [45, 46,
49, 50], but considering state-to-state or only initially state-selected
rate coefficients in (1). The results of N and NO production are
qualitatively different, stressing the importance of accurate and
detailed molecular dynamics calculations as input of the kinetics.

With a higher probability than reaction (Equation 1), the VT
deactivation:

O +N2 v( ) → O + N2 v′< v( ) VTdeactivation (3)

can take place starting from the same collision. This is a big issue
for nitrogen fixation because it depletes the N2 vibrational
population essential for good efficiency in Equation 1. In fact, in
cold plasmas, the strongly endothermic reaction (Equation 1) should
be preferentially activated by vibrational pumping of molecular
species involved rather than by heating, in order to keep the rate
of VT processes like (Equation 3) low. However, the accurate rate
value of the process (Equation 3) for v > 1 has remained unknown
for decades, with only the v = 1 to v’ = 0 rate coefficient known
experimentally. The only known result, however, was also
dramatically different (even 20 orders of magnitude at 300 K)
from theoretical results obtained by quasi-classical (QCT),
semiclassical (SC), and quantum methods [45, 51, 52]. Only in
very recent years the problem has been solved [52, 53], by
recognizing the fundamental role of vibronic transitions of the
collisional system and calculating other transitions from v ≠ 1.
Indeed, process (Equation 3) shows even other issues when studied
theoretically. The methods used for studying molecular collisions of
heavy particles can be QCT, SC, or quantum methods on a scale of
increasing accuracy and computational cost. In studies on air species
aiming to create vibrationally detailed databases, using accurate
quantum methods is simply unfeasible. While these methods are
essential for establishing benchmarks (as demonstrated in [44]),
they are unsuitable for the comprehensive calculations necessary for
kinetic modeling. Semiclassical and, first, QCTmust be used instead,
requiring huge computational resources. However, some processes
are difficult to treat even with these simpler methods, due to their
specific limitations. In particular, the process in Equation 3 cannot
be reproduced theoretically by QCT at low total energy [54].
However, at collision energy values comparable to or higher than
the reaction (Equation 1) threshold, QCT becomes suitable for
accurate results for the inelastic process (Equation 3).
Deactivation processes are surely present in all collision processes
of interest in air plasmas. Most of the VT data used in current kinetic
models of air plasmas have been calculated by methods based on a
forced harmonic oscillator (FHO) semiclassical model [55] or by
QCT [56, 57]. However, FHO is designed to treat non-reactive cases
at not very high total energy, while QCT tends to be more accurate at
higher energy, especially over the threshold for reactions originating
from the collisions considered [46]. Merging of different semi- and
quasi-classical methods for cold plasma modeling input data
calculation is therefore desirable. This merging of methods could
be successfully applied potentially to all collisional systems involving
air species of interest in this context, such as N2-O2, from which O
atoms production depends, and research is active in this sense
[39, 46, 54].
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Another important collisional system is of course the second
Zel’dovich reaction. Even in this case, recent results in [49] are quite
complete, accurate, and more suited for nitrogen fixation studies
than older studies on this topic [58].

2.3 Current experimental approaches for
nitrogen fixation

In most air plasmas, the Zel’dovich reactions (Equations 1, 2)
leading to NO productions can further proceed towards NO2,
resulting in a gas-phase mixture of nitrogen oxides referred to as
NOx. These reactions involve ozone or oxygen radicals oxidizing NO
(Equations 4–6):

O* +NO → NO2 (4)
O* + O2 → O3 (5)

O3 + NO → NO2 + O2 (6)

Following earlier studies on thermal plasma (i.e., electric arc
exploiting the Birkeland-Eyde reaction), other plasma types and
reactors have been examined for NOx production. This has led to an
overabundance of possible sources, making any comparison
between different methodologies quite complicated, as no
standard reactors or even measurements techniques for different
parameters are widely accepted. Energy consumption, for example,
is dependent on power and NOx concentration. NOx concentrations
can be determined via a plethora of methods: Fourier-transform
infrared spectroscopy, mass spectroscopy, chemiluminescence, ion
chromatography, as well as a nondispersive infra-red sensor with an
ultra-violet sensor through a gas analyzer, in situ laser induced
fluorescence, laser Raman spectroscopy, optical absorption. Power
can be calculated by the Lissajous method [59, 60], numerically
integrating the product of the voltage and current and multiplying
by the frequency, or by calorimetric methods by multiplying air
density, gas temperature, heat capacity of the air, and volume [61].
Moreover, for a real industrial application, the total power should
include all the energy consumption in the production pipeline, such
as gas flow system and storage, power sources absorption, etc., that
are not always considered.

A great number of plasma sources have been investigated in the
context of nitrogen fixation into NOx. Gliding arc (GA) reactors are
promising for gas conversion, achieving efficient NOx production
with reduced energy. GA plasmas feature a reduced electric field of
less than 100 Td and electron energies around 1 eV, ideal for the
vibrational excitation of gas molecules. Reactor optimizations,
including controlling pressure, specific energy input, and reactor
designs, enhance NOx yield and energy efficiency across various
setups (EC 0.67–4.8 MJ/mol N) [62–69].

NOx generation in transient spark discharge, which involves
non-thermal and thermal plasma phases, has also been achieved.
Although a limited volume, which means that only a portion of the
N2 gas is exposed to the plasma, innovations like floating electrodes
could improve NOx yield and efficiency, reducing energy needs (EC
1.9–40 MJ/mol N) [62, 70–74].

Dielectric Barrier Discharge (DBD) systems could be of great
interest for the great versatility they offer in reactor design and for
the possibility to operate them at atmospheric pressure. For

example, other than simple cylindrical, plug-flow-like reactors,
it is possible to incorporate water (for nitrogen fixation into NO3)
or other materials in the interelectronic gap. Packed-bed DBD
reactors with various catalysts improve NOx yield, resulting in
higher energy costs. Promising catalytic materials include γ-Al2O3

and Al2O3-supported metallic nanoparticles (EC 17–33MJ/mol N)
[62, 75–77].

Low-pressure microwave plasmas achieved the best energy
consumption and NO yield. However, past claims (EC =
0.28 MJ/mol N [41]) are unconfirmed. Energy use excludes
reactor cooling and vacuum needs, that eventually add up and
make total consumption higher (EC 0.84–3.76 MJ/mol N) [78, 79].

NOx formation by plasma jets in air or N2 reacting with water
results in NO2 and NO3 due to oxygen presence. Key factors
affecting NOx production include gas composition, flow rate, and
temperature. Studies show reducing the flow rate and increasing
oxygen content boosts NOx concentration, while lower gas
temperature and electric field enhance production efficiency (EC
0.42–3.6 MJ/mol N) [80–89].

From the existing literature, it can be concluded that efficient
NOx production in plasma systems relies on optimizing reduced
electric fields to favor vibrational excitation (enhancing Zel’dovich
reactions), controlling gas temperature to prevent NO reconversion,
and utilizing appropriate catalysts. Key parameters include voltage,
electric field strength, gas composition and flow rates, and
reactor design.

All the reported results show that the current technology is still
far from theoretical limits, but is closing the gap between
H-B processes.

3 Future perspective

In countries where agriculture is significant, environmentally
sustainable HNO₃ production could serve as an important power-
to-chemicals channel, accumulating excess renewable power into
valuable chemicals using cold plasma reactors operating at room
temperature and atmospheric pressure, thus requiring lower
investments than an H-B plant [37]: this would be vital to
boosting agriculture in low-income countries. Moreover, a
diffused grid energy/fertilizer production usage would be more
resilient to natural disasters and armed conflicts than centralized
power production and fertilizer import, avoiding direct and indirect
related import, transportation, and distribution costs. In our opinion
the most viable possible solutions are currently two: production of
hybrid fertilizer from slurry and plasma-activated water.

3.1 Hybrid fertilizers

Efficient air plasma production of NOx offers significant
advantages for the fertilizer industry, allowing direct synthesis of
nitric acid (HNO3) [37], for chemical and hybrid fertilizers.
Acidification of livestock slurry process has been used in
agriculture [90] since 2003, but the novelty is the easy-to-manage
direct fertilizer production by air plasma [38]. The latter process
facilitates easy production of fertilizers from slurry and air, with
benefits including recycling livestock wastewater, eliminating
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inorganic feedstock, preserving natural manure components,
shorter organic fertilizer production times, avoiding stocking
dangerous acids, reducing greenhouse gases (i.e., N2O and CH4),
and preventing ammonia emissions. It supports precision
agriculture [91], minimizes environmental losses, and can also be
applied in principle to human wastewater. Preliminary experiments
in the fields show that this “hybrid” (artificial/natural) manure can
be extremely effective [92].

3.2 Plasma-activated water

Concurrently, alongside advancements in low-temperature
plasma applications, plasma-activated water (PAW) has surfaced
as a cutting-edge tool in modern agriculture, with the potential to
enhance crop productivity andmitigate industry challenges [93–98].
PAW production involves subjecting water to non-thermal plasma,
generating reactive species such as ROS and RNS. The
physicochemical alterations induced by plasma treatment on
water can be tailored for diverse applications [99]. PAW reactive
species elicit beneficial effects on plants, inducing physiological and
biochemical changes conducive to growth and stress tolerance [97,
98, 100]. PAW offers a sustainable and eco-friendly alternative to
conventional chemical fertilizers and pesticides, applicable in
watering crops, seed soaking, and foliage spraying.

4 Conclusion

Concerning future developments in nitrogen fixation, cold
plasma seems to be the only promising and industrially scalable
method because its use could further lower the EC of the process,
based on thermodynamic calculations. The highest energy efficiency
is expected when vibrationally excited nitrogen molecules are
formed in sufficient quantities, the temperature of the resulting
gases is not high enough to decompose the reaction products, and
the reaction is channeled into a particular reaction pathway.
Atmospheric pressure cold plasma nitrogen fixation has many
environmental advantages as it requires only electricity, air, and,
depending on the application, wastewater (hybrid fertilizers) or
water (PAW) as feedstock. Contrary to large-scale high-pressure
ammonia synthesis plants, plasma nitrogen fixation may be
performed on a much smaller scale, locally producing the
fertilizers and eliminating the problems associated with fertilizers’
transportation and storage. Moreover, such plants can be ideally
powered by renewable energy sources, further reducing the
environmental impact of fertilizer production.

However, detailed modeling tools are needed to maximize cold
plasma nitrogen fixation efficiency. An essential step is establishing

an efficient dialogue between practical and theoretical experiments:
accurate data sets should be fed to models so that they could shed
light on the mechanism pathways that should be preferred to
optimize the reaction.
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