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Thermal protection systems (TPSs) are important components of reusable
spacecraft, and their assembly quality has a crucial impact on flight safety.
Owing to the complex assembly process and variable states of spacecraft
thermal protection systems, assembly parameters may vary under different
assembly states. Therefore, to obtain assembly parameters accurately and
efficiently under different assembly states, in this study, 3D point cloud data
and fiber optic sensor data were fused to develop an assembly parameter update
method for assembly process state changes. Firstly, based on the measured data
of thermal protection components and load-bearing structure, the gap, flush and
matching parameters solution model are proposed. Secondly, to address the
deformation problem of the load-bearing structure caused by changes in
assembly status, a fusion method based on laser scanning and sensor
detection was devised to achieve deformation prediction of the assembly
structure during the assembly process. Thirdly, based on the assembly
parameter solution model and point cloud prediction model, a constraint-
based assembly parameter optimisation model was established, and an
improved quantum particle swarm optimisation (LQPSO) algorithm was
employed to achieve assembly parameter updates oriented toward changes in
assembly status. Finally, an experimental system for array-based thermal
protection structure simulation was established to validate the proposed
method. The results show that the proposed parameter update method can
achieve ideal results for different assembly state simulation components.
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1 Introduction

When entering the atmosphere, a reusable spacecraft generates a large amount of heat
owing to the friction between the high-speed gas and the outer surface of the spacecraft,
resulting in a rapid increase in the surface temperature [1, 2]. To ensure the safety and
internal load-bearing structure of a spacecraft, a thermal protection system is required [3,
4]. Array-type thermal protection components are reusable TPS applied to spacecraft. They
are laid on the surface of the spacecraft in the form of an array and leave gaps. The surface
profile requirements are high, and it is a non-contact fit form. The gaps between
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components can not only reserve space for the thermal expansion
deformation of individual components but also coordinate the load
deformation between components. Excessive step differences
between components can cause local overheating on the
windward surface, thereby increasing the local temperature of the
spacecraft surface. Therefore, array-type thermal protection
structures require accurate positioning, equal spacing, and
continuous curvature during assembly [5].

The traditional assembly and positioning of array thermal
protection components are achieved through manual marking
and positioning using positioning cards. However, owing to the
lack of sufficient positioning benchmarks for array component
assembly and the existence of manufacturing deviations in
spacecraft bodies and components, traditional manual assembly
processes cannot meet the precise assembly and positioning
requirements of thermal protection structures, including the
requirements for gaps and flush between TPS components, as
well as the requirements for the fit between thermal protection
components and the body. Kun [6] proposed an automatic gap and
flush measurement method for aircraft skin seams based on three-
dimensional (3D) point cloud data for the aforementioned assembly
positioning parameters. The seam points were obtained from the
entire scanning point cloud of the aircraft skin surface, and the
designed calculation model was applied to gap and flush
measurements. Wang [7] combined laser-tracking and laser-
scanning systems to obtain wing wall panel structural data and
evaluate the fitting clearance of the assembly model. Hui [8]
proposed a gap and flush measurement method based on virtual
matching to address the limitations of existing contact and non-
contact gap surface difference measurement methods. The method
generates measurement points through UG and extracts the gap and
flush of the part at the measurement point position, which was used
for model measurement of automotive sheet metal parts. Li [9]
proposed a nonideal geometric feature model based on measured
data for the assembly of parts with complex assembly features, which
was applied to the thermal insulation tiles of an aircraft to simplify
discrete point set data. The above research solves the gap and flush
assembly parameters through different methods. However, most of
the current research was focused on the assembled products and
verifies the results based on 3D scanning point clouds. There was not
much attention paid to the assembly parameters during the
assembly process.

Because of the complex structure and numerous components of
spacecraft TPS, multiple assembly processes, such as trial assembly,
adjustment, disassembly, and reassembly, are often required during
the assembly process. Depending on the assembly process and
process requirements, a spacecraft may undergo different
assembly state changes, such as tool replacement, component
assembly, and tool rotation. These situations often cause varying
degrees of deformation [10] in the external structure of the
spacecraft, making the previous trial assembly process unsuitable
and affecting the overall assembly cycle and quality [11–13].

Therefore, to assist in the assembly of TPSs with high efficiency
and quality, a method was developed in this study for updating
assembly parameters based on changes in the assembly process
status, which solves the problem of long assembly cycles and low
quality during the assembly of TPSs. First, based on a measured
model of thermal protection components [14, 15], a gap order

solution model is proposed. For the curved fitting structure
between the load-bearing structure and thermal protection
components, a fitting degree parameter solution model is used to
obtain the assembly parameters of thermal protection components.
Second, in response to the problem of assembly structure
deformation caused by changes in assembly status, a fusion
method based on laser scanning [16] and sensor detection [17] is
proposed to obtain changes in the shape of the spacecraft load-
bearing structure quickly and accurately and predict the assembly
structure deformation. Based on the assembly parameter solution
model and the assembly structure deformation prediction model
[18], a constraint-based assembly parameter optimization model
was established to achieve assembly parameter updates oriented
toward changes in the assembly status [19]. Based on an array-type
thermal protection structure simulation, the feasibility of the
assembly parameter optimisation and update method in this
study was verified.

Overall, our contributions are summarized as follows:

1) we are based on the measured data of thermal protection
components and load-bearing structure, the gap, flush and
matching parameters solution model are proposed.

2) we devise a fusion method based on laser scanning and sensor
detection to achieve deformation prediction of the assembly
structure during the assembly process.

3) We establish a constraint based on assembly parameter
optimisation model based on constraint and an improved
quantum particle swarm optimisation (LQPSO) algorithm
was employed to achieve assembly parameter updates
oriented toward changes in assembly status.

2 Article types

Application of Acquisition and Application of Multimodal
Sensing Information - Volume II.

3 General scheme

In the assembly process of spacecraft thermal protection
structures, there are often situations in which the assembly
parameters are not applicable because of changes in the assembly
status. To address this issue, a framework for updating the assembly
parameters based on changes in the assembly process status is
proposed. Its model is shown in Figure 1. The specific
implementation steps are as follows. (1) Based on the measured
data of the thermal protection components, a gap and flush model is
used. The three-dimensional (3D) point cloud is transformed into
two-dimensional (2D) point data by inserting a cross section. The
boundary points and critical point positions are determined by
identifying the curvature mutation points, and the gap and flush
parameters are calculated using the solution model. (2) For a typical
surface matching structure between the load-carrying structure and
thermal protection components, a matching model for curved
surfaces is employed to calculate the average distance from the
component to the load-carrying structure. (3) To address the
problem of assembly structure deformation caused by changes in
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the assembly status, a fusion method based on laser scanning and
sensor detection is proposed. Based on the measured data of the
initial state of the load-carrying structure, the surface fiber
monitoring data of the load-carrying structure under different
assembly states are obtained [20]. The 3D point cloud data and
fiber monitoring waveform data are fused to establish a point cloud
prediction model for assembly process state changes based on
heterogeneous data, and the measured data of the bearing
structures in different assembly states are obtained. (4) Based on
the assembly parameter solution model and assembly process state
point cloud prediction model, a constraint-based assembly
parameter optimisation model is used. The multi-objective
problem [21] is transformed into a single-objective problem
using the weighted-sum method to optimize the component
pose. Based on the improved quantum particle swarm
optimisation (QPSO) algorithm, the assembly parameters are
updated for changes in the assembly state, thereby obtaining the
updated assembly parameters.

4 Methods

4.1 Assembly parameter solving

4.1.1 Measured models expression
In the theoretical design and actual manufacturing of

spacecraft thermal protection components, deviation

information formed in the production process leads to
differences between the measured and theoretical models of
the thermal protection components. To obtain the assembly
parameters of the TPS accurately, an array-type thermal
protection component gap and flush solution model was
established in this study based on the measured model.

The measured model is a mathematical model that represents
the geometric features of parts based on the 3D point cloud data. A
discrete point set is used to represent the measured model. The
discrete point set can intuitively reflect the geometric contours and
external deviations of the parts, and data can be easily obtained. The
data-processing technology is mature and lays the foundation for the
subsequent calculation of the gap and flush of the array-type thermal
protection components. In response to the requirements of the
assembly positioning of array thermal protection components for
the measuredmodel at the part level, based on the geometric features
of complex assembly parts, such as contour information, benchmark
information, and assembly matching, the point cloud model
matching and benchmark alignment principles of statistical
features are applied to improve the iterative closed point
algorithm and achieve high-precision and efficient alignment
registration. The measured data are matched with the theoretical
model through point cloud matching, the manufacturing deviation
information of the model is expressed, the measured data are
integrated into the partlevel model expression, and high-precision
and efficient geometric feature mathematical model expression of
array-type thermal protection components is achieved.

FIGURE 1
General scheme of updating assembly parameters for state changes in the assembly process.
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4.1.2 Gap and flush model
The main parameters that affect the assembly quality of the

array-type thermal protection components are the gap and flush
between the point clouds of two adjacent components. Before
extracting the gap and flush parameters, one must first establish
a mathematical model based on the point cloud data, divide and
define the mathematical model into features, design corresponding
algorithms to extract the features, and finally substitute them into
the mathematical model for calculation. The main parameter-
solving process includes such steps as inserting cross sections,
selecting feature points, and solving the gap and flush parameters.

The characteristics of the mathematical model are as follows.
Figure 2 shows the point cloud data of adjacent components at a
certain section of the seam point cloud. The left side is defined as the
reference component point data, and the right side is the moving
component point data. Curvature mutation points A, B, C, and D are
taken as the feature points of the seam edge, and flush feature points
A and B are defined as the critical points. The gap feature points C
and D are the boundary points. The straight line MN is the line fitted
to the surface of the reference component, and M′N′ is the line

generated by translating the straight line MN to point B. The
distance between straight line MN and straight line M′N′ is the
order difference of the seam point clouds. The boundary points C
and D are the second curvature mutation points of the seam. Points
C and D are projected onto the extension line of the straight line MN
to obtain points C′ and D′, where the length of line C′D′ is the gap
value of the seam point cloud.

4.1.2.1 Section selection
To simplify the process of solving the parameters of thermal

protection components, a cross-sectional projection operation is
performed to convert the 3D point cloud into 2D point data. In the
process of inserting cross sections, the selection of the centre points
of the cross section and the definition of the normal direction are
particularly important for the accuracy of gap and flush parameter
extraction, as shown in Figure 3. The vectors �n1 and �n2 in the figure
represent the normal directions of two sections. Clearly, the normal
direction of the cross section has a significant impact on the gap
value of the seam. The selection of the cross section centre point also
has an important impact on the subsequent assembly parameter
solving. If the centre point values are too dense, the subsequent
calculation workload increases, and the calculation efficiency
decreases. If the centre point value is too sparse, some thermal
protection components may not be constrained.

Based on the expression of the measured model for assembly
information fusion described in the previous section, the measured
data of the thermal protection component are aligned and registered
with the theoretical model. The two are located in the same
coordinate system, and, because of the manufacturing process,
the manufacturing deviation of the thermal protection
component is small. Based on this, a section positioning method
based on theoretical features is proposed, and a range of points near
the section is projected onto the section to obtain 2D seam
point cloud data.

Figure 4A shows a schematic diagram of a discrete point cloud of
a single thermal protection component, where the blue characteristic
line represents the theoretical model boundary line. The point cloud
of two adjacent components facing each other is considered, as
shown in Figure 4B. Feature lines AB and CD in the figure represent
the theoretical models of the two adjacent components. Using the

FIGURE 2
Mathematical model for gap and flush parameter.

FIGURE 3
Influence of different cross-sectional normal directions on gap
parameters.
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reference component, the centre-point position of the section is
selected based on the length of the adjacent theoretical characteristic
lines of the component. As shown in Figure 4B, feature line AB is
taken as the reference, and points ΓP1 and ΓP2 are the centre points of
the joint section. There must be at least one cross-sectional centre
point for each adjacent component. If the adjacent theoretical
feature lines are longer, two to four center points of the section
are selected to ensure the accuracy and efficiency of the subsequent
optimisation calculations. Positioned at the centre point of the cross
section, the direction of the tangent (tangent vector) at the
corresponding position of the feature line is taken as the normal
direction of the cross section. The side length of the cross section is
defined based on the measured point cloud density (usually
20–30 point cloud density distances), as shown in Figure 4C.

4.1.2.2 Feature point selection
After the cross section has been positioned, the discrete points in

the vicinity of the cross section are projected onto the cross section,
the 3D point cloud is converted into 2D point data, and the discrete
point data shown in Figure 2 are obtained. Given a 2D projection
point, based on the gap and flush solution model, extract the feature
points of the 2D seam point cloud. Owing to the different definitions
of gap and flush between adjacent components, the feature points
are divided into gap feature points, which called boundary points,

and flush feature points, which called critical points. Because of the
manufacturing process limitations and component assembly
requirements, the boundaries on the upper surface of a single

FIGURE 4
Selection process of cross section for thermal protection components: (A) actual measurement data and theoretical model boundary lines of
thermal protection components, (B) section center point and normal direction, and (C) schematic diagram of cross sections between thermal protection
components.

FIGURE 5
Curvature calculation diagram.
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thermal protection component are chamfered. Therefore, the 2D
cross-sectional point cloud of a single component contains feature
points with sudden curvature changes. According to the definition of
the model for determining the gap and flush, the curvature mutation
point in the 2D projection point cloud is taken as the feature point,
as shown in Figure 2.

To obtain the curvature mutation point of a 2D discrete point,
the first step is to calculate the single point curvature of the
discrete point. In this study, the reciprocal of the circumcircle
radii of three adjacent discrete points is used as the curvature
calculation method for the intermediate point. The specific
method is as follows.

The projection points of a single component section are
represented as a set of ordered point columns Qi(xi, yi), i �
0, 1, ..., n that do not coincide with each other. The curvature
calculation diagram is shown in Figure 5, and three adjacent
points are sequentially connected to form a triangle. In the
figure, a, b, and c are the lengths of the three sides of the
triangle, and α is the angle between sides a and c. The curvature
calculation method at the discrete point Qi is

k � 1
R
�
4

�������������������
p p − a( ) p − b( ) p − c( )√

abc
(1)

where R is the radius of the circumscribed circle of the triangle, and
p � (a+b+c)

2 .
According to the shape characteristics of the thermal protection

components and the gap and flush solution model, a single thermal
protection component contains two curvature mutation points. The
first curvature mutation point is defined as a critical point for
defining the flush result, and the second curvature mutation
point is defined as a boundary point for defining the gap result.
The curvature mutation point divides the gap point cloud into three
regions: the surface point set of the component, the transition corner
point set, and the component fitting surface point set. The surface
point set of the component is fitted as a straight line, which is line
MN in Figure 2. At this point, all the above algorithms are applied to
the gap and flush solution model to obtain the assembly parameters
of the array-type thermal protection components.

4.1.3 Matching model
A matching model is used to describe the fit between the inner

surface of the thermal protection components and the spacecraft
bearing structure. Based on the bonding method between the array-
type TPS and the spacecraft bearing structure, it is known that the

matching parameter is an important indicator for TPS assembly. As
shown in Figure 6, its size characterizes the thickness of the adhesive
layer between the two, and the result directly affects the bonding
quality of the spacecraft TPS. Excessive or insufficient matching
parameters can cause a series of problems, such as bubbles, holes,
and interface debonding, in TPSs. Therefore, accurate
characterisation of the fitting parameters is particularly important
for the assembly of TPSs.

In terms of its curved structure characteristics, the load-bearing
structure can be regarded as a typical curved fitting structure with
thermal protection components. For this structure, the distance
from the inner surface point of a single thermal protection
component to the closest point of the load-bearing surface is
typically used to evaluate the matching status. Considering the
uneven spacing between the two fitting surfaces, this scheme
uniformly selects n feature points on the inner surface of the
component and characterizes the matching parameter by
calculating the average distance from the feature points to the
bearing surface.

dk tk( ) � 1
n
∑n
i�1

pk
i − qi

���� ���� (2)

where tk is the pose parameter of the thermal protection component
after the k th iteration in the optimisation process, pk

i is the value of
point pi on the inner surface of the thermal protection component in
the assembly coordinate system after the k th iteration, and qi is the
point closest to pi on the load-bearing structure.

4.2 Point cloud prediction of assembly
process state changes

In response to the structural deformation problem caused by
changes in the assembly status of spacecraft, a fusion method using
laser scanning and sensor detection was adopted in this study to
obtain the initial point cloud data of the spacecraft bearing structure
in the early stage of assembly. Fiber-optic sensors were pasted in the
deformable area to obtain fiber-optic monitoring data under
different assembly states. Through heterogeneous data fusion
methods, the bearing structure data under different assembly
states can be obtained quickly, accurately, and efficiently,
maximising the advantages of their respective sensors. The fusion
of 3D point cloud data and fiber-optic waveform data is the focus of
this section.

4.2.1 Curvature conversion model
In this study, fiber Bragg grating (FBG) sensors were used for

complex surface deformation monitoring. When light with a certain
width and frequency is incident on the FBG fiber channel and passes
through the grating region, light waves with frequencies near λB are
reflected, whereas light waves with other frequencies pass through
the FBG sensor. Assuming that the ambient temperature of the
grating remains constant when subjected to the axial stress ε, the
centre wavelength drift ΔλB caused by the uniform axial strain of the
grating can be obtained as

ΔλB � λB 1-Pε( )ε (3)

FIGURE 6
Schematic diagram of bonding between components and load-
bearing structures.
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where Pε represents the effective elastic and optical coefficient, and
λB is the central wavelength of the grating.

The shift in the grating wavelength has a linear relationship to its
axial strain. At the same time, at a constant laboratory temperature,
the change in the centre wavelength of the FBG is only affected by
strain. Assuming that the environmental temperature of the product
remains constant during the assembly process and that the structure
is only affected by the assembly stress when the assembly state
changes, one can obtain the structural strain information at the FBG
bonding point. Therefore, a corresponding relationship is
establihsed between the strain information and curvature
information.

k � 1
ρ
� 2ε

h
(4)

where k is the curvature, which is the reciprocal of the radius
of curvature ρ, and h is the structural thickness at the
FBG position.

By combining Equations 3, 4, the relationship between the
curvature and central wavelength drift can be deduced:

k � 2ΔλB
λB 1-Pε( )h (5)

For any determined FBG, its λB, Pε, and h are constant;
therefore, the curvature k is linear with the wavelength drift ΔλB.

4.2.2 Coordinating value derivation based
on curvature

Given the curvature information of multiple points on the
bearing structure, it is necessary to increase the number of data
points and obtain more curvature data to obtain more-accurate

deformation. Therefore, continuity processing is performed on the
curvature—that is, the curvature between adjacent measurement
points is interpolated. When the two points on the curve are
sufficiently close, the curve formed by the two points can be
considered to be an arc, and the coordinate points on the curve,
i.e., the point coordinates on the deformed surface, can be derived
through relevant methods to provide point coordinate data for
subsequent data fusion.

A coordinate system is established by taking the AB segment
of the deformed curve arc, as shown in Figure 7, where the
starting point A of the curve coincides with the origin of the
coordinate, where �A and �B are tangent vectors of points A and B,
respectively, θi and θi+1 are tangent vectors of points A and B,
respectively, at the positive angle to the X-axis, Sn is the arc length
of the curve arc, lab is the chord length of the arc, and Δθ is the
central angle of arc AB. For point A, the coordinate increment of
point B is (Δx,Δy).

It is known that θ can be obtained from the integral of curvature:

θ s( ) � ∫ k s( )ds (6)

In Figure 7, Δθ is the central angle of a circular arc segment,
which is derived from its geometric relationship:

Δθ � 180 − 90 − θi( ) − 180 − 90 − θi+1( ) � θi + θi+1 (7)

The chord length lab is

lab � 2 sin
Δθ
2

( ) × rAB (8)

where rAB is the radius of curvature of the arc and can be expressed
by the curvatures of points A and B:

FIGURE 7
Coordinate value derivation graph.
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rAB � rA + rB
2

�
1
kA
+ 1

kB

2
� kA + kB

2kAkB
(9)

Here, rA and rB are the curvature radii at points A/B, kA is the
curvature value of point A, and kB is the curvature value of point
B. Thus,

Δx � lab · cos θi − Δθ
2

( )
Δy � lab · sin θi − Δθ

2
( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(10)

From the above formula,

xb � xa + Δx
yb � ya + Δy{ (11)

4.2.3 Optimisation of mesh deformation based on
control points

Based on the initial state measurement data obtained
previously and the deformation amount of fiber-optic
monitoring under different states, fiber-optic monitoring
points are used as control points and the Laplace mesh
deformation algorithm is utilized to obtain bearing structure
data under different assembly states. In the Laplace mesh
deformation algorithm, by applying the Laplace operator to
the vertices of the discrete mesh model, one can obtain a
differential representation called ‘Laplace coordinates’.
Compared with traditional Cartesian coordinates, which
directly define the spatial position information of each vertex,
expressions based on differential coordinates can describe local
information, including size and direction. Therefore, the
advantage of the Laplace deformation algorithm is that it
maintains the details of the 3D model without changing its
macroscopic shape.

Generally, M � (V, E, F) is used to represent a 3D surface
model, V is used to represent the vertex set in the model, E is
the edge set, and F is the triangle set. The initial coordinate of the
vertex in the model is the absolute coordinate vi � (xi, yi, zi) in the
Cartesian coordinate system, which defines the Laplace coordinate
δi of the vertex.

δi � δi x( ), δi y( ), δi z( )( ) � vi − ∑
j∈N i( )

ωijvj (12)

where N(i) � j(i, j) ∈ E{ } is expressed as all vertices that can form
an edge with vertex vi, that is, neighbourhood vertices. ωij is vertex
vj relative to vi, the weight of i, and ∑ωij � 1.

In addition, given the differential coordinates of each point, L is
introduced as the Laplace matrix to convert the absolute coordinates
into relative coordinates.

Δ � δi{ }T � LnpnVnp3 (13)
where Δ is a Laplace coordinate.

After the deformation of the surface, the new position wi of
the control point is measured. It is necessary to move the
corresponding point of the source model to the new position
after the deformation under the condition that the relative
position of each vertex remains unchanged. It is expressed by
vi′, and vi′ � wi, i � 1, 2, 3, . . . , m is satisfied. Based on the mesh
deformation of Laplace coordinates, the solution of the deformed
vertex V′ can be summed up as an optimisation problem with
position constraints.

V � argminV′ ‖ LV′ −△ ‖2 + ∑m
i�1
ω2‖ vi′ − ωi ‖2⎛⎝ ⎞⎠ (14)

where ω is the weight value of the constraint point. Here, ‖LV′ − Δ‖
ensures that the coordinates of the model remain as unchanged as
possible after deformation, and ‖vi′ − wi‖ ensures that the constraint
points can reach the target position. The minimum problem in the
solution is equivalent to solving the following statically
indeterminate linear system (where the number of equations is
greater than the number of unknowns):

A′V′ � L
H

( )V′ � Δ
h

( ) � b (15)

The equation has a unique least-squares solution:

V′ � A′TA′( )−1pA′Tb (16)

When the mesh model is deformed, the vertex coordinates of the
new model can be obtained by updating the b matrix.

FIGURE 8
Assembly parameter update process.
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4.3 Updating assembly parameters for
changes in assembly status

4.3.1 Establishment of assembly parameter
optimisation model

In response to the difficulty or inability to assemble components
caused by changes in the assembly status, the assembly parameters
are optimised and updated based on changes in load-bearing
structures in different assembly statuses. In this study, the
assembly parameters were the gap and flush parameters between
the components and the matching parameters between the
components and load-bearing structures. Among these, there is a
conflict between the flush parameters and the matching parameters,
which cannot achieve optimal results simultaneously. Therefore, the
parameter update problem in this study is a typical multiobjective
optimisation problem that requires coordination and compromise
between various objectives to achieve the overall goal as optimally as
possible. However, because of the difficulty in solving multiobjective
problems in engineering and the complexity of the calculations,
multiple constraint conditions are combined, and the multiobjective
problem is transformed into a single-objective problem using a
weighted-sum method. The specific process is shown in Figure 8.

4.3.1.1 Establishment of objective function
For the problem of updating assembly parameters for changes in

assembly status, it is essemtial to focus on updating the pose parameters
of various components related to the assembly coordinate system.

First, according to the definition of gap parameters, the objective
function is

minGk tk( ) � ∑n
i�1

∑m
j�1

Gk−1
i,j − Gt

∣∣∣∣∣ ∣∣∣∣∣⎛⎝ ⎞⎠ (17)

where: tk � [xk,yk, zk, αk, βk, γk]T is the pose parameter of the thermal
protection component after the k th iteration in the optimisation process,
Gk(tk) is the total deviation between all gap parameters and theoretical
parameters of n thermal protection components after the k the iteration,
Gk−1
i,j is the gap parameter of the jth section of the ith thermal protection

component after the (k − 1)th optimisation iteration, and Gt is the
theoretical value of the gap parameter.

Second, according to the definition of flush parameters, the
objective function is

minFk tk( ) � ∑n
i�1

∑m
j�1

Fk−1
i,j − Ft

∣∣∣∣∣ ∣∣∣∣∣⎛⎝ ⎞⎠ (18)

where Fk(tk) is the total deviation between all flush parameters and
the theoretical parameters of n thermal protection components after
the k th iteration, Fk−1

i,j is the flush parameter of the jth section of the
ith thermal protection component after the (k − 1)th optimisation
iteration, and Ft is the theoretical value of the gap parameter.

Finally, according to the definition of matching parameters, the
objective function is

minDk tk( ) � ∑n
i�1

dk−1
i −Dt

∣∣∣∣ ∣∣∣∣ (19)

whereDk(tk) is the total deviation between all matching parameters
and the theoretical parameters of n thermal protection components

after the k th iteration, dk−1i is the matching parameter of the ith
thermal protection component with the load-bearing structure after
the (k − 1)th optimisation iteration, andDt is the theoretical value of
the matching parameter.

A weight-based fitness function is established by defining the
multi-objective parameters mentioned above.

minEk tk( ) � μ1Gk tk( ) + μ2Fk tk( ) + μ3Dk tk( )
μ1 + μ2 + μ3

(20)

where μ1, μ2, and μ3 are the weight coefficients of the gap, flush, and
matching parameters, respectively. Because the matching parameter
characterizes the thickness of the adhesive layer between the
component and the load-bearing structure, the result directly
affects the adhesion quality of the TPS, and its weight coefficient
should be increased appropriately.

4.3.1.2 Establishment of constraint condition model
Owing to the special assembly structure, complex constraint

characteristics, large number of coordinated objects, and poor
rigidity and brittleness of thermal protection components, it is
necessary to establish a constraint condition model based on the
assembly optimisation process.

The assembly of thermal protection components is usually done
in zones, and different assembly areas have their own assembly
boundaries. The boundary constraint condition is

LTboundary ≤PosTk
i
≤UTboundary (21)

where PosTk
i
is the position parameter of the ith thermal protection

component after the kth iteration, and LTboundary andUTboundary are
the allowed space ranges for pasting the ith thermal
protection component.

The section defined in this study has constraints on the centre
point position and normal direction, and the section-related
constraints include

s.t.

x, y, z ∈ Tboundary

�n ‖ Tboundary

LR,WR � kGt

Ismin ≤ Is ≤ Ismax

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (22)

where Tboundary is the theoretical boundary of the thermal protection
component; LR and WR are the length and width of the section,
respectively, according to the calculation method of the gap and
flush solution model, the value of k in this study is 6, Gt is the
theoretical gap parameter, and Is is the spacing between sections.

To satisfy the requirements of the thermal protection assembly,
it is necessary to constrain the gap parameters. The constraint
condition for the gap parameters is

LTgap ≤ Gk−1
i,j − Gt

∣∣∣∣∣ ∣∣∣∣∣≤UTgap (23)

where |Gk−1
i,j − Gt| represents the gap parameter deviation of the jth

section of the ith thermal protection component after the (k − 1)th
optimisation iteration, and LTgap and UTgap represent the lower
and upper limits of the gap parameter constraint tolerance,
respectively.

The constraint condition for the flush parameter is

LTflus ≤ Fk−1
i,j − Ft

∣∣∣∣∣ ∣∣∣∣∣≤UTflus (24)
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where |Fk−1
i,j − Ft| represents the flush parameter deviation of the jth

section of the ith thermal protection component after the (k − 1)th
optimisation iteration, and LTflush and UTflush represent the lower
and upper limits of the flush parameter constraint tolerance,
respectively.

The constraint condition for the matching parameter is

LTdist ≤ dk−1
i −Dt

∣∣∣∣ ∣∣∣∣≤UTdist (25)

where |dk−1i −Dt| represents the matching parameter deviation of
the jth section of the ith thermal protection component after the
(k − 1)th optimisation iteration, and LTdist and UTdist represent the
lower and upper limits of the matching parameter constraint
tolerance, respectively.

4.3.2 Improved quantum particle swarm
optimisation algorithm
4.3.2.1 Quantum particle swarm optimisation

Quantum Particle Swarm Optimisation (QPSO) is based on
particle swarm optimisation (PSO) and combines quantum
properties to introduce a local attraction factor. The position of
this factor is used as the attraction potential field of the entire
quantum system, and other particles search and update their global
positions in a bound state. This algorithm increases the diversity of
the population during the iteration process, enhances the global
optimisation ability of the algorithm, and is more stable than the
original PSO algorithm. The process is as follows.

Compared with the PSO algorithm, the QPSO algorithm does
not have a velocity vector, and its position iteration formula and
local attraction factor formula are

Xi,j t + 1( ) � pi,j t( ) ± β mj − xi,j t( )∣∣∣∣ ∣∣∣∣ · ln 1
u

( ) (26)
pi,j t( ) � φ · Pi,j t( ) + 1 − φ( ) · Pg,j t( ) (27)

whereXi,j(t + 1) is the spatial position of the (t+1)th iteration, and β
is the contraction and expansion coefficient of the algorithm, which
is used to control its convergence speed. This is the only control
parameter in the algorithm. Generally, it decreases linearly with the
number of iterations from 1 to 0.5, φ, and u is a random number
between (0,1). Here, pi,j(t) is the local attraction factor, Pi,j(t) is the
individual optimal position, Pg,j(t) is the global optimal position,
mj(t) is the average optimal position of a particle swarm, and its
expression is

mj t( ) � 1

M∑M
i�1
Pi,j t( )

� m1 t( ), m1 t( ), . . . , mD t( )( )

� 1
M

∑M
i�1
Pi,1 t( ), 1

M
∑M∑
i�1

Pi,2 t( ), ..., 1
M

∑M∑
i�1

P t( )i,D t( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (28)

where M represents the population size, and D represents the
particle dimension.

4.3.2.2 Improved quantum particle swarm
optimisation algorithm

The QPSO algorithm performs well in terms of optimisation
ability and convergence speed; however, it has shortcomings in

terms of the imbalance between global exploration and local
development, susceptibility to getting stuck in local optimal
solutions, and insufficient global exploration ability. On this
article, an improved optimisation algorithm LQPBO is proposed.
It is mainly improved in the following three aspects. First, a logistic-
sine-cosine chaotic map is used to initialise the population, maintain
its diversity, and enhance the optimisation ability of the algorithm.
Second, the local and global optimisation capabilities of the adaptive
inertia threshold-balancing algorithm are utilized. Finally, the Lévy
flight mechanism is adopted to optimise foraging behaviour and
improve the global search capability.

• Logistic-sine-cosine chaotic mapping

As a mapping method with real randomness and spatial
traversal, chaos functions are applied to the initialisation
process of population positions. This is beneficial for reducing
particle stacking in the initial particle swarm, improving the
diversity of the position distribution, and avoiding the
constraints of local optimal solutions. Logistic mapping
describes the nonlinear dynamics in one-dimensional dynamic
systems with strong randomness and universality. The logistic
mapping equation is

xi+1 � axi 1 − xi( ) (29)
where xi represents the size of the population at the ith time and
xi ∈ (0, 1), a is the control parameter and a ∈ (0, 4), and the larger
the value, the higher the chaos. The range of the chaotic orbit state
values is (0,1).

Sine and cosine mappings utilise the periodicity of the sine and
cosine functions to generate chaotic behaviour. The sine- and cosine
mapping equations are

xi+1 � a

4
sin πxi( ) (30)

xi+1 � a

4
cos πxi( ) (31)

where a is the control parameter, usually 4, and the range of the
chaotic orbit state values is (0,1).

In response to the problems of uneven particle distribution and
easily falling into fixed points in traditional chaotic mapping
functions, sine mapping and cosine mapping based on logistic
chaotic mapping is employed. The logistic-sine-cosine chaotic
map combines the characteristics of logistic, sine, and cosine
maps to create a new chaotic system.

xi+1 � cos π 4rxi 1 − xi( ) + 1 − r( ) sin πxi( ) − 0.5( )( ) (32)
where r ∈ (0, 1). The range of chaotic orbit state values is (0, 1).

The population initialization mechanism established based on
the proposed logistic-sine-cosine transformation mapping
algorithm ensures that the initial solution of the population can
be randomly distributed throughout the complete value space, while
reducing the constraint of local optima on the initial particles. It can
provide a high-quality initial particle swarm with rich diversity and
significant particle characteristics for the subsequent update and
iteration process of the particle swarm.

• Adaptive inertia weight
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The use of fixed inertia weights can easily cause QPSO methods
to fall into local optima and can result in the loss of optimal
solutions. Appropriate inertia weights help adapt to the global
search, enabling the QPSO method to perform global and local
searches in the parameter space, thereby obtaining more optimal
solutions. Introducing an adaptive inertia weight method to increase
the adaptability of the inertia weight as QPSO evolves avoids the
problem of decreasing inertia weight as the number of iterations
increases and ensures that the adaptability increases as the number
of iterations increases through the evolution rate. The adaptive
inertia weight is calculated as

w t( ) � w
t

t max
δ
minmaxmin (33)

where wmax is the maximum value of the inertia weight, wmin is the
minimum value of the inertia weight, tmax is the maximum number
of iterations, and δ is a positive real number parameter that controls
the decay rate. When δ > 1 is reached, the inertia weight decreases
slowly in the early stages of the iteration, which helps the algorithm
perform a wider range of global searches. In the later stages of
iteration, the descent speed accelerates, which is beneficial for the
algorithm to conduct more concentrated local searches. When δ < 1
is reached, the inertia weight decreases rapidly in the early stages of
iteration, making the algorithm more focused on local search in the
early stages. The slow decline in the later stages of iteration helps the
algorithm maintain diversity in search, avoiding getting stuck in
local optima too early.

• Lévy flight mechanism

The Lévy flight mechanism is a random search strategy
commonly used in optimisation algorithms that simulates the
natural behaviour of certain animals, such as the migration paths
of birds, which exhibit a specific type of random walking with a step
size following the Lévy distribution. Compared with the Gaussian
and Cauchy distributions, the Lévy distribution has heavy tailed
characteristics and faster convergence speed, and it provides a wide
range of global search capabilities in optimisation. The formula for
generating the Lévy flight random step size is

Levy d( ) � u

v| |1/β (34)

where μ ∈ (0, σ2μ)、] ∈ (0, σ2]), and σμ and σ] are

σμ � Γ 1 + β( ) sin πβ/2( )
Γ 1 + λ( )/2[ ]β2 β−1( )/2

⎧⎨⎩ ⎫⎬⎭
1/β

, σ] � 1 (35)

where Γ is the gamma function, β is a constant, and β ∈ (0, 2).

4.3.2.3 LQPBO performance evaluation
To verify the performance of the improved algorithm, the

LQPBO algorithm proposed in this paper was compared with
PSO and QPSO on test functions. Six benchmark test functions
were selected for the experiment, and the dimensions and search
ranges of single peak and multi peak benchmark test functions are
shown in Supplementary Table S1. Among them, f1、f2、f3 are
single peak benchmark test functions, and f8、f9、f11 are multi
peak benchmark test functions. The population size of each

algorithm is set to 30, and the number of iterations is 500. In
order to reduce the randomness of the experiment and increase the
persuasiveness of the experimental results, each algorithm is
independently run 50 times on six benchmark test functions. The
three-dimensional views of the unimodal and multimodal functions
are shown in Figure 9.

The convergence curves of different optimisation algorithms on
6 benchmark test functions are shown in Figure 10. From the
function convergence curve and experimental results, it can be
intuitively seen that the LQPBO algorithm has good optimisation
ability in different test functions. Compared to the other two
algorithms, LQPBO has better solution accuracy and faster
convergence speed on the unimodal test function; LQPBO has a
stronger ability to jump out of local optima on multi-modal test
functions. From this, it can be seen that the improvement strategy
proposed in the previous text is effective, and the solving effect and
robustness of LQPBO are consistent, better, and more stable than
other algorithms, with strong optimisation ability.

5 Results and discussion

5.1 Experimental system and initial
parameters

To verify the assembly parameter optimisation and updating
model, an array-based thermal protection structure simulation
experimental system was constructed. The simulation piece
designed in this study consisted of a load-bearing structure
model with a curved surface size of approximately 1,200 ×
1,300 mm and 52 thermal protection components. All the
simulation components were made of acrylonitrile butadiene
styrene composite material, which has such characteristics as
toughness, hardness, and rigidity. The theoretical gap parameter
between the components was 2 mm, the flush parameter was 0 mm,
and the gap between the load-bearing structure and the internal
surface of the component (matching parameter) was set to 2 mm. As
shown in Figure 11, the overall components of the experimental
system include array-type thermal protection structure simulation
components (including the load-bearing structure and thermal
protection components), movable frames, binocular vision
scanning systems, fiber-optic monitoring systems, laser-tracking
systems, and workstations.

5.1.1 Obtaining 3D point cloud measured data
Taking the upper part of the simulated component as an

example, the assembly parameters were optimised based on the
characteristics of the partition assembly of the thermal protection
structures. After fixing the load-bearing structure, the initial 3D
shape point cloud data of the structure and the measured shape data
of the thermal protection components were obtained using a
binocular vision scanning system. The binocular vision scanning
system uses a CREAFORM tracking scanner, consisting of a
C-Track optical tracker and an optical coordinate measuring
machine 3D scanner, with a scanning accuracy of 0.064 mm
(9.1 m3) and a resolution of 0.05 mm. The deviation distribution
between the point cloud data of the external surface of the bearing
structure and the theoretical data in the initial state ranges
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from −0.359 to 0.433 mm, and the deviation of the thermal
protection components is within ±0.10 mm. A comparison of the
deviations between the physical and theoretical surfaces of the
bearing structure is shown in Figure 12.

After the measured data were obtained, they were simplified
to reduce the subsequent parameter optimisation calculations
and improve the calculation speed. The results are shown in
Figure 13. Figures 13A, B show the measured data of the bearing
structure and the simplified point cloud data. The measured data
in Figure 13A contain 3,589,808 vertices, and the simplified data
in Figure 13B contain 216,028 vertices. Figures 13C, D show the
measured data of a single thermal protection component and the
simplified point cloud data. The measured data in Figure 13C
contain 385,050 vertices, and the simplified data in Figure 13D
contain 35,186 vertices. The simplification standards also
differed based on the assembly characteristics of the load-
bearing structure and thermal protection components. For
load-bearing structures that must maintain a certain distance
from the thermal protection components, equidistant
simplification was performed to facilitate the selection of
feature points. For thermal protection components that
require gap and flush calculations, a point cloud simplification
method based on boundary features was applied to preserve their
geometric features.

5.1.2 Point cloud prediction of assembly
status changes

This study focused on optimizing and updating assembly
parameters for simulated components in different assembly
states. For the overall optimisation and update process,
predicting point cloud deformation under different assembly
states is a very important step. This study used a fusion of 3D
point cloud data and fiber optic wavelength data to obtain the initial
state of the load-bearing structure shape point cloud. After obtaining
the initial state, a quasi-distributed FBG sensor network is pasted on
the simulated component to achieve fast, accurate, and efficient
acquisition of load-bearing structure data under different
assembly states.

The sensors in this study were arranged in an orthogonal
manner, with the sensors in pairs. The sensor network comprised
40 fiber-optic grating strain sensors for a total of 20 measurement
nodes. The fiber-optic distributions of the analogue components
are shown in Figure 14. The red sensor represents the X-direction
strain monitoring point, whereas the blue sensor represents the
Y-direction strain monitoring point. Considering the existence of
systematic and random errors in the data acquisition process, in
this experiment, we selected the Optical System 256 fiber Bragg
grating demodulation system from Beijing Xizhuo Information
Technology Co., Ltd., which is suitable for signal demodulation

FIGURE 9
Three dimensional views of unimodal andmultimodal functions. (A) 3D view of expression 1, (B) 3D view of expression 2, (C) 3D view of expression 3,
(D) 3D view of expression 8, (E) 3D view of expression 9, (F) 3D view of expression 11.
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FIGURE 10
Convergence curves of unimodal and multimodal functions: (A) convergence curve of expression 1, (B) convergence curve of expression 2, (C)
convergence curve of expression 3, (D) convergence curve of expression 8, (E) convergence curve of expression 9, (F) convergence curve of
expression 11.

FIGURE 11
Overall schematic diagram of the experimental system.
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of various types of fiber Bragg grating sensors. It has a built-in
calibration wavelength reference module and can ensure long-
term measurement accuracy of ± 1p.m. in the temperature range
of −10°C–55°C. At the same time, due to the significant impact of

the accuracy of measuring node positions on the prediction of
structural deformation point clouds, we used the laser tracker to
assist in the pasting and positioning of optical fibers to ensure the
correct positioning of measuring nodes.

FIGURE 12
Deviation between measured data and theoretical surface shape of T0 state bearing structure.

FIGURE 13
Schematic diagram of simplified measured data before and after simplification: (A)measured data of load-bearing structures, (B) simplified data of
load-bearing structures, (C) measured data of thermal protection components, and (D) simplified data of thermal protection components.
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5.1.3 Initial parameter definition
In the process of optimising and updating the assembly

parameters for an array-based thermal protection structure
simulation test system, it is necessary to define the initial
parameters. The features that must be defined include changes
in the assembly status, the number of thermal protection
components, the number of cross sections, the number of
feature points for individual component matching parameters,
and the theoretical values and constraint tolerances of the
assembly parameters. The specific parameter settings are listed
in Supplementary Tables S2, S3.

5.2 Result analysis

5.2.1 Accuracy verification of assembly parameter
solving model

In this section, in order to verify the effectiveness and accuracy
of the gap, flush, and matching parameters, assembly parameter
validation was conducted based on the original scanned point cloud,
and compared with the measured true values to demonstrate the
feasibility of the assembly parameter extraction method proposed in
this study. Based on the above experimental setup, 4 thermal
protection components were selected for assembly, and the
thickness of the adhesive layer was set to 2 mm on the inner
surface of the selected 4 thermal protection components. Obtain
the external point clouds of the load-bearing structure and the
assembled thermal protection components through a visual
scanning system, and verify the accuracy of the assembly
parameters based on the above point clouds. The specific
schematic diagram is shown in Figure 15. As a comparative
verification, the gap step values at the corresponding positions
were obtained using an external auxiliary material tool (Laser-
gauge HS702-F20), and the obtained gap step values were
averaged through multiple measurements. The measurement
accuracy of the laser gap gun was 0.02 mm.

According to Supplementary Table S4, the difference between
the gap flush solving model in this study and the meanmeasurement
of Gap Gun was within ±0.08 mm. The maximum deviation of the
gap was 0.08 mm, the average deviation was 0.043 mm, and the
maximum deviation of the flush was 0.03 mm, with an average
deviation of 0.041 mm. There were two main factors that leaded to
the deviation between the two values, the first factors was the
deviation between the measured section position and the

FIGURE 14
Load-bearing structure geometric dimensions and optical fiber
distribution (unit: mm).

FIGURE 15
Original scanning point cloud data and cross-sectional position.
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simulated section position, and the existence of systematic errors
also have some impact on the result deviation. The second factors
involved the potential inaccuracy of boundary point cloud data,
which may arise from format conversion after data processing,
ultimately leading to errors. According to Supplementary Table
S5, the maximum deviation between the matching solving model in
this study and the actual filling layer thickness of thermal protection
components is 0.032 mm, and the average deviation is 0.022 mm.
According to the constraint tolerance range of the test piece in this
study, the assembly parameter solving model can meet the
requirements of subsequent assembly optimisation.

5.2.2 Update results of load-bearing structures
under different assembly states

This study focused on optimising and updating the assembly
parameters for different assembly states of the simulated
components. At time T0, the 3D point cloud data of the load-
bearing structure were obtained using structured light measurement
technology. The results are presented in Section 5.1.1. Subsequently,
a quasi-distributed FBG sensor network was pasted onto the
simulated component to obtain the deformation results of the
load-bearing structure under different assembly states, where
T0 is the initial state of the load-bearing structure, T1 is the
assembly of the load-bearing structure to the fixture state, and
T2 is the state after the installation of the crossbeam and
fasteners of the load-bearing structure. The comparison results of
the deviation between the load-bearing structure entity and the
theoretical surface shape in different assembly states are shown
in Figure 16.

In Figure 16, the right ruler represents the deviation spectrum of
the histogram. To clarify the results, the red range indicates that the
point cloud data are higher than the theoretical model surface in the
normal direction, the blue range indicates that the point cloud data
are lower than the theoretical model surface in the normal direction,
and the green part indicates that the deviation range is within the
range of [−0.2, 0.2]. Figure 16A shows the point cloud deviation of
the load-bearing structure at time T1, with a deviation distribution
from −1.325 to 1.022 mm. Among them, 94.97% of the point cloud

deviation is within the range of [−1, 1]. Figure 16B shows the
deviation of the external point cloud of the load-bearing structure at
time T2, with a deviation distribution from −2.709 to 2.620 mm.
Among them, 85.67% of the point cloud deviations are within the
range of [−1, 1].

To evaluate the accuracy of the deformation prediction method
for assembly structures, a supplementary experiment was conducted
to validate it. By using a binocular vision system to measure the real
load-bearing structure surface shape at T1 and T2 respectively, and
performing deviation consistency detection with the predicted
surface shape, the results were shown in Figure 17. It can be seen
that the predicted data of the surface shape at T0 and T1 are highly
consistent with the measured data. Among them, 80.97% of the
point clouds at T1 are within the range of [-0.1,0.1], and 92.91% of
the point clouds at T2 are within the range of [-0.1,0.1].

5.2.3 T1 time assembly parameter
optimisation update

Based on the initial assembly parameters of the load-bearing
structure after the assembly state changes at time T1, including gap,
flush, and matching parameters, the maximum, minimum, and
mean values of each assembly parameter were calculated. Owing
to the large number of thermal protection components, to express
the assembly parameters more clearly, the qualification rate was
introduced. The qualification rate Level I is half the tolerance for the
feature results to satisfy the assembly parameter constraints (i.e., the
gap range is 2 ± 0.3 mm), and the qualification rate Level II is the
tolerance for the feature results to meet the assembly parameter
constraints. Figure 18 shows the relative pose and cross-sectional
position of the thermal protection component in the initial state
at time T1.

For the assembly parameters of thermal protection components
before optimisation, to facilitate subsequent parameter optimisation
and reduce computational complexity, the measured data of thermal
protection components are initially matched with their theoretical
models. Owing to changes in the assembly status, the load-bearing
structure undergoes deformation, and a serious problem occurs in
which the majority of the gap and flush parameters are within the

FIGURE 16
Surface deviations of load-bearing structures in different assembly states: (A) T1 state structure deviation and (B) T2 state structure deviation.
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constraint tolerance range; however, the matching parameter
exceeds the tolerance limit. The results are presented in Table 1.

The assembly parameters are optimised and updated based on
the updated bearing structure at time T1. The results are shown in
Table 2. After parameter optimisation and updating, the
qualification rates for the gap, flush, and matching parameters

were 97.41%, 92.24%, and 100%, respectively. To ensure the
bonding quality of the thermal protection components, the
optimisation weight of the matching parameters was increased
such that all the component matching parameters were within
the tolerance range.

5.2.4 T2 time assembly parameter
optimisation update

According to the assembly process, seven thermal protection
components were assembled after time T1, as shown in Figure 19.
Based on the assembled components and load-bearing structure
after the state change at time T2 (these seven components were set as
fixed components with a cross-sectional quantity of 96), assembly
parameter statistics were obtained for the remaining 20 thermal
protection components.

Before the assembly parameters at time T2 were optimized, the
cross-sectional parameters were the same as those after the
T1 optimisation. Because there were already seven fixed
components, the total number of sections to be optimised was
96. All the assembly parameters were recalculated, and the results
are listed in Table 3. The bearing structure was the updated point
cloud data at time T2; therefore, the qualification rate of the
matching parameters was only 44.44%.

Based on the updated load-bearing structure at time T2,
the assembly parameters were optimised and updated, and the

FIGURE 17
Deviation between predicted andmeasured point clouds of load-bearing structures in different assembly states: (A) T1 state structure deviation and
(B) T2 state structure deviation.

FIGURE 18
Schematic diagram of the relative position of the simulated
component and cross section of the thermal protection structure at
time T1.

TABLE 1 Assembly parameter statistics before time T1 optimisation.

Node number Gap results (mm) Flush results (mm) Matching results (mm)

Min 0.776 0.005 1.175

Max 2.821 0.653 3.689

Mean 1.668 0.161 2.532

Qualification rate(Level II) 81.03% 98.27% 74.07%

Qualification rate(Level I) 37.93% 79.30% 40.74%
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results are listed in Table 4. As the table shows, after parameter
optimisation and updating, the qualification rates of the gap,
flush, and matching parameters were 95.83%, 88.54%, and 100%,

respectively. Owing to the deformation of some areas of the
load-bearing structure reaching more than 2.5 mm at time T2, to
ensure reasonable fit parameters, the qualification rate of the
step difference parameter was lower than that of time T1.

6 Conclusion

Amethod for updating assembly parameters based on changes
in the assembly process state was developed. Based on the
measured data of thermal protection components, a solution
model for assembly parameters was proposed. To address the
deformation problem of the load-bearing structure caused by
changes in assembly status, a fusion method based on laser
scanning and sensor detection was devused to predict the
deformation of the assembly structure during the assembly
process. Based on the assembly parameter solution model and
the assembly process state change point cloud prediction model, a
constraint-based assembly parameter optimisation model was
established to achieve assembly parameter updates oriented
toward assembly state changes. Finally, an experimental system
for array-based thermal protection structure simulation

TABLE 2 Assembly parameter statistics after time T1 optimisation.

Node number Gap results (mm) Flush results (mm) Matching results (mm)

Min 1.176 0.001 1.679

Max 2.275 0.574 2.340

Mean 1.813 0.203 2.036

Qualification rate(Level II) 97.41% 92.24% 100%

Qualification rate(Level I) 81.90% 75.00% 81.48%

TABLE 3 Assembly parameter statistics before time T2 optimisation.

Node number Gap results (mm) Flush results (mm) Matching results (mm)

Min 1.176 0.004 0.888

Max 2.275 0.574 3.372

Mean 1.805 0.221 2.390

Qualification rate(Level II) 97.92% 91.67% 44.44%

Qualification rate(Level I) 80.21% 71.88% 22.22%

FIGURE 19
Schematic diagram of the relative position of the simulated
component and cross section of the thermal protection structure at
moment T2.

TABLE 4 Assembly parameter statistics after time T2 optimisation.

Node number Gap results (mm) Flush results (mm) Matching results (mm)

Min 1.325 0.003 1.512

Max 2.476 0.640 2.463

Mean 1.732 0.253 2.112

Qualification rate(Level II) 95.83% 88.54% 100%

Qualification rate(Level I) 70.23% 67.71% 70%
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was established to validate the proposed method. The results show
that the parameter update method used can achieve ideal
states for different assembly state simulation components. For
the T1 assembly state, the pass rate of gap parameters was 97.41%,
the pass rate of flush parameters was 92.24%, and the pass rate of
matching parameters was 100%. For the assembly state at time
T2, the pass rate of the gap parameter was 95.83%, the pass rate
of the flush parameter was 88.54%, and the pass rate of the
matching parameter was 100%. The parameter update method
in this study realises the optimisation and update of assembly
parameters for thermal protection components, provides
auxiliary guidance for the spacecraft thermal protection
assembly process, and improves the assembly accuracy and
efficiency of spacecraft TPSs.
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