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This paper presents a technique for predicting noise generated by airfoil
structures that combines deep learning techniques with traditional numerical
methods. In traditional numerical methods, accurately predicting the noise of
airfoil structures requires significant computational resources, making it
challenging to perform low-noise optimization design for these structures. To
expedite the prediction process, this study introduces Conditional Generative
Adversarial Networks (CGAN). By replacing the generator and discriminator of
CGAN with traditional regression neural network models, the suitability of CGAN
for regression prediction is ensured. In this study, the data computation was
accelerated by expanding the kernel function in the traditional boundary element
method using a Taylor series. Based on the resulting data, an alternative predictive
model for wing structure noise was developed by integrating Conditional
Generative Adversarial Networks (CGAN). Finally, the effectiveness and
feasibility of the proposed method are demonstrated through three case studies.
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1 Introduction

The propeller is usually an open (non-enclosed) rotating mechanical device with
multiple blades, and it has a history of nearly a century as an aviation propulsion
system [1, 2]. As early as the 1940s, propellers were widely used in various types of
aircraft, and the development of propeller technology has always been closely linked to the
development of aircraft. Propeller engines are still widely used in military and civilian
aircraft today, mainly due to their excellent fuel economy [3]. However, the propulsion
speed of propellers significantly decreases under high subsonic conditions, resulting in
relatively low cruising speeds for propeller-driven aircraft. Later, the concept of contra-
rotating propeller engines was proposed. The contra-rotating propeller engine is a
conceptually different aviation engine related to the turboprop engine and turbofan
engine, and it is also referred to as a propeller fan engine, advanced turboprop engine,
un ducted fan, or ultra-high bypass ratio turbofan engine [4, 5]. The design objective is to
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balance the efficiency and fuel economy of turboprop engines with
the cruising speed and performance of turbofan engines [6–8], filling
the speed gap between conventional turboprop engines and turbofan
engines. It effectively addresses the contradiction between the
cruising speed and propulsive efficiency of conventional
turboprop engines and turbofan engines, and it is the direction
of development for the propulsion systems of future medium-sized
transport aircraft [9].

Compared to the 1980s, although modern contra-rotating
propellers have made significant advances in aerodynamic design
[10], noise optimization techniques, and manufacturing processes,
according to NASA’s research, contra-rotating propeller engines still
have a noise level that is more than 10 dB higher than that of ducted
fan engines [11]. Therefore, aerodynamic and noise optimization
design remains a key technical issue in the development of contra-
rotating propellers [12]. However, due to the complex aerodynamic
disturbances such as viscous wake interference, potential flow field
interference, and propeller tip vortex interference between the two
rows of propellers, the aerodynamic noise mechanism is more
complicated [13–15]. Therefore, noise prediction and acoustic
optimization design of propeller engines have become one of the
key technologies in propeller design [16].

As the main component of propeller noise, accurate prediction
of the noise generated by airfoils can guide the optimization design
of propellers. Currently, in addition to using engineering estimation
methods based on empirical theories, common methods for
predicting airfoil vibration noise mainly rely on numerical
calculation methods [17]. Engineering estimation methods
typically use semi-theoretical and semi-empirical formulas
combined with structural sound radiation theory and measured
data. Engineering estimation methods are convenient and fast, but
they are mainly applicable to specific structures or their similar
models. Numerical simulation methods mainly rely on finite
element methods (FEM) [18], boundary element methods (BEM)
[19–21], and computational aeroacoustic methods (CAA) [22].
Among them, CAA methods combine computational fluid
dynamics (CFD) simulations and the FW-H analogy method,
which can simultaneously obtain the near-field flow distribution
of the structure and the far-field acoustic characteristics, making it
one of the reliable methods. However, in the pre-processing stage of
CAA calculations, it is necessary to establish a very detailed model in
the computer, which requires a significant amount of time and leads
to a longer prediction process. Therefore, developing efficient
aerodynamic noise prediction methods by combining deep
learning methods can significantly reduce the computational cost
of aerodynamic noise [23, 24]. This is of great importance for
guiding the optimization design of low-noise propellers.

In light of the reflect on mentioned, the objective of this study is
to propose a new method for analyzing the uncertainty of
piezoelectric and flexoelectric characteristics using Conditional
Generative Adversarial Networks (CGAN), which is a machine
learning (ML) technique [25–27]. CGAN has emerged as a
significant advancement in the field of ML, allowing for the
generation of high-quality predictions and opening up new
possibilities for data-driven creativity and problem-solving [28].
Generative Adversarial Networks (GANs) [29] revolutionized image
generation [30]. However, GANs are limited in controlling the
output of the generated network. For example, when dealing with

the MINIST dataset consisting of handwritten digits from 0 to 9,
GANs may generate any number as output without predictability.
This lack of control hinders the practicality of GANs in real-world
scenarios [31–33].

To address this issue, Conditional Generative Adversarial
Networks (CGANs) are introduced. CGANs include a
conditional variable that allows for control over the behavior of
the generator network, constraining the output to a user-specified
distribution and improving stability [34]. Adversarial training in
CGANs not only enables the generation of accurate and realistic
images but also helps in learning the relationships between data [35].
CGANs have found applications in various domains, including
image synthesis for generating new images with specific attributes
[36, 37], data augmentation to enhance the performance of ML
models, style transfer for applying the style of one image to another,
and text-to-image synthesis based on textual descriptions.
Moreover, there have been several variations introduced in
different fields, such as DCGAN [38] and DAGAN [39], among
others [40, 41].

This paper primarily focuses on combining CGAN with
traditional numerical simulation methods to predict the vibration
noise of airfoil structures [42], reducing the cumbersome
calculations involved in numerical methods and speeding up the
prediction process of airfoil structure noise [43]. Figure 1 illustrates
the process of establishing a surrogate model using CGAN.

2 Conditional generation adversarial
neural network theory

2.1 Generate adversarial neural networks

Generative Adversarial Networks (GAN) are an innovative
technology that combines deep learning with probability theory.
It consists of two competing neural networks that have the ability
to learn independently and aims to learn and mimic the
distribution of real data through unsupervised learning [44,
45]. The basic structure of GAN includes a generator and a
discriminator, which compete against each other during the
iterative training process. The objective is to make the
generated data resemble the characteristics of real data as
much as possible [46]. The generator is responsible for
creating data that can deceive the discriminator by making it
appear close to authentic data, the discriminator aims to
distinguish between genuine and synthesized data. In this
process, both sides continuously learn and self-optimize,
aiming to reach the Nash equilibrium point in game theory,
where the generated data is indistinguishable from real data. The
flowchart of the GAN process is shown in Figure 2.

The input to the generator model G is random noise z, and its
output is a sample that resembles the distribution of real data. On the
other hand, the input to the discriminator model D is either real data
x or samples generated by G, denoted as G(z) [47].When the input is
x, the discriminator D outputs 1, and when the input is G(z), the
discriminator D outputs 0. The abilities of G and D improve during
the iterative training process and eventually reach an equilibrium
state where D cannot distinguish between the two types of input
data, indicating that the generator G has successfully approximated

Frontiers in Physics frontiersin.org02

Jiang et al. 10.3389/fphy.2024.1452876

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1452876


FIGURE 1
Process of establishing a proxy prediction model for predicting wing structure noise.

FIGURE 2
GAN process structure diagram.

FIGURE 3
CGAN training flowchart.
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the distribution of real data [48]. The loss of GAN is closely related
to the losses of G and D. The loss function of GAN is represented by
Equation 1.

min
G

max
D

V D,G( ) � Ex Pdata x( ) logD x( )[ ]
+ Ez Pz z( ) log 1 −D G z( )( )( )[ ] (1)

Both Pdata(·) and Pz(·) represent the distribution of real data
and noise data, respectively. In the training of GAN, the generator G

is first fixed, and the discriminator D is trained with the main
objective of improving D’s ability to discriminate between the two
sources of data [49]. Then, the discriminator model is fixed, and the
generator model is trained to generate data that can deceive the
discriminator as much as possible. The introduction of GAN has
provided more possibilities for the development of deep learning,
receiving extensive attention from scholars worldwide at that time.
However, GAN also has its limitations, such as asynchronous
training of the generator and discriminator, low accuracy of
generated data, high variability in generated data, and difficulty
in reaching an equilibrium state. These issues restrict the application
of GAN in various fields, especially in practical engineering
scenarios where many problems cannot be directly solved by
formulas. To address these issues, researchers have proposed
derivative models such as CGAN, which incorporates conditional
information into the GAN framework, transforming the originally
unsupervised learning GAN into a supervised learning approach.
This provides a direction for data generation in GAN and greatly
expands its application areas. Many subsequent variants of GAN
have been inspired by CGAN. Therefore, in this study, we have
decided to use CGAN for noise data prediction. The following
sections will provide a detailed introduction to CGAN.

2.2 Conditional generation adversarial
neural network

Conditional Generative Adversarial Networks (CGANs),
developed by Mirza [13] introduce conditional variables into the
model, which constrain the process of data generation and enable
targeted generation of desired data. This model introduces
conditional variables into the network architecture to guide the
data generation process and achieve targeted generation of specific
data. The CGAN architecture is similar to the original GAN [49], but
with the addition of extra conditional variables, denoted as y, in both
the generator G and discriminator D. This modification allows
CGAN to operate as a controlled and supervised network model.
The objective function of CGAN is presented in Equation 2, which

FIGURE 4
Schematic diagram of CGAN structure: Generator G and
Discriminator D.

FIGURE 5
(A) Tubular structure; (B) Section diagram.
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incorporates conditional probabilities to form a constrained
maximin function.

min
G

max
D

V D,G( ) � Ex~Pdata x( ) logD x|y( )[ ]
+ Ez~Pz z( ) log 1 −D G z|y( )( )( )[ ] (2)

Figure 3 presents the CGANmodel, which is built upon the core
concept of Nash equilibrium derived from game theory. It mainly
consists of two network structures, G and D, which can be regarded
as players in the game. G’s function is to learn data distribution
features from real data as much as possible, and then generate false
data that may confuse the discriminator. The primary role of the
discriminator is to effectively differentiate between real and

generated data, thereby accurately determining the source of the
data. To outperform each other, both the generator and
discriminator must continuously enhance and optimize their
abilities. This iterative process of improvement and optimization
in CGAN aims to achieve a Nash equilibrium between the two
components. For the generation model G, its input is random noise
z and corresponding conditional information y, and its output is
generated sample similar to real data distribution. The discriminator
model D is designed to take real data x, corresponding conditional
information y, and generated sample G(y, z) as inputs. It assigns an
output of 1 or 0, depending on whether the input is real data or a
generated sample, respectively. Its main function is a dichotomous
test. The mutual game optimization process of generator G and

FIGURE 6
r0 = 100,200, CBIE and Burton-Miller method for sound pressure calculation at 900 mm (A–I).
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discriminatorDmakes the ability ofD and G continuously improve
and finally reach an equilibrium state, that is, discriminator D can
no longer distinguish between the two types of input data. The
training of CGAN is a process of D and G alternating repeatedly, so
its loss function is closely related to the loss function of D and G,
which can be expressed as Equation 3:

L G,D( ) � Ex,y,Pdata x,y( ) logD x, y( )[ ]
+ Ey,py y( ),z,pz z( ) log 1 −D G y, z( ), y( )( )[ ] (3)

where Pdata(x, y) represents the distribution of input data, D(.)
and G(.) represent the output of D and G respectively, z is random
noise. The loss function for D and G is written as Equation 5:

LD � −Ex,y,pdata x,y( ) logD x, y( )[ ]
− Ez,pz,y,py z,y( ) log 1 −D G z, y( ), y( )( )[ ] (4)

LG � Ez,pz,y,py z,y( ) log 1 −D G z, y( )( ), y( )[ ] (5)

where ~u≫ u, and when the prediction accuracy of the neural
network is high enough. The optimal result of the predicted
value can be considered as the optimization result of the
original problem.

After the introduction of conditional variables y, the
discriminator and generator in CGAN are responsible for
distinguishing between real and generated data under the given
condition and generating corresponding data, respectively. Figure 4
illustrates the training process of CGAN, where both the generator G
and discriminator D take into account the additional information y
as inputs.

3 Acoustic boundary element method

First, the common Burton-Miller-based equation of boundary
integral is employed to accurately evaluate the sound pressure field
at broadband frequencies, as follows

FIGURE 7
Sound pressure calculation results of Taylor’s expansion method and analytical solutions for tubular structures. (A): r0 = 200 mm; (B) r0 = 250 mm;
(C) r0 = 300 mm; (D) r0 = 350 mm.
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C x( ) p x( )+αq x( )( )+∫
S
F x,y( )p y( )dS y( )+α∫

S
H x,y( )p y( )dS y( )

�∫
S
G x,y( )q y( )dS y( )+α∫

S
K x,y( )q y( )dS y( )

+ pinc x( )+α∂pinc x( )
∂n x( )[ ]

where α represents the coupling parameter: defined as α � i/k where
k> 1 and α � i in other cases. The symbol k represents the wave
number, where k � c/ω, with ω being the angular frequency and c
being the speed of sound. When the point of source x is located on a
border that is smooth S, C(x) � 1/2, the sound pressure is indicated
by p(x), p(y) represents the sound pressure at the field point y,
while q(y) represents its normal derivative. pinc(x) represents the

plane wave’s incident acoustic pressure. The function of Green
G(x, y) and the equation given in Equation 6 and its
corresponding derivative are defined as follows.

G x, y( ) � i
4
H 1( )

0 kr( )

F x, y( ) � ∂G x, y( )
∂n y( ) � −ik

4
H 1( )

1 kr( ) ∂r

∂n y( )
K x, y( ) � ∂G x, y( )

∂n x( ) � −ik
4
H 1( )

1 kr( ) ∂r

∂n x( )

H x, y( ) � ∂2G x, y( )
∂n x( )∂n y( ) � ik

4r
H 1( )

1 kr( )nj x( )nj y( )
−ik

2

4
H 1( )

2 kr( ) ∂r

∂n x( )
∂r

∂n y( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

whereH(1)
n (kr) represents the nth order Hankel function of the first

kind for the Green’s function G(x, y), i � −1√
, r � |x − y|

represents the distance between the source and field points, nj is
the Cartesian component of n(x) or n(y) and ∂r/∂n � r,jnj.

The boundary of the structure’s surface is discretized using
constant elements. Subsequently, after gathering all the
collocation points (nodes) at the center of each element,
Equation 6 is reformulated in matrix form as follows.

Hp � Gq + pinc (7)
In the above equation, H and G represent the coefficient matrices
utilized in the BEM. These matrices are characterized by their high
density and non-symmetry, and they also exhibit frequency-
dependent variations. The vectors p and q are denoted by p and
q respectively, and pinc represents the incident wave vector. Taking
into account the impedance boundary condition q(x) � ikβ(x)p(x),
Equation 7 can be rewritten as

FIGURE 8
Sound pressure calculation results of Taylor’s expansionmethod and analytical solution at [1,500]Hzwhen r0 = 400mm. (A) Frequency at [0,250]; (B)
Frequency at [250,500].

FIGURE 9
NACA0012 airfoil structure diagram.
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p � pinc (8)
in which the diagonal matrix B can be expressed as Equation 9.

B � ik

β1 / 0

..

.
1 ..

.

0 / βn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

where the normalized acoustic impedance value of the ith element is
represented by βi. Incorporating the external sound field, the sound
pressure pf can be represented as Equation 10.

pf � − Hf − GfB[ ]p + pinc
f (10)

where akin to the coefficient matrix in Equation 7,Hf and Gf stand
for the coefficient matrices corresponding to field points y situated
in the external acoustic domain. The Taylor expansion of the n-th
order Hankel function of the first kind at the frequency z0 � k0r is
given by

H 1( )
n z( ) � ∑∞

m�0

z − z0r( )m
m!

H 1( )
n z( )[ ] m( )

z�z0 (11)

FIGURE 10
Frequency segmentation simulation results [(A–D): 1–1000 Hz].

TABLE 1 Network structure and training parameter setting of CGAN.

Network structure Number of hidden layers Loss function Activation function Optimizer Learning rate

Generator 3 Mean Squared Error Sigmoid Adam 0.0002

Discriminator 3 Mean Squared Error Sigmoid Adam 0.0002
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FIGURE 11
Network architecture of CGAN’s generator.

FIGURE 12
Network architecture of CGAN’s discriminator.

FIGURE 13
General modeling flowchart of machine learning.
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in which [H(1)
n (z)]mz�z0 � dmH(1)

n (z)
dzm |z�z0. Replacing z and z0 with

kr and k0r respectively, we obtain the Taylor series expansion of
the kernel function in Equation 6. As deriving an explicit
expression for the m-th derivative of the n-th order Hankel
function is highly intricate, this paper uses the recursive form
as in Equation 12.

dH 1( )
n z( )
dz

� n

z
H 1( )

n z( ) −H 1( )
n+1 z( ) (12)

Through successive differentiations with respect to the variable z, we
derive the recursive expression for the m-th derivative of the n-th
order Hankel function.

H 1( )
n z( )[ ] m( ) � ∑m

i�1
H 1( )

n z( )[ ] m−i( ) −1( )i+1 m − 1( )!
zi m − i( )! − H 1( )

n+1 z( )[ ] m−1( )

(13)
Next, by substituting Equation 13 into Equation 11, we derive the
expansion of H(1)

n (kr) at point k0.
Combining Equations 6, 11, we can derive the expansion of the

integral in Equation 4 at the point y as follows

∫
S
F x, y( )p y( )dS y( ) � ∑∞

m�0

k − k0( )m
m!

Im1

∫
S
G x, y( )q y( )dS y( ) � ∑∞

m�0

k − k0( )m
m!

kIm2

α∫
S
H x, y( )p y( )dS y( ) � ∑∞

m�0

k − k0( )m
m!

kIm3 + k2Im4( )
α∫

S
K x, y( )q y( )dS y( ) � ∑∞

m�0

k − k0( )m
m!

k2Im5

(14)

where

Im1 � −∫
S

irm−1

4
zH 1( )

1 z( )[ ] m( )
z�k0r

∂r

∂n y( )p y( )dS y( )
Im2 � −∫

S

βir
m

4
H 1( )

0 z( )[ ] m( )
z�k0rp y( )dS y( )

Im3 � ∫
S

αirm−1

4
H 1( )

1 z( )[ ] m( )
z�k0rnj x( )nj y( )p y( )dS y( )

Im4 � ∫
S

αirm

4
H 1( )

2 z( )[ ] m( )
z�k0r

∂r

∂n x( )
∂r

∂n y( )p y( )dS y( )
Im5 � ∫

S

αβir
m

4
H 1( )

1 z( )[ ] m( )
z�k0r

∂r

∂n y( )p y( )dS y( )

(15)

In the integral Im1 , them-th derivative of the function zH(1)
1 (z) is

represented as Equation 16.

z( )H 1( )
1 z( )[ ] m( ) � m H 1( )

1 z( )[ ] m−1( ) + z H 1( )
1 z( )[ ] m( )

(16)

Substituting Equations 14, 15 into Equation 6 with impedance
boundary conditions, we derive the following expression.

C x( )p x( ) 1 + αikβ x( )( ) + ∑∞
m�0

k − k0( )m
m!

Im1 + k −Im2 + Im3( ) + k2 Im4 − Im5( )[ ]
� pinc x( ) + α

∂pinc x( )
∂n x( )[ ] (17)

Due to the presence of singularity in the kernel function and its
normal derivative in Equation 6, not only is the behavior of this
equation affected but it also has an impact on other associated
expressions. Consequently, the boundary integrals involving a series
of expansions in Equation 15 also exhibit singularity. Standard
integration methods are insufficient to solve these singular
integrals. Instead, techniques such as Cauchy principal value and
Hadamard finite part integral must be employed to handle them.

To discretize Equation 17, the collocation method can be utilized
along with constant elements. This results in the following expression.

Cp + k�Cp + ∑∞
m�0

k − k0( )m
m!

Im1 + kIm2 + k2Im3[ ]p � Pinc (18)

where C matrix can be expressed in the form of Equation 19.

C �
C1 0

1
0 CN

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ and �C � αi
β1C1 0

1
0 βNCN

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (19)

Let matrices ~I
m
1 and ~I

m
2 be defined as Equation 20.

~I
m

1 � C + I01, m � 0
Im1 , m ≠ 0

{ and ~I
m

2 � �C + I02, m � 0
Im2 , m ≠ 0

{ (20)

Then, by setting Im3 � ~I
m
3 , Equation 18 can be redefined as

Equation 21.

∑M
m�0

k − k0( )m
m!

~I
m

1 + k~I
m

2 + k2~I
m

3( )⎡⎣ ⎤⎦p � ~Pinc (21)

This expression includes only the initial M terms of the Taylor
expansion. Since matrices ~I

m
1 , ~I

m
2 , and Ĩm3 are not influenced by

FIGURE 14
Prediction results of CGAN on the CBIE dataset for
airfoil structure.

TABLE 2 Development environment parameters table.

Operating system Development framework Programming language Memory (GB) GPU

Windows Server 2019 Tensorflow-GPU 2.6.0 Python 32 NVIDIA GeForce RTX 4090
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frequency, they can be computed just once for wideband acoustic
analysis. This helps to eliminate the significant computational cost
associated with repeatedly calculating Equation 8 for different
frequencies.

4 Numerical examples

In this section, the validation of the previously proposed
methods was conducted [50]. First, the BEM method was

FIGURE 15
Examples of two-dimensional meshes used in current research. (A) Sketch the computational domain. (B) The grid near the wings. (C) Enlarged view
near the leading edge.

FIGURE 16
(A) average pressure distribution on the airfoil surface and (B) RMS pressure on the airfoil surface.
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verified, followed by the establishment of the BEM-CGAN wing
noise surrogate prediction model based on BEMdata integrated with
CGAN. Additionally [51–53], the CAA-CGAN model validation
was performed, along with the prediction of a propeller wake model.

4.1 The wing structural vibration and noise
prediction model based on BEM-CGAN

First, consider the two-dimensional acoustic field calculation
model of the tubular structure as shown in Figure 5. Let r0 be the
radius of the cylindrical shell. In the acoustic field calculation, a
normal velocity v0 = 9.6× 10−5m/s is provided, which is generated by
the internal pressure of the pipe wall. The boundary condition is set
at the observation point r (2 m, 0 m).

The 2D cylindrical shell surface is uniformly discretized into
100 constant elements. When the pipe radius r0 is set to 100, 150,
200 . . . , 900mm, and the frequency f ranges from 0 to 1000Hz (with
a step size of 1 Hz), Figure 6 presents the frequency response curves
of sound pressure amplitudes computed using the
conventional boundary element method (referred to as CBIE)

and the Burton-Miller method. From Figure 6, several
conclusions can be drawn: as the pipe radius increases, the sound
pressure at the observation location also increases. The results
obtained using the CBIE method and the Burton-Miller method
are essentially the same. However, when the radius r0 ≥ 600mm, the
CBIE method exhibits false peak issues, while the Burton-Miller
method can effectively resolve this problem.

The comparison between the Taylor expansion method and the
analytical solution is shown in Figure 7. The acoustic pressure results
for different pipe structure radii r0 were obtained using the Taylor
expansion-based boundary element method in the frequency range
of [1, 1,000] Hz with a frequency step size of 1 Hz.

From Figure 7, it is evident that as the number of terms in the
Taylor expansion increases, the numerical solution approaches the
analytical solution more closely. Notably, there are substantial
disparities in the boundaries of the frequency range, primarily
because the fixed frequency expansion point is positioned in the
middle of the frequency range. The numerical results become
increasingly inaccurate as one moves farther away from the fixed
frequency expansion point. To validate this hypothesis, simulations
were conducted for the radius r0 = 400 mmwith frequency ranges of

FIGURE 17
Comparison of far-field sound pressure prediction results when wave number k = 1,4,8 and Mach number Ma = 0.5.

FIGURE 18
Comparison of prediction results of CGAN on sound pressure data under unknown working conditions.
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FIGURE 19
Schematic Diagram of the Contra-Rotating Propeller Grid Model and Local View of the Rear Blade: (A) Regarding themesh model of a propeller; (B)
Regarding the local image of a propeller’s trailing blade.

TABLE 3 Input and output variables of CGAN under single operating conditions.

Input variables Output variables Hidden layer settings Learning rate

x, y V 66,89,105,154,121,87,65 0.0002

FIGURE 20
The velocity distribution on the tangent line of the leading edge of the rear blade of a counter rotating propeller (wind speed:30 m/s,rotational
speed:2500 r/min). (A) Cross-Section 1; (B) Cross-Section 2; (C) Cross-Section 3; (D) Cross-Section 4.
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[1, 250] Hz and [250, 500] Hz. Figure 8 presents the
simulated results.

So far, the numerical methods used in this study have been
validated. Next, these methods will be applied to simulate the airfoil
structure, providing sample data for the construction of the BEM-
CGAN model. The airfoil model used in this study is the
NACA0012 airfoil, and its structure is shown in Figure 9.

The sound pressure in the frequency range of [1–1,000] Hz, the
first approach utilized is the CBIE method together with the fast

sweeping method, both of which rely on Taylor expansion. This
frequency band is further divided into [1–250], [250–500],
[500–750], and [750–1,000]. Then, these two methods are used
for simulation, and the results are shown in Figure 10.

Based on Figure 10, it can be observed that as the frequency band
decreases, the error between the results obtained from the fast
sweeping method based on Taylor expansion and the CBIE
method decreases. Therefore, we can conclude that as the
frequency band becomes smaller, the results obtained from the

FIGURE 21
Prediction results of CGAN on a test set with wind speed of 50m/s and rotational speed of 5,500 r/min. (A) Cross-Section 1; (B) Cross-Section 2; (C)
Cross-Section 3; (D) Cross-Section 4; (E) Cross-Section 5; (F) Cross-Section 6; (G) Cross-Section 7; (H) Cross-Section 8.

Frontiers in Physics frontiersin.org14

Jiang et al. 10.3389/fphy.2024.1452876

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1452876


fast sweeping method based on Taylor expansion become closer to
the true solution. At this point, the obtained samples can serve as
the foundation for training the CGAN model. Next, let’s analyze
the modeling and prediction results of the CGAN model using the
airfoil structure in the [1–1,000] Hz frequency range as an
example. For the noise prediction problem of the airfoil, the
discriminator and generator of the CGAN can be viewed as
regression models. Therefore, the Mean Squared Error (MSE)
function is selected as the loss function, and the Sigmoid
function is chosen as the activation function. The capability of
the generator and discriminator should approach a balance, and
the representation has a relatively small parameter dimension.
Thus, both the generator and discriminator adopt fully connected
neural networks with three hidden layers. The network structure
configuration for the CGANmodel is presented in Table 1, and the
schematic diagram of the network structure is shown in Figures
11, 12. The general modeling flowchart of machine learning is
shown in Figure 13.

In Figure 11, z1 and z2 represent the random vectors input to
the generator. y represents the label information, where in this
case it corresponds to the frequency information. x1 represents
the generated data, which is the sound pressure at the observation
points. In the discriminator, x2 represents the real data, apologies
for the confusion. In the discriminator, ŷ represents the label
information, specifically the frequency information. d̂ represents
the judgment result of the discriminator’s output layer, indicating
the discriminator’s classification of the input as real or fake. x2

represents the real data. The machine learning modeling in this
study was conducted on a desktop workstation with the following
specifications: Windows Server 2019 as the operating system,
32 GB of memory, an NVIDIA GeForce RTX 4090 GPU,
TensorFlow-GPU 2.6.0 as the development framework, and
Python as the programming language. The detailed contents
can be found in Table 2. After setting the CGAN parameters,
the sound pressure data of the wing structure calculated by CBIE
in the frequency range of [1, 1,000] Hz was used as the dataset and
input into CGAN for training. The testing dataset was also set to
be the same as the training dataset to validate the applicability of
CGAN. The predicted results are shown in Figure 14. From the
figure, it can be seen that the predictions of CGAN align well with

CBIE itself, indicating a good agreement. Subsequently, the next
step of testing was performed by extracting 3/4 of the data from
the CBIE dataset as the training set and the remaining 1/4 of the
data as the testing set to evaluate the generalization performance
of the CGAN model. Supplementary Figure 1 illustrates the
performance of CGAN on the testing set. From the figure, it
can be observed that the predicted results of CGAN on the testing
set exhibit a good consistency with CBIE itself, demonstrating that
CGAN can be applied in the field of regression prediction. These
results validate the effectiveness and generalization capability of
the CGAN model in predicting the sound pressure data of the
wing structure.

4.2 Interference noise prediction model for
wing vortex with CAA-CGAN

In the next step, the data obtained from simulating the structural
vortex interference noise of the wing using computational
aeroacoustics (CGAA) method is combined with CGAN to
establish a proxy prediction model called CAA-CGAN [12]. The
NACA0012 airfoil is chosen as the reference airfoil, having a
thickness of 0.12c, degree of deflection 0.02c, and an angle of
attack a � 2◦, where c represents the chord length of the airfoil.
k is a wave number vector and ε is a small parameter, satisfy ε≪ 1.
The model and grid are shown in Figure 15.

For wind speed with wave numbers k1 = k2 = 1, Figure 16 presents
the average wall pressure Pwall and root-mean-square and compares
them with the benchmark reference values provided by [54].

Based on the observation from the graph, we believe that the
data obtained from CAA calculations is accurate and effective,
making it suitable for training data in the subsequent CGAN
modeling. Next, we will proceed with the establishment of the
CAA-CGAN model. The configuration information is set as
follows: for wave numbers k = 1,4,8, Ma = 0.1, 0.2, . . . , 0.7, and
the far-field angles of the airfoil are considered as conditional
information. The output data will be the calculated sound
pressure from the CAA.

First, the generalization prediction ability of CGAN under a
single operating condition is tested. The Mach number (Ma) and

FIGURE 22
Comparison between CGAN’s predicted results on the test set and the actual results: (A) The speed prediction results of CGAN; (B) Prediction results
of half wake width for CGAN.
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far-field azimuth are used as conditional information, and the far-
field sound pressure data is considered as the data to be generated.
For each operating condition, the dataset is divided into a 9:1 ratio
for training and testing. The CGAN is used to learn and predict the
CAA dataset, and the outcomes are then contrasted with the
forecasts made by the Amiet theory. Figure 17 shows the far-field
sound pressure results at different wave numbers for aMach number
of 0.5, on a circular region with a radius of 4c.

After conducting the generalization testing, we extend the
predictive model to predict the far-field sound pressure data
under unknown operating conditions. The specific procedure is
as follows: we extract the data from the training set at wave
numbers k = 1, 4, 8, and Mach number Ma = 0.5, and use it
as the test set. We evaluate the accuracy of the CAA-CGAN
predictive model when predicting far-field sound pressure data
under unknown operating conditions. Figure 18 presents a
comparison of the predictive results from CGAN, CAA, and the
predictions based on Amiet theory.

From the graph, it can be observed that the predictive results
from CGAN align well with the data from CAA, and the accuracy is
stronger compared to the results obtained from Amiet theory.

4.3 Regarding the prediction of the velocity
profile of a propeller wake

Finally, we validate the model using an example of a propeller
wake. The model structure, as shown in Figure 19A, divided the
domain into 12 million grids. RANS algorithm was employed in the
simulation using Numeca software. The detailed diagram of the
model is presented in Figure 19B. Firstly, we verified the
effectiveness of CGAN in predicting the flow field data of a
propeller under a single operating condition. Then, we
considered using CGAN to predict the velocity distribution and
key parameters of the propeller wake under multiple operating
conditions. In this example, the main operating condition
information considered was the wind speed and propeller
rotation speed.

Firstly, under fixed wind speed and rotation speed conditions,
the three-dimensional flow field of the propeller wake was divided
into 13 planes. The velocity distribution at the trailing edge of the
rear propeller blade was extracted. CGAN was used for the
adaptability test of predicting the velocity distribution and semi-
wake width of the propeller wake. The input and output parameters
of CGAN are shown in Table 3.

Secondly, we verify the applicability of CGAN by testing it on
the training dataset itself. The data from the cases with a wind
speed of 30 m/s and a rotation speed of 2,500 r/min are selected as
the overall dataset. A portion of the wind speed distribution data
from these cases is chosen as the training and testing sets. After
2,000 iterations of training, the predictive results of CGAN are
shown in Figure 20.

Testing on the dataset under a single operating condition
indicates that CGAN has the potential to be applied to such
problems. Therefore, further exploration of CGAN’s generalization
performance is needed.

From a practical perspective, what we often need is complete
data for any operating condition, rather than partial data for

specific conditions. Therefore, both the wind speed and velocity
will be used as input variables, while other settings will be similar to
before. Following the previous applicability test, the next step is to
directly perform generalization testing. After multiple rounds of
debugging, the number of hidden layers in CGAN has been
increased to 10. The overall dataset consists of 27 sets of data
under varying wind speeds and rotation speeds. The data with a
wind speed of 50 m/s and a rotation speed of 5,500 r/min are
selected as the testing set, and the results after 20,000 iterations of
training are shown in Figure 21.

Figure 21 shows the velocity distribution along the tangential
plane at 10 cross-sections of the propeller’s leading edge under the
experimental conditions, yielding fairly accurate results. Additionally,
we also predicted the velocity loss and half-wake width at a wind speed
of 30 m/s and rotational speed of 4,800 rpm. The predicted results by
the CGAN are shown in Figure 22.

In Figure 22A shows the summary prediction results of the
CGAN for velocity, while Figure 22B shows the summary results for
the half-wake width. The half-wake width data was obtained
through simple calculations on the initial data. The horizontal
axis represents the test points corresponding to 13 cross-sections
under this operating condition.

It is worth mentioning that when using CGAN to establish a
surrogate prediction model, the generator of CGAN has an
important parameter: the noise vector. In previous applications
for image generation, this vector often had dozens or even
hundreds of dimensions to ensure the richness of generated
images. However, in the present study, a high-dimensional
noise vector would not only lead to some generated data
deviating from the desired results, but also significantly increase
the complexity of the network structure in order to meet the
accuracy requirements.

5 Conclusion

This study combines three numerical methods with Conditional
Generative Adversarial Networks (CGANs) to establish a surrogate
modeling approach for predicting the noise of airfoil structures. The
main findings are as follows:

(1) The combination of BEM, CAA, CFD, and CGANs has been
explored to investigate the applicability of CGANs to this type
of problem.

(2) The surrogate prediction model established through CGANs
reduces significant computation time, aiding in speeding up
the optimization and design process of airfoil structures.

(3) Modifying certain structures of CGANs proves beneficial for
handling regression problems in this research.

However, this approach has some limitations. It may struggle
to achieve ideal prediction results when the data dimension is too
high or when there is poor correlation between the data,
rendering the predictions unreliable. To address these
limitations, our future research will focus on developing more
efficient numerical algorithms. Additionally, exploring advanced
deep learning techniques to improve the accuracy of the
surrogate model. By doing so, we aim to overcome these
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challenges and enhance the reliability and accuracy of the
surrogate prediction model.
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