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We derived exact analytical expressions for the variance, the third central
moment, and the skewness of the multiplication gain distribution in uniform
avalanche structures. The model assumes Poissonianity and locality of the
ionization process and is valid for arbitrary values of the electron and hole
ionization coefficients, α and β, respectively, as functions of the space
coordinate. Expressions are also provided for the particular case where the
ionization coefficients are related by a constant ratio k � β/α. The skewness is
found to be always positive and greater than 2, indicating statistically relevant.
Finally, the implications for spectral measurements of ionizing radiation are
reviewed.
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1 Introduction

The stochastic nature of the impact ionization mechanism due to energetic charge
carriers in avalanche semiconductor devices [1] causes the overall multiplication gain to be
distributed according to a non-trivial probability density function, with important
implications on the behavior of the noise. The noise mechanisms and their impacts on
the overall device properties have been the subject of a remarkable series of studies since the
1960s (e.g., [2] among the firsts). This was partly due to the versatility of this class of devices,
making them suitable for a vast range of applications, and partly due to the complexity of
the description of the avalanche multiplication phenomenon per se.

For instance, [3]McIntyre derived an expression for the noise spectral density due to the
self-multiplication of the leakage current and possibly of the photo-generated and thermal-
generated currents in uniform (i.e., one-dimensional) avalanche diodes as a function of the
electron and hole impact ionization coefficients α and β, respectively, functions of the space
coordinate x. The model was developed under a set of assumptions, which are worth
mentioning as they will be maintained throughout this work: i) the noise of the multiplied
carrier streams is shot noise, i.e., follows Poisson statistics, and ii) the ionization coefficients
are assumed to be functions of the electric field only, neglecting the history of the charge
carrier momentum build-up and qualifying the theory as “local,” in contrast to more
physically accurate, but less handy, non-local models such as those employed by [4]. These
two characteristics qualify this theory as “continuous,” retaining validity as an “asymptotic”
theory [5]. It is the case that the number of possible independent collisions within the
avalanche region can become so large that it justifies the use of continuous ionization rates
per unit length α(x) and β(x). In contrast, other theories such as those proposed by [5, 6]
treat the ionization process as a finite sequence of independent Bernoulli trials, which were
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found to better describe the behavior of devices with a very thin
avalanche region where the number of possible collisions is small.
From the excess noise spectral density derived in a condition of
stationarity [3], it is allowed to extract the variance of the
multiplication gain by virtue of Burgess’ theorem on the variance
of a random sum [7] (see Appendix 2) and Milatz’s theorem [8] (a
special case of MacDonald’s theorem [9]). The procedure is well
explained by [10, 11]. This means that means, with SIin being the
noise spectral density of the input (unmultiplied) current, SIout being
the noise spectral density of the output (multiplied) current, andM
being the multiplication gain distribution, the following
relationship holds

SIout � SIinE M[ ]2F, (1)
� SIinE M[ ]2 + 2qE Iin[ ]V M[ ], (2)

where F is the noise excess factor, q is the electric charge, E[·] is the
mean value operator, and V[·] is the variance operator. Since
SIin � 2qE[Iin], it follows that

V M[ ] � E M[ ]2 F − 1( ). (3)
The knowledge of the variance of the multiplication gain can be

of particular interest in spectral resolution applications [12] as it
directly contributes to the uncertainty in energy measurements
pertaining to single pulses. It has to be noted, however, that the
statistical moments of M do not end with the second moment
(i.e., the variance). This means that both the stationary current noise
and single pulse noise can depart, to some degree, from a typical,
symmetric, normal distribution, with potential implications for the
interpretation and impact of the multiplication noise. For example,
information on the skewness of single pulses was used to improve
the characterization of silicon photomultiplier (SiPM) devices [13],
while experimental sources of evidence on the skewness and even
higher moments in current fluctuations in single photon avalanche
diodes (SPADs), supported by statistical thermodynamic
considerations on non-linear devices, are described in [14, 15]
and references therein. The expression for the probability
distribution of the number of final (after multiplication) carriers
as a function of the number of initial carriers (and therefore of the
multiplication gain) was already derived by [16–18]. As highlighted
by [16], it is exemplary that the probability distribution generated by
one single initial carrier has a maximum in correspondence with one
final carrier for any value of the mean multiplication gain. In
principle, the computation of the statistical moment should then
be possible, but apart from the difficulty of coming to an analytical
solution given by the complexity of the expressions, all the
aforementioned studies are limited by the assumption of linear
dependency of the ionization coefficients β � kα.

To overcome this limitation, in this work, we present an
analytical derivation of the third central moment and the
skewness of the multiplication gain distribution for arbitrary α

and β. The assumptions of Poissonianity and the locality of the
ionization process are maintained. The model relies on the property
of additivity of the central moments for a sum of random variables
up to the third degree and the composition rules for the moment of a
random sum. This originates an integral equation similar to the
equation for the mean multiplication gain M(x) presented by [3],
which is briefly reported for the sake of readability. In addition, for

completeness, we present the derivation of the variance using the
same strategy, showing the coincidence with the result obtained
in Equation 3.

Apart from a purely theoretical interest, knowledge of the
skewness of the multiplication gain can contribute to better
modeling of avalanche structures and better understanding and
interpretation of their behavior [12, 19]. For example, it is
worthwhile to mention the increasing interest in avalanche
devices in fields beyond optical photon science, such as the case
of low-gain avalanche diodes (LGADs) with energy-resolving
capabilities in high-energy physics with tracking and timing
applications [20] and soft X-ray synchrotron applications [21]. In
this context, we provide a simple model for the evaluation of the
impact of the skewness of the multiplication gain on spectral
measurements of ionizing radiation.

2 Materials and methods

The investigated avalanche structure consists of an np junction
with a depletion layer extending from x � 0 to x � w. In this
framework, electrons will drift toward x � 0, while holes will
drift toward x � w. The ionization coefficients for electrons and
holes are indicated with α and β, respectively, and they represent the
electron–hole pair generation rates due to impact ionization. They
are, in general, functions of the local electric field and, therefore, of
the position x, but for simplicity of notation, we omit these.

2.1 Mean multiplication gain

To facilitate reading, we provide a brief summary of the
derivation of the mean multiplication gain as a function of x,
corresponding to the initial position of the electron–hole pair
that starts the avalanche, as presented by [3]. Some notable
equalities are also mentioned as they will be used in the
remainder of this study. Let us indicate the mean multiplication
gain with M(x) � E[M(x)]. As the electron travels each
displacement element dx toward the collecting electrode, it will
generate, on average, αdx electron–hole pairs. Similarly, a hole
will generate, on average, βdx electron–hole pairs. The secondary
pairs will, in turn, start ionization chains according to their
starting position x′, and therefore, they will propagate as M(x′).
This leads us to the following linear integral equation of the
second kind:

M x( ) � 1 + ∫x

0
αM x′( )dx′ + ∫w

x
βM x′( )dx′. (4)

After differentiating, we obtain

dM x( )
dx

� α − β( )M x( ), (5)
whose solutions are

M x( ) � M 0( )e∫x

0
α−β( )dx′, (6)

� M w( )e−∫w

x
α−β( )dx′. (7)

By substituting Equation 7 into Equation 4, for x � w, we obtain
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M w( ) � 1

1 − ∫w

0
αe

−∫w

x
α−β( )dx′dx

, (8)

and analogously, substituting Equation 6 into Equation 4 for x � 0,
we obtain

M 0( ) � 1

1 − ∫w

0
βe∫x

0
α−β( )dx′dx

. (9)

Thus,

M x( ) � e
−∫w

x
α−β( )dx′

1 − ∫w

0
αe

−∫w

x
α−β( )dx′dx

. (10)

Two particular cases are given as follows:

Case α � β.

If the electron and hole ionization coefficients are equal,M is no
longer a function of x but reduces to a constant:

M � 1

1 − ∫w

0
αdx

. (11)

Case β � kα

If the electron and hole ionization coefficients are related by a
fixed ratio k, from Equation 4, it follows the notable equality:

M 0( ) − 1 � k M w( ) − 1[ ]. (12)

2.2 Variance of the multiplication gain

Let us indicate the variance of the multiplication gain by
V(x) � E[(M(x) − E[M(x)])2] � V[M(x)], and let us
consider again an initial electron–hole pair starting at position x.
Generalizing from the previous case, each primary carrier traversing
a displacement element dx toward the corresponding collecting
electrodes will generate a random number of secondary
electron–hole pairs, which are assumed to be distributed
according to Poisson statistics. Each of these secondary carriers
will, in turn, initiate an ionization chain according to their starting
position x′ and propagate according to the gain distributionM(x′).
This behavior corresponds to random sum, i.e., to the sum of a
random number of identically and independently distributed
variables. Under the assumption of independence of the
ionization events, the variances generated by each carrier at each
displacement element dx can be summed up. The composition rule
for the variance of a random sum of independent events, also known
as Burgess’ theorem, is reported in Appendix 2. In particular, for an
electron traversing a displacement element dx at position x′, the
quantities in Equation B2 for the resulting variance are identified as
follows: E[k] corresponds to the average number of electron–hole
pairs generated by the traveling electron αdx; V[k] corresponds to
its variance, which, under the assumption of Poissonianity of the
ionization process, coincides with the average number αdx; E[X0]

corresponds to the mean multiplication gain M(x′); and V[X0]
corresponds to the variance of the multiplication gain V(x′).
Therefore, the variance element propagates as
αdx[M(x′)2 + V(x′)]. The same reasoning applies to holes,
replacing α with β.

The total varianceV(x) originated from the initial electron–hole
pair starting at position x obeys the following integral equation:

V x( ) � ∫x

0
α M x′( )2 + V x′( )[ ]dx′ + ∫w

x
β M x′( )2 + V x′( )[ ]dx′.

(13)
After differentiating, we obtain

dV x( )
dx

� α − β( ) M x( )2 + V x( )[ ], (14)
which is a first-order ordinary differential equation of the first order
with variable coefficients in the form:

dV x( )
dx

� a x( )V x( ) + b x( ), (15)

where a(x) � (α − β) and b(x) � (α − β)M(x)2.
The general solution is

V x( ) � V 0( )eA x( ) + eA x( )∫x

0
e−A x′( )b x′( )dx′, (16)

where the functionA(x) � ∫x

0
a(x′)dx′ is a particular antiderivative

of the function a(x).
The initial value V(0) can be derived by substituting Equation

16 into Equation 13 for x � w, which leads to

V 0( ) � ∫w

0
α M x( )2 + eA x( )∫x

0
e−A x′( )b x′( )dx′[ ]dx − eA w( )∫w

0
e−A x( )b x( )dx

eA w( ) − ∫w

0
αeA x( )dx

.

(17)

The components of Equations 16, 17 can be elaborated as
follows: for instance, from Equation 6, it holds that

eA x( ) � M x( )
M 0( ), (18)

which obviously implies that

eA w( ) � M w( )
M 0( ) . (19)

Then, using Equation 4, for x � w, we found that

∫w

0
αM x( )dx � M w( ) − 1, (20)

which is needed to solve the following equality:

−∫w

0
αeA x( )dx � − 1

M 0( )∫
w

0
αM x( )dx � 1 −M w( )

M 0( ) . (21)

Furthermore, using Equations 5, 18, we can write that

eA x( )∫x

0
e−A x′( )b x′( )dx′ � M x( )

M 0( )∫
x

0

M 0( )
M x′( ) α − β( )M x′( )2dx′,

(22)
� M x( )∫x

0

dM x′( )
dx′ dx′, (23)

� M x( ) M x( ) −M 0( )[ ]. (24)
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The initial value V(0) can then be rewritten as

V 0( ) � M 0( )

× ∫w

0
α 2M x( )2 −M x( )M 0( )[ ]dx −M w( )2 +M w( )M 0( ){ },

(25)
which, using Equation 20, can be simplified into

V 0( )
� M 0( ) 2∫w

0
αM x( )2dx +M 0( ) 1 −M w( )[ ] −M w( )2 +M w( )M 0( ){ }.

(26)

By substituting Equation 26 into Equation 16 and simplifying,
we finally obtain

V x( ) � 2M x( )∫w

0
αM x( )2dx +M x( )2 −M x( )M w( )2. (27)

Now, this formulation is consistent with the excess noise factor
computed by [3] in Equation 13 (minus the termM(x)2, as expected
from Equation 3) if the quantities related to the current injected at
the contacts are null, i.e., Ip(0) � In(w) � 0, and the quantity
related to the generation rate per unit length corresponds to a
Dirac’s delta distribution function: g(x′) � 1δ(x − x′).

Case α � β

Like the meanM, its varianceV is no longer a function of x, and
Equation 27 is reduced to

V � M3 −M2. (28)

Case β � kα1

The integral 2∫w

0
αM(x)2dx can be performed in virtue of

Equation 5, and it yields

2∫w

0
αM x( )2dx � 2∫w

0

dM x( )
dx

1
1 − k

M x( )dx, (29)

� M w( )2 −M 0( )2
1 − k

. (30)

Therefore,

V x( ) � M x( )M w( )2 −M 0( )2
1 − k

+M x( )2 −M x( )M w( )2. (31)

Finally, using Equation 12, we can express the variance resulting
from the injection of holes only (x � 0) or electrons only (x � w) as
a function of their respective mean multiplication gain:

V 0( ) � M 0( )3 1 + 1 − k

k

M 0( ) − 1
M 0( )( )2[ ] −M 0( )2, (32)

V w( ) � M w( )3 1 − 1 − k( ) M w( ) − 1
M w( )( )2[ ] −M w( )2. (33)

2.3 Skewness of the multiplication gain

The skewness (or third standardized moment) of the
multiplication gain is defined as

S x( ) � T x( )
V x( )3/2, (34)

where T(x) represents the third central moment T(x) �
E[(M(x) − E[M(x)])3] � T[M(x)] and T[·] indicates the
third central moment operator. Since the variance was already
addressed in the previous section, it now need to determine
T(x). Its derivation initiates from the same premises as for the
variance, i.e., by recognizing that the amount of electron–hole pairs
generated via impact ionization by a carrier at position x′ and
traveling toward the corresponding collecting electrode by a
displacement element dx corresponds to a random sum. Under
the assumption of independence of ionization events, the third
central moments generated at each displacement element can be
summed.2 The composition rule for the third central moment of a
random sum is reported in Appendix 3. In particular, for an electron
traversing a displacement element dx at position x′, the quantities in
Equation B3 for the resulting third central moment are identified as
follows: E[k] corresponds to the average number of electron–hole
pairs generated by the traveling electron αdx; V[k] corresponds to
its variance αdx; T[k] corresponds to its third central moment,
which, under the assumption of Poissonianity of the ionization
process, coincides again with αdx; E[X0] corresponds to the mean
multiplication gainM(x′);V[X0] corresponds to the variance of the
multiplication gain V(x′); and T[X0] corresponds to the third
central moment of the multiplication gain T(x′). Therefore, the
third central moment element propagates as
αdx[M(x′)3 + 3M(x′)V(x′) + T(x′)]. The same reasoning
applies to holes, replacing α with β.

The total third central moment T(x) originated from an initial
electron–hole pair starting at position x obeys the following
integral equation:

T x( ) � ∫x

0
α M x′( )3 + 3M x′( )V x′( ) + T x′( )[ ]dx′

+∫w

x
β M x′( )3 + 3M x′( )V x′( ) + T x′( )[ ]dx′,

(35)
which, after differentiation, yields

dT x( )
dx

� α − β( ) M x( )3 + 3M x( )V x( ) + T x( )[ ]. (36)

Like in the case of Equation 14, the general solution of Equation
36 is given in the form

1 Please refer to [16] for a critical review of this approximation to the purpose

of the excess noise factor in the noise spectral density of current

fluctuations.

2 The property of additivity of the central moments of the sum independent

stochastic variable holds up to the third degree, so the method presented

in the text cannot be extended to higher moments.
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T x( ) � T 0( )eA x( ) + eA x( )∫x

0
e−A x′( )b x′( )dx′, (37)

where the functionA(x) � ∫x

0
a(x′)dx′ is a particular antiderivative

of functions a(x) � (α − β) and b(x) � (α − β)M(x)[M(x)2 +
3V(x)].

The initial value T(0) can be obtained by substituting Equation
37 into Equation 35 with x � w, leading to

T 0( )

� ∫w

0
α M x( )3 + 3M x( )V x( ) + eA x( )∫x

0
e−A x′( )b x′( )dx′[ ]dx − eA w( )∫w

0
e−A x( )b x( )dx

eA w( ) − ∫w

0
αeA x( )dx

.

(38)

The components of Equations 37, 38 can be elaborated further.
For instance, we observe that

eA x( )∫x

0
e−A x′( )b x′( )dx′ � M x( )

M 0( )∫
x

0

M 0( )
M x′( ) α − β( )M x′( )

× M x′( )2 + 3V x′( )[ ]dx′, (39)

� M x( )∫x

0
α − β( ) M x′( )2 + 3V x′( )[ ]dx′, (40)

� M x( )∫x

0
α − β( )3 M x′( )2 + V x′( )[ ]dx′

−M x( )∫x

0
α − β( )2M x′( )2dx′, (41)

� 3M x( ) V x( ) − V 0( )[ ] −M x( ) M x( )2 −M 0( )2[ ], (42)
where in the last passage, we used Equation 14. Then, using
Equations 18, 21, we notice that the denominator of Equation 38
is reduced to 1/M(0). Thus, T(0) can be rewritten as

T 0( )
� M 0( ) 6∫w

0
αM x( )V x( )dx +M w( )3 − 3M w( )V w( ) + 3V 0( ) −M 0( )2[ ].

(43)

By substituting Equation 43 into Equation 37 and simplifying,
we finally obtain

T x( ) � 6M x( )∫w

0
αM x( )V x( )dx + 3M x( )V x( ) +M x( )M w( )3

− 3M x( )M w( )V w( ) −M x( )3. (44)

Case α � β

Like the meanM and the varianceV, the third moment T is also
no longer a function of x, and thus, Equation 44 reduces to

T � 3M5 − 5M4 + 2M3. (45)

Case β � kα

The term ∫w

0
αM(x)V(x)dx in Equation 44 can be integrated in

virtue of Equations 5, 31, which yields

∫w

0
αM x( )V x( )dx � M w( )2 −M 0( )2[ ]2

2 1 − k( )2 + M w( )3 −M 0( )3
3 1 − k( )

− M w( )2 M w( )2 −M 0( )2[ ]
2 1 − k( ) , (46)

which, by substituting into Equation 44, gives

T x( )

�

M x( ) 3k2M w( )4 − 2 k − 1( )kM w( )3
−3k 2M 0( )2 +M x( ) k − 1( )[ ]M w( )2 + 3M 0( )4+{
+2 k − 1( )M 0( )3 + 3M x( ) k − 1( )M 0( )2

+2M x( )2k2 − 4M x( )2k + 2M x( )2 }
k − 1( )2 .

(47)
Finally, using Equation 12, we can express the third central

moment resulting from the injection of holes only (x � 0) as a
function of their mean gain M(0):
T 0( )
� 3M 0( )5 + 5 k − 2( )M 0( )4 + 2 k2 − 6k + 6( )M 0( )3 − 3 k2 − 3k + 2( )M 0( )2 + k − 1( )2M 0( )

k2
.

(48)

Similarly, for electrons only (x � w), the third central moment can
be expressed as a function of their mean gain M(w):
T w( ) � 3k2M w( )5 − 5k 2k − 1( )M w( )4 + 2 6k2 − 6k + 1( )M w( )3−

−3 2k2 − 3k + 1( )M w( )2 + k2 − 2k + 1( )M w( ).
(49)

2.4 Impact on spectral measurements

When the initial number of electron–hole pairs starting
the avalanche is also a statistical quantity, like upon the
interaction of the semiconductor device with ionizing radiation
such as an X-ray photon or a charged particle, the total number
of generated pairs after multiplication follows the composition rules
of a random sum. Let  ∈ {0, 1, 2, . . .} be the random variable
representing the number of generated electron–hole pairs at
position x within the sensor. Let {Mi(x)}∞i�0 be the independent
and identically distributed random variables representing the
multiplication gain as a consequence of one single pair starting at
position x. The total signal P corresponds to a random sum and can
be written as P(x) � ∑

i�0Mi(x).
According to Equation B1 in Appendix 1, the mean value of P

simply is

E P x( )[ ] � E [ ]M x( ) � E0

ϵ M x( ), (50)

where in the last passage, we used the common relationship that the
mean number of initial electron–hole pairs equals the ratio between
the energy deposited in the semiconductor by the impinging particle
E0 and the material-specific average pair creation energy ϵ.

The variance of P, according to Equation B2 in Appendix 2, is

V P x( )[ ] � E [ ]V x( ) +M x( )2V [ ], (51)
� E0

ϵ V x( ) + fM x( )2[ ], (52)

where in the last passage, we used the common relationship that the
variance of the initial number of electron–hole pairs equals its mean
value scaled by an approximately constant material-specific factor f,
called the Fano factor.

The third central moment of P, according to Equation B3 in
Appendix 3, is
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T P x( )[ ] � E [ ]T x( ) + 3M x( )V x( )V [ ] +M x( )3T [ ], (53)
� E0

ϵ T x( ) + 3fM x( )V x( )[ ] +M x( )3T [ ]. (54)

The determination of the value of T[] requires more
careful attention. The literature on the topic is rather scarce,
but in a recent work [22], it was proposed that  could be
modeled as a Conway–Maxwell–Poisson distribution (CMP or
COM–Poisson). Originally developed in 1960s in the framework of
queuing systems with dependent service times, it generalizes the
Poisson distribution by adding a parameter to model over-
dispersion and under-dispersion, and for a random variable X,
it is defined as

Pr X � x|λ, ]( ) � λx

x!( )]Z λ, ]( ) for x ∈ N0, λ> 0 and ]≥ 0,

(55)
where Z(λ, ]) is a normalizing constant:

Z λ, ]( ) � ∑∞
s�0

λs

s!( )], (56)

and the parameter ] controls the dispersion of the distribution.
Specifically, ]> 1 will result in under-dispersion, whereas ]< 1 will
result in over-dispersion. In the special case of ] � 1, the
COM–Poisson distribution reduces to the regular Poisson
distribution, and λ simply becomes the expectation value, which
is in general not the case. There are no simple closed analytical forms
for the statistical moments, but useful approximations are available
from [23]:

E X[ ] ≈ λ1/] − ] − 1
2]

, (57)

V X[ ] ≈ λ1/]

]
, (58)

T X[ ] ≈ λ1/]

]2
, (59)

which are nominally accurate in the asymptotic regime when ]< 1 or
when λ> 10]. The parameters λ and ] can be extracted by inverting
Equations 57, 58, which in our case resolves to [22]

]
E0

ϵ , f( ) ≈
2 E0

ϵ + 1 +
�����������������
4 E0

ϵ
E0
ϵ + 1 − 2f( ) + 1

√
4 E0

ϵ f
, (60)

λ
E0

ϵ , f, ]( ) ≈
E0

ϵ ]f( )]

, (61)

which allow for the computation of T[] using Equation 59. It is
worth noting that, for large values of E0

ϵ , Equation 60 is simplified to
] ≈ 1

f, and Equation 61 simplified to λ ≈ (E0
ϵ )], thus leading to the

fairly simple relation3 T[] ≈ f2E0
ϵ .

3 Results

Figure 1 shows the behavior of the third central moment T of the
multiplication gain distribution M as a function of the mean value
M for different values of the ratio between hole and electron
ionization coefficient k. Curves labeled with “injected electrons”

FIGURE 1
Third central moment of the multiplication gain distribution as a
function of the mean value for several values of the ratio k. Curves
labeled with “injected electrons” correspond to M(w) and T(w) in
Equation 49, while curves labeled with “injected holes”
correspond toM(0), converted fromM(w) using Equation 12 and T(0)
in Equation 48.

FIGURE 2
Skewness of the multiplication gain distribution, computed using
Equation 34, as a function of the mean value and for several values of
the ratio k. The labeling has the same meaning, as shown in Figure 1.

3 For example, in silicon, assuming ϵ � 3.61 eV and f � 0.125, an error below

10% is obtained for E0 > 60 eV.
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correspond to M(w) and T(w) in Equation 49, whereas curves
labeled with “injected holes” correspond to M(0), converted from
M(w) using Equation 12, andT(0) in Equation 48. The third central
moment is equal to 0 in correspondence of the minimum mean
multiplication gain M � 1 and is always a positive quantity,
indicating that the gain distribution is right-skewed, i.e., its tail is
more pronounced on the right-hand side of the mean toward higher
gain values.

Figure 2 shows the skewness S of the multiplication gain
distribution M, computed according to Equation 34, as a
function of the mean value M and for different values of k. The
curve labeling has the same meaning, as shown in Figure 1. Salient
characteristics of the skewness are i) as M tends to 1, S tends to
infinity; ii) S has a global minimum at positions slightly above the
unity gain, depending on the value of k; and iii) S is always higher
than 2, which is typically indicated as a threshold for a distribution
to be considered significantly skewed [24].

Figure 3 shows, as an example, the skewness S of the distribution
of the total signal P, resulting from the interaction, assumed point-
like, of an ionizing particle with a silicon avalanche diode at position
x � w, which corresponds to the “injected electron” case. The energy
E0 of the impinging particle is in the range 1 eV–1 keV, and the mean
multiplication gain M is in the range 1–1,000. The third central
moment of the total signal P was computed with Equation 59, using
Equations 60, 61. The pair creation energy is ϵ � 3.61 eV, the Fano
factor isf � 0.125, and the ionization coefficient ratio is k � 0.33. The
plot includes skewness values of 0.5, indicative threshold of a mildly
skewed distribution, and 2, indicative threshold of a highly skewed
distribution, for reference. As shown in Figure 2, increasing values of

mean multiplication gain lead to increased skewness, whereas
increasing values of initial particle energy lead to decreased
skewness as a consequence of the central limit theorem.

4 Conclusion

We derived exact analytical expressions for the variance, the
third central moment, and the skewness of the multiplication gain in
uniform avalanche structures as a function of the starting position of
the electron–hole pair generating the avalanche. The expressions
were obtained by solving integral equations based on the property of
additivity of the central statistical moments of the sum of random
variables and moment composition rules of the random sum. The
assumptions include Poissonianity and locality of the ionization
process. The model is valid for arbitrary values of electron and hole
ionization coefficients α and β, respectively, as functions of the space
coordinate. Although the variance is already known from its
relationship with the excess noise in current fluctuations in
stationary conditions via Milatz’s theorem, this study, provides
an alternative, perhaps more physically intuitive, derivation.

Expressions are then provided for the particular case where the
ionization coefficients are related by a constant ratio k � β/α. In this
context, it is found that the third central moment increases
asymptotically with the fifth power of the mean multiplication
gain and that the skewness is always positive and greater than 2,
which is typically indicated as a threshold for a distribution to be
considered significantly skewed.

The impact of the first three central moments of the multiplication
gain distribution on spectral measurements of ionizing radiation was
also evaluated through the use of the composition rules for a random
sum. In this framework, we adopted the COM–Poisson distribution, a
generalization of the Poisson distribution which takes into account the
under-dispersion effect parameterized by the Fano factor as a
description of the distribution of the initial number of photo-
generated electron–hole pairs.
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FIGURE 3
Skewness of the distribution of the total signal P following the
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avalanche diode at position x � w (corresponding to the “injected
electron” case), exhibiting a mean multiplication gain M and k �
0.33. Skewness values of 0.5 indicate a mildly skewed distribution and
2 indicate a highly skewed distribution, which are shown for reference.
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Appendix

Let k ∈ {0, 1, 2, . . .} be a random variable, and let {Xi}∞i�0 be
independent identically random variables that are independent of k.
The random variable Yk � ∑k

i�0Xi is called a random sum.

1 Mean value of a random sum

The mean value of the random sum E[Yk] is straightforwardly
E Yk[ ] � E X0[ ]E k[ ]. (B1)

2 Variance of a random sum

The variance of a random sum V[Yk] is [7, 10]

V Yk[ ] � V X0[ ]E k[ ] + E X0[ ]2V k[ ]. (B2)

3 Third central moment of a random sum

The third central moment of a random sum T[Yk] is
T Yk[ ] � E k[ ]T X0[ ] + E X0[ ]3T k[ ] + 3E X0[ ]V X0[ ]V k[ ]. (B3)

Proof

The third central moment T of any random variable X is

T X[ ] � E X − E X[ ]( )3[ ], (B4)
� E X3[ ] − 3E X[ ]V X[ ] − E X[ ]3, (B5)

which, in our case, means

T Yk[ ] � E Y3
k[ ] − 3E Yk[ ]V Yk[ ] − E Yk[ ]3. (B6)

By applying the theorem of total moment on a random sum, we
can write

E Y3
k[ ] � ∑∞

i�0
E Y3

i |k � i[ ] � ∑∞
i�0

E Y3
i[ ]Pr k � i( ). (B7)

By inverting Equation B6, we know that for any Yi, the
following holds:

E Y3
i[ ] � T Yi[ ] + 3E Yi[ ]V Yi[ ] + E Yi[ ]3, (B8)

and from basic statistics, we also know that

E Yi[ ] � iE X0[ ], (B9)
V Yi[ ] � iV X0[ ], (B10)
T Yi[ ] � iT X0[ ], (B11)

so that Equation B8 becomes

E Y3
i[ ] � iT X0[ ] + 3i2E X0[ ]V X0[ ] + i3E X0[ ], (B12)

and therefore, Equation B7 can be written as

E Y3
k[ ] � ∑∞

i�0
iT X0[ ] + 3i2E X0[ ]V X0[ ] + i3E X0[ ]3[ ]Pr k � i( ),

(B13)
� E k[ ]T X0[ ] + 3E k2[ ]E X0[ ]V X0[ ] + E k3[ ]E X0[ ]3. (B14)

By substituting Equation B14 into Equation B6 and obtaining
the mean value of a random sum from Equation B1 and the variance
of a random sum from Equation B2, we get

T Yk[ ] � E Y3
k[ ] − 3E Yk[ ]V Yk[ ] − E Yk[ ]3, (B15)

� E k[ ]T X0[ ] + 3E k2[ ]E X0[ ]V X0[ ] + E k3[ ]E X0[ ]3
−3E k[ ]E X0[ ] E k[ ]V X0[ ] + E X0[ ]2V k[ ]( ) − E k[ ]3E X0[ ]3,

(B16)
� E k[ ]T X0[ ] + E X0[ ]3 E k3[ ] − 3E k[ ]V k[ ] − E k[ ]3( )
+ 3E X0[ ]V X0[ ] E k2[ ] − E k[ ]2( ), (B17)
� E k[ ]T X0[ ] + E X0[ ]3T k[ ] + 3E X0[ ]V X0[ ]V k[ ]. (B18)
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