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Action potential generation underlies some of the most consequential dynamical
systems on Earth, from brains to hearts. It is therefore interesting to develop
synthetic cell-free systems, based on the same molecular mechanisms, which
may allow for the exploration of parameter regions and phenomena not
attainable, or not apparent, in the live cell. We previously constructed such a
synthetic system, based on biological components, which fires action potentials.
We call it “Artificial Axon”. The system is minimal in that it relies on a single ion
channel species for its dynamics. Here we characterize the Artificial Axon as a
dynamical system in time, using a simplified Hodgkin-Huxley model adapted to
our experimental context. We construct a phase diagram in parameter space
identifying regions corresponding to different temporal behavior, such as Action
Potential (AP) trains, single shot APs, or damped oscillations. The main new result
is the finding that our systemwith a single ion channel species, with inactivation, is
dynamically equivalent to the system of two channel species without inactivation
(the Morris-Lecar system), which exists in nature. We discuss the transitions and
bifurcations occurring crossing phase boundaries in the phase diagram, and
obtain criteria for the channels’ properties necessary to obtain the desired
dynamical behavior. In the second part of the paper we present new
experimental results obtained with a system of two AAs connected by
excitatory and/or inhibitory electronic “synapses”. We discuss the feasibility of
constructing an autonomous oscillator with this system.
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1 Introduction

The physics of excitable media is largely concerned with the patterns in space and time
created by nonlinear excitations. In this context, electrophysiological processes, and action
potentials specifically, hold a unique place as some of the most consequential dynamical
systems on earth. Action potentials (APs) play a vital role in biological computation, as
sequences of APs encode information in a variety of ways [1].

We have recently introduced a minimal synthetic system, the “Artificial Axon” (AA)
[2–4], which is capable of generating APs in time. The experimental system is based on a
traditional suspended lipid bilayer (“black lipid membrane”) with embedded voltage gated
potassium ion channels (KvAP). An ionic gradient maintained across the membrane
provides the free energy source to elicit action potentials. Non-traditionally, the system is
held in the off-equilibrium, excitable state by a modified voltage clamp (“Current Limited
Voltage Clamp”: CLVC) which allows for voltage dynamics. The system is minimal in that it
is built with one ion channel species only, yet it can support APs. The key is the dynamics of
the channel, which includes inactivation. Previously we reported on the dynamics of firing
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APs in the AA.We showed that the threshold behavior of the system
is the same as in real neurons [5], namely it is governed by a saddle
node bifurcation [4].

Here we first discuss numerically the phase diagram for a single
AA, identifying regions in parameter space which give rise to trains
of APs, damped oscillations, or single shot APs. We propose a
simplified version of the Hodgkin-Huxley model [6] for our system,
based on the kinetics of our voltage gated ion channel KvAP [7]. The
main new insight is that a system with one ion channel species, with
inactivation, is dynamically equivalent to the (biological) system
with two channel species, without inactivation (the Morris-Lecar
system [8]). This latter system has been studied extensively in real
biological contexts. In their seminal paper on the barnacle giant
muscle fiber, Morris and Lecar display experimentally the variety of
behavior the barnacle axon can produce, including AP trains and
damped oscillations, and confirm that it is mainly due to two voltage
dependent “conductances”, corresponding to K+ and Ca++. They
then show, through a 3D dynamical systems model “of the Hodgkin-
Huxley form”, that indeed a system of two voltage gated, non
inactivating conductances, with no further elements, can generate
most of the behavior observed in the experiments [8]. Comparisons
between the AA and the Morris-Lecar system will punctuate our
presentaton, as the dynamic behavior of the two systems is similar.
We identify the bifurcations separating different regions in the phase
diagram of the AA; in particular, we point out a transition which
may not have been described before in elctrophysiology. In the
second part of the paper we present experimental measurements of
the inactivation and recovery rates of the channels in the AA system.
These help to qualitatively place the present experimental system
with respect to the phase diagram obtained from the model, and
understand the requirements on channel dynamics in order to
obtain autonomous oscillations in the AA. Finally, we
demonstrate a system of two AAs connected by electronic
“synapses”, as a prototype for future network developments.

2 Theory

2.1 The artificial axon system

In the Artificial Axon, the phospholipid bilayer acts in essence as
the dielectric of a parallel plates capacitance, sandwiched between
two conducting media which are the electrolytes on either side. This
capacitance is charged by two kinds of ionic currents: the current
through the ion channels embedded in the membrane, and the
current sourced by the clamp electrodes. The charge carriers for the
former are K+ ions, for the latter Cl−, Ag+, and all other ions in
solution. The voltage dynamics V(t) is governed by the following
Equation 1 [4]:

dV

dt
� N0χ

C
po t( ) VN − V t( )[ ] + χc

C
Vc − V t( )[ ] (1)

where C is the membrane capacitance, N0 the number of ion
channels, χ the open channel conductance, po(t) the fraction of
channels in the open (conducting) state (so N0χ po(t) is the total
channel conductance); VN is the Nernst potential corresponding
to the bulk concentrations of K+ ions on the two sides of the
membrane, χc is the CLVC conductance, and Vc the CLVC

command voltage (which is a control parameter in the
experiments). The first term on the RHS of Equation 1 is the
channel current (divided by C), proportional to the driving force
[VN − V(t)], since VN is the equilibrium potential and V(t) the
present potential. The second term is the clamp current,
proportional to the driving force [Vc − V(t)]. This second
term is exactly equivalent to the presence of a second,
reversed ionic gradient (of sodium ions, say) with Nernst
potential equal to Vc and corresponding leak conductance χc
[2, 4]. Equations of the basic form Equation 1 underlie many
models of nerve excitability [9].

The probability that channels are open, po(t), is determined
by the voltage dependent channel dynamics. The minimal model
for the KvAP channel has 3 states: open, closed, and inactive
(Figure 1). In order to minimize the dimensions of parameter
space, we connect them with 4 rate constants as shown in the
figure. The unidirectional arrows are, strictly speaking,
unphysical, but since here we are concerned with the
macroscopic dynamics of the AA rather than the microscopic
channel dynamics, they represent a permissible approximation.
In fact, the detailed channel dynamics is more complex than
shown in Figure 1, with more states and corresponding transition
rates [7]. We assume that these complications do not change the
qualitative features of the phase diagram of the system, nor the
nature of the bifurcations which occur in the dynamics. The rate
equations which determine po(t) in Equation 1 are then:

dpi

dt
� po t( ) ki − pi t( ) kr

dpo

dt
� 1 − po t( ) − pi t( )[ ] ko V( ) − po t( ) kc V( ) + ki[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

where pi(t) is the probability that the channels are in the inactive
state (po + pi + pc � 1), and the rates are as in Figure 1. Since the
channel is voltage gated, ko and kc are voltage dependent, which
couples Equation 2 to Equation 1. We assume a standard Arrhenius
dependence [7, 10]:

ko V( ) � κ eα V−V0( ), kc V( ) � κ e−α V−V0( ) (3)
this symmetric form being chosen once again to minimize the
number of parameters [4, 8]. In the experimental system, the
inactivation and recovery rates, ki and kr, are similarly voltage

FIGURE 1
Simplifiedmodel for the KvAP channel dynamics. The three states
are open (O), closed (C), and inactive (I). Adapted from [4], licensed
under Creative Commons Attribution License (CC-BY 4.0),
doi:10.1088/2399-6528/ac43d0.
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dependent; however this dependance does not qualitatively alter the
dynamical phases and bifurcations of the system. To simplify the
discussion, we take these rates as constant throughout Section 2. We
refer to the model (1), (2) with voltage independent ki, kr as the
“voltage independent model”.

In order to understand the requirements on channel dynamics
to obtain various temporal patterns, in Section 2.2 we construct a
diagram in parameter space of the dynamical behavior of the system
(1), (2), representing a single AA.We refer to it as a “phase diagram”

for short. The difficulty is that even in this minimal representation,

the parameter space is still high dimensional. To make progress, we
identify the most relevant parameters in relation to the experiments:
the clamp voltageVc and clamp conductance χc, which are the actual
control parameter in the experiments, and the effective rates of
Figure 1, which define the suitability of the channel for obtaining
interesting dynamical behavior, such as autonomous firing. In
general (and specifically for the KvAP), the rate of opening and
closing are much faster than those of inactivation and recovery,
ko, kc ≫ ki, kr, and so the most relevant parameters are then the
clamp voltage, the clamp conductance [11], and the rates of
inactivation and recovery.

FIGURE 2
(A) Phase diagram of the dynamic behavior obtained from the
model (1), (2), with voltage independent inactivation and recovery
rates ki and kr . (Figure 1). The figure is a cut through a higher
dimensional parameter space, at constant χc � 500pS and
Vc � −50mV. Region I corresponds to AP trains. Region II exhibits
smaller amplitude “oscillations”, distinct from APs. Region III
corresponds to damped oscillations, and Region IV to single shot APs.
(B) A “heat map” representing the same region in parameter space as
(A), with the color indicating the frequency of oscillation (in mHz). The
central regionwith high frequency oscillations indicate region II and III,
while the darker regions on the left and right are region I and IV,
respectively.

FIGURE 3
Two representative time traces of the voltage independent
model, illustrating the sharp increase in frequency as one crosses from
Region I to Region II in the phase diagram of Figure 2A. The blue trace
has kr � 0.18 s−1 while the red trace has kr � 0.19 s−1, with all other
parameters identical (ki � 10.4 s−1). Firing is elicited by stepping Vc

from −200mV to −50mV at t � 1 s. The purple and orange traces show
the probability that channels are open, po, for the blue and red traces
respectively, with scale on the second y-axis.

FIGURE 4
Two time traces of the voltage independent model, displaying
the transition from region II to region III in the phase diagram of
Figure 2A. The blue trace (kr � 0.2 s−1) corresponds to region II, the red
trace (kr � 0.22 s−1) to region III. Parameters other than kr are
identical to Figure 3.
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2.2 Phase diagram

Figure 2A shows one representation of the phase diagram (in
dimensional variables) for the system (1), (2) representing the AA,
namely a cut through parameter space for constant
χc � 5 × 10−10 Ω−1 � 500pS and Vc � −50mV, with ki and kr
voltage independent. The diagram is generated by simluating
AAs with the given parameters and recording the resulting
time traces.

We identify four regions of distinct behavior. In region I the
dynamical system (1), (2) produces action potential trains (i.e. limit
cycles). The firing rate increases for increasing kr, while the width of
the AP decreases for increasing ki. Figure 3 shows a corresponding
time trace (blue). In region II the system exhibits “oscillations”,
distinct from Region I in that the amplitude is smaller, and the rate
higher. The transition from region I to region II can be sharp,
depending on the control parameters χc and Vc. In Figure 3 we plot
time traces on the two sides of the transition, for comparison. We
explore this transition in further detail in the next section.

Region III corresponds to damped oscillations, the damping
increasing for increasing kr; representative time trace are shown in
Figure 4 (red) and Figure 5 (blue). In Figure 4 we display the
behavior of the time traces as we move across the transition
II → III. Finally, in region IV the system fires only once, after
which the voltage remains constant at a relatively high value,
corresponding to the limit cycle collapsing to a stable fixed point
different from the resting potential. The red trace in Figure 5
displays this behavior.

The lines separating the different regions in Figure 2A were
obtained by qualitative assessment of time traces long enough to
determine, for example, whether oscillations are damped or not. A
more quantitative measure is displayed in Figure 2B, where the color
indicates the firing rate. The yellow-orange region corresponds to
regions II and III, while the blue region on the upper left is region I
and the deeper blue part on the lower right is region IV. To

summarize, for the case that the inactivation and recovery rates
(ki and kr) are voltage independent, we find four possible dynamic
behaviors under constant current input: AP trains, oscillations,
damped oscillations, and single shot firing. Remarkably, this
phenomenology of the AA (one channel species with
inactivation) is the same as for the Morris-Lecar system (two
channel species without inactivation) [8, 12, 13].

To further characterize the nature of the transition between
regions I and II of the phase diagram of Figure 2A, we look at the
behavior of the firing rate across the transition. Figure 6A shows the
firing rate vs. kr for various values of the clamp voltageVc, with fixed
ki � 10.4s−1, and χc � 500pS. For Vc � −54mV we see a sharp
transition at kr ≈ 0.21s−1 where the firing rate increases steeply.
This transition smoothes out as the clamp voltage is raised, with the

FIGURE 5
Two time traces of the voltage independent model, displaying
damped oscillations and single shot AP. The blue trace (kr � 0.22 s−1)
corresponds to region III of the phase diagram of Figure 2A, the red
trace (kr � 0.5 s−1) to region IV. The purple and orange traces
display the corresponding probability that the channels are inactive, pi .
Parameters other than kr are identical to Figure 3.

FIGURE 6
(A) Firing rate as a function of kr for several values of Vc (legend)
with ki � 10.4s−1. For each curve, the lower firing rate portion (to the
left of the “corner”) corresponds to Region I of the phase diagram,
while the higher firing rate portion corresponds to Region II. In
this example, the transition is sharp for Vc � −54mV. As Vc is raised, the
sharpness of the transition decreases and the transition region moves
to smaller values of kr . For each curve, the last four to five points at the
higher frequencies lie in Region III (damped oscillations). (B) Firing rate
as a function of kr , for different values of ki (legend) and fixed
Vc � −50mV. This plot displays the same transition as in (A). For both
plots, χc � 500pS.
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transition point moving to lower values of kr. Figure 6B displays the
same transition for 3 different values of ki, keeping Vc � −50mV
fixed. We see that the main effect of varying ki is to shift the
transition point.

The phase diagram of Figure 2A is a slice through a higher
dimensional parameter space with Vc and χc held fixed. Changing
these parameters (within a reasonable range) shifts the boundary
lines in the ki, kr plane but does not fundamentally alter the possible
behaviors (Supp. Mat. Supplementary Figures S2, S3). Taking a
different slice in parameter space (e.g. χc vs. Vc) also yields the same
regions of behavior (Supp. Mat. Supplementary Figures S4, S5).

2.3 2D system and bifurcations

Displaying phase space trajectories often gives better insight into
the nature of a bifurcation, however the dynamical system (1), (2) is
3D, which makes phase space representations cumbersome. We can
make progress by noting that, in the regime ki, kr ≪ ko, kc, the 3D
system can be reduced to 2D. We will further assume that the
reduction does not affect the nature of the bifurcations [8]. We may
also cast the problem in dimensionless variables: Equation 1 suggests
the choice of τ � C/(N0χ) as the time scale and VN as the voltage
scale; then the dimensionless control parameters in (1) are the clamp
voltage Ṽc � Vc/VN and clamp conductance χ̃c � χc/(N0χ), while
the dimensionless rates are k̃i � τ ki � ki C/(N0χ) and similarly
for ~kr.

To reduce the system to 2D, we consider that interconversion
between open and closed states of the channels is faster than all other
time scales in the system; we may then assume that the balance
C#O has at all times its “equilibrium” value at the given voltage.
We introduce a new coordinate pa(t), the probability that channels
are “active” (i.e. not inactive: open or closed). Since the
interconversion C#O is “fast”, we may make the substitution
po(t) → pa(t)P(V) in (1), where P(V) is the equilibrium
opening probability in the absence of inactivation, which is a
function of voltage only. In terms of rates, P(V) � 1/(1 + kc/ko).
The function P(V) is measured in the experiments [14]; it is indeed
well approximated by a Fermi-Dirac distribution (see (Equation 3)):

P V( ) � 1
kc V( )/ko V( ) + 1

� 1

e−2α
T V−V0( ) + 1

(4)

Writing the total channel conductance N0χ as χ0 (so τ � C/χ0),
Equation 1 can be made dimensionless by dividing all voltages by
VN and scaling by τ. With the condition pa(t) + pi(t) � 1, the
system (1), (2) can now be written in terms of the coordinates (V(t),
pa(t)) as:

dV

dt
� pa t( )P V t( )[ ] 1 − V t( )[ ] + χc Vc − V t( )[ ] (5)
dpa

dt
� kr − kr 1 + ki

kr
P V t( )[ ][ ]pa t( ) (6)

where we have introduced dimensionless variables as mentioned
above, dropping the tilde, so V/VN → V, t/τ → t, χc/χ0 → χc, etc.
Numerically, using “standard values” for our experimental
parameters [4], C � 300pF, χ � 200pS, N0 � 100, the time scale is
C/(N0χ) � 1.5 × 10−2s, so for example the (dimensional) rate

kr � 0.2 s-1 corresponds to the dimensionless rate
(Ckr)/(N0χ) � τkr � 3 × 10−3. If we regard the parameters (α,
V0) which define the open probability function P(V) as fixed,
the 2D dynamical system (5), (6) depends only on the four
control parameters χc, Vc, kr, and (ki/kr).

In reducing the dynamical system from 3D to 2D, we used the
general idea that “fast variables” can be considered to attain their
“equilibrium value” for time scales over which the “slow variables”
vary. This same procedure is used for example in [15], as well as by
Morris and Lecar [8]. The assumption is that the reduction does not
change the qualitative behavior of the system. While it is not easy to
give a rigorous justification, below we show numerically that the 2D
system indeed displays dynamic behavior corresponding to all four
regions in the diagram of Figure 2A. Following [15], we show in
Figure 7 time traces for the 3D and the 2D system, in Region I. As
expected, there is qualitative similarity, but quantitative differences,
in the amplitude and frequency of the oscillations, for the
two models.

Referring to the phase diagram of Figure 2A as a guide, let us
explore the nature of the transitions as we move along a
horizontal line in that phase diagram (i.e. we vary kr at fixed
ki, other parameters fixed). For the fixed values Vc � −1.7,
ki � 0.15, χc � 0.05 we find the behavior of region I (AP trains)
in the interval 4.03 × 10−3 ≲ kr ≲ 9.20 × 10−3. Figure 8A shows a
phase space trajectory for kr � 6.0 × 10−3 (blue line), which is a
limit cycle. The corresponding AP train is shown in Figure 8B. In
Figure 8A we also plot the nullclines dpa/dt � 0 (red line) and
dV/dt � 0 (orange line); they intersect at the unstable fixed point
inside the limit cycle.

For kr ≥ 9.21 × 10−3 the system exhibits damped oscillations,
corresponding to Region III in the phase diagram of Figure 2A. The
transition between AP trains and damped oscillations is
sharp. Figure 9 shows the same quantities as Figure 8, for kr �
9.20 × 10−3 (just inside the region of AP trains). Figure 10 shows
these plots for kr � 9.21 × 10−3 (just outside the region of AP trains).

FIGURE 7
A visual comparison of AP trains in the 3D system (Equations 2, 3,
blue) to AP trains in the 2D system (Equations 5, 6, red). The blue trace
is the same as in Figure 3, while the red trace is generated by taking the
same initial conditions as the blue trace (Vc stepped
from −200mV to −50mV at t � 0.2 s) and converting to dimensionless
units as described in the text, with ki � 0.15, kr � 9.2 × 10−3. Both
traces are in Region I of their respective phase diagrams, in the vicinity
of Region II.
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Here the phase space trajectory spirals into the (stable) fixed point,
corresponding to damped oscillations of V(t). Note that with the
above parameter values (specifically, the relatively small ki) we did
not cross Region II. Rather, we may say that the transitions I → II
and II → III have “merged”, in the sense that the transition from
AP trains to damped oscillations is also accompanied by a steep
increase in frequency (Figures 9B, 10B). The phenomenology just
described is that of a subcritical Hopf bifurcation [16]. The linear
stability analysis of the fixed point close to the bifurcation shows that
the eigenvalues of the stability matrix form a complex conjugate pair
and cross the imaginary axis from right to left as the fixed point
changes from unstable to stable. The eigenvalues λ (real and
imaginary part) are shown in Figure 11 for different values of kr
near the bifurcation. With the parameter values of this section, the
bifurcation point is at kr ≈ 9.21 × 10−3.

For kr ≳ 12 × 10−3 (not plotted) the system is so heavily damped
that there are no oscillations; depending on initial conditions V(t)
either approaches the fixed point value from one side or fires once
and then approaches the fixed point. This is the behavior of region
IV of Figure 2A.

In general, the behavior of the system is independent of the
choice of initial conditions. Since there is only one fixed point, for
any starting point (V(0), pa(0)) the system either spirals into the
fixed point, if it’s stable, or moves to the limit cycle. However, there
are exceptions to this near the Hopf bifurcation. Figure 12 shows
such a case. The system starts at (V, pa) � (−0.5, 0.39), which is
close to the fixed point. The trajectory travels outwards and makes
several loops before stabilizing at the larger stable limit cycle. This
behavior arises from the presence of an unstable limit cycle which is
in between the stable fixed point and stable limit cycle. For kr values
far from the Hopf bifurcation, this phenomenon is not seen because
the fixed point itself is unstable.

Moving up in the phase diagram, i.e. increasing ki, we recover
Region II in the 2D system as well. This is displayed in Figure 13,
which is analogous to Figure 6, but obtained for the 2D system. In
Figure 13A we plot the firing rate vs. kr with ki fixed at ki � 0.35 and
different values of Vc. It is evident that exactly the same
phenomenology occurs as for the 3D system: at a critical value of
Vc the transition is sharp (Vc � −1.73 with these parameter values),
and it smoothens out as Vc is raised, with the transition shifting to
smaller values of kr. Figure 13B displays the same transition forVc �
−1.7 fixed and different values of ki (legend).

FIGURE 8
(A) Phase space trajectory (blue) in the V, pa plane for the 2D
dynamical system (5), (6), displaying the limit cycle corresponding to
an AP train, with kr � 6.0 × 10−3, ki � 0.15, Vc � −1.7, and χc � 0.05,
starting from the initial condition (V � −1,pa � 1). Also shown are
the nullclines dpa/dt � 0 (red) and dV/dt � 0 (orange); they intersect at
an (unstable) fixed point. (B) Time trace of the AP train corresponding
to the limit cycle shown in (A); dimensionless t and V (see text).

FIGURE 9
(A) Phase space trajectory displaying the limit cycle for kr �
9.20 × 10−3 (other parameters are same as in Figure 8), just inside
Region (I) (B) Time trace of the AP train corresponding to the trajectory
shown in (A).
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In Figures 14, 15 we show representative phase space
trajectories and time traces across the Region I → Region II
transition, for the 2D system. Different from the Hopf bifurcation
corresponding to the transition II→ III, the fixed point inside the
limit cycle remains unstable on both sides of the transition. This
is confirmed by an analysis of the eigenvalues of the stability
matrix at the fixed point, which remain on the right side of the
imaginary axis in both cases.

In addition to the subcritical Hopf bifurcation, the system
also contains a few other bifurcations which are similar to those
of the Morris-Lecar system [12, 13]. Using ki as the bifurcation
parameter, we briefly describe some of the bifurcations
encountered as ki is increased. Starting at small ki, there is
one stable fixed point at the intersection of the V and pa

nullclines which is globally stable. As ki increases, the V
nullcline moves to the right, and a saddle-node bifurcation
will occur when the two nullclines intersect at a second point,
which splits into two additional fixed points post-bifurcation. As
ki is further increased, one of the newly created fixed points will
annihilate with the original stable fixed point in another saddle-
node bifurcation. This causes limit cycles to arise (Region I and

FIGURE 10
(A) Phase space trajectory for kr � 9.21 × 10−3 (other parameters
are same as in Figure 8), just outside Region I. There is no longer a
stable limit cycle and the trajectory spirals into the stable fixed point.
(B) Time trace of the damped oscillations corresponding to the
trajectory shown in (A).

FIGURE 11
Eigenvalues λ of the stability matrix at the fixed point, calculated
numerically for the dynamical system (5), (6), for different
values of kr . From left to right, the points correspond to:
kr � (10.0,9.30,9.20,9.10,9.0,8.0) × 10−3. Other parameters are
as in Figure 8.

FIGURE 12
(A) Phase space trajectory for kr � 9.18 × 10−3 and initial
condition (V � −0.5,pa � 0.39), showing the presence of an unstable
limit cycle inside the outer stable cycle. Other parameters are as in
Figure 8. (B) Time trace of the trajectory shown in (A).
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Region II), as the only remaining fixed point is unstable. Finally,
as ki is increased further, the remaining fixed point becomes
stable through the Hopf bifurcation described above and all
trajectories spiral into it (Region III), until eventually no
oscillations occur (Region IV).

The transitions described above may of course be explored
following different trajectories in parameter space. Since for the
2D system (5), (6) the control parameters which have to do with
channel rates are kr and ki/kr, a natural trajectory is to keep the latter
fixed. The overall picture remains the same: as an example, we show
in Figure 16 the firing rate vs. kr for fixed ki/kr; the different curves
correspond to the clamp values in the range −1.72<Vc < − 1.52, in
increments of 0.02.

2.4 Analogy to the magnetization transition

The plots of Figures 6, 13 present a qualitative resemblance to a
number of equilibrium phase transitions. In Figure 6A, the firing
rate ] vs. kr of the purple curve (Vc � −54mV) exhibits a sharp
transition; for kr ≥ kcr � 21.15 × 10−2s-1 we find power law behavior

(] − ]c)∝ (kr − kcr)β with ]c ≈ 58mHz and scaling exponent
β ≈ 0.32 (Figure 17). For Vc > − 54mV the transition appears
smoothed out. This resembles the behavior of the magnetization
M vs. temperature T for a ferromagnet close to the Curie point. In
zero external magnetic field (H � 0) the magnetization rises
abruptly for T<Tc, exhibiting power law behavior
M∝ (Tc − T)β; experimentally, the scaling exponent for systems
in the Ising universality class is 0.31≤ β≤ 0.33; for the Ising model in
3D it is β ≈ 0.325 [17].

For finite field (H ≠ 0) the transition appears smoothed out
in the M - T plane. With the correspondence ] ↔ M, kr ↔ T,
Vc ↔ H the plots in Figure 6 resemble the magnetization vs.
temperature as the external field is turned on. For the magnetic
system, a plot M vs. H would display the phenomenon of
hysteresis for T<Tc. We therefore ask whether the firing rate
] vs. clamp voltage Vc could show hysteresis too, for certain
values of kr.

To investigate the occurrence of hysteresis in our model of the
AA, we simulate the 2D voltage independent system in a slightly
different way. We start the system in some initial state with χc, ki,
and kr fixed, and an initial clamp value V(i)

c . The clamp voltage is
then increased (“adiabatically”) from this initial value to a final
value V(f)

c over a time interval T, in uniform increments

FIGURE 13
(A) Firing rate for the reduced 2D model as a function of kr ,
varying Vc (legend) with ki � 0.35 and χ � 0.05 held fixed. The
phenomenology is the same as for the 3D system (Figure 6), in
particular, there is a sharp transition for a critical value of Vc. (B)
The same transition displayed for fixed Vc � −1.7, χc � 0.05 and
different values of ki (legend).

FIGURE 14
Phase space trajectory (A) and corresponding time trace (B) for
the 2D system just prior to the I → II transition. kr � 17.03 × 10−3,
ki � 0.35, Vc � −1.73, χc � 0.05.
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(V(f)
c >V(i)

c ). The process is then reversed, with the clamp
lowered from V(f)

c to V(i)
c over the time T. The firing rate is

calculated for each time increment t (t � T/N where N is the
number of Vc values sampled between the initial and final values)

FIGURE 15
Phase space trajectory (A) and corresponding time trace (B) for
the 2D system just after the I → II transition. kr � 17.05 × 10−3,
ki � 0.35, Vc � −1.73, χc � 0.05

FIGURE 16
The transition from region I to region II in the 2D system,
explored along trajectories with fixed ki/kr � 25 (rather than fixed ki as
in Figure 13C). The different curves correspond to Vc in increments of
0.02, starting at Vc � −1.52 (violet) and ending at Vc � −1.72 (red).

FIGURE 17
Scaling of the firing rate as a function of the recovery rate, for
Region II of the purple curve in Figure 6A. The slope of the linear fit
(blue line) gives a scaling exponent β � 0.317. The critical values k(c)r

and ]c were determined by starting with values very close to the I
→ II transition and making small adjustments to make the points fall
into a straight line in the log - log plot.

FIGURE 18
Hysteresis in the firing rate of the simulated 2D system (5), (6).
Starting with χc � 0.05, kr � 13.4 × 10−3, ki � 0.25, and V(i)

c � −1.718,
the clamp value is increased in increments of 2 × 10−6 until V(f)

c �
−1.716 (2,000 total clamp values sampled), staying at each Vc

value for t � 20 so that a firing rate can be calculated. The process is
then reversed, with the clamp returning to the initial value through the
exact same intermediate values. The plot shows that the precise
location of the transition between Region I and II depends on the
direction of travel.
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and plotted as a function of Vc for both the forward and reverse
process. Using this protocol, we find that for certain parameter
choices there is a difference in firing rate between the forward and
reverse processes in the vicinity of the I → II transition, i.e. a
hysteresis loop in the Vc − ] plane. Figure 18 shows the result for
χ � 0.05, kr � 13.4 × 10−3, ki � 0.25. The jump in firing rate
corresponds to the I → II transition, and occurs at a slightly
different Vc depending on the direction the system approaches
from. Note that the hysteresis loop shown here is not due to the
subcritical Hopf bifurcation in the system, which corresponds to
the transition II → III. The existence of hysteresis at a subcritical
Hopf bifurcation is well known [16]; here it occurs at slightly
larger values of Vc (not shown on Figure 18).

3 Experimental results

3.1 Measured rates

The purpose of mapping out the behavior of the AA
dynamical system in parameter space is to provide guidance
for the experiments in order to realize interesting dynamical
behavior and understand the phenomenology. We are
interested in knowing which of the dynamical phases can be
accessed with the present experimental setup. Further,
knowledge of the phase diagram in parameter space will
guide the choice of alternative channels to improve the AA.
To make progress, we need to know roughly where the present
experimental system lies in the phase diagram described in
Section 2. Though rates for the KvAP have been measured
before [7], these measurements are not easily mapped onto
our system, as they are more complex (higher dimensional in
parameter space) in order to account for the physical gating
properties of the channels; whereas our model only has the
minimal complexity needed to retain the core dynamics.The
equilibrium opening and closing rates of KvAP in the AA setting
have been measured in a previous work [14], so we turn our
attention to the inactivation and recovery rates ki and kr. We
measure these rates using a modified version of the system which
is voltage clamped in the traditional manner (i.e. Rc = 0). The
experiments are then carried out in standard
electrophysiological fashion [7, 18], using voltage protocols
adapted to obtain the “effective” rates of Figure 1.

To measure ki(V), the system is first held at the resting
voltage Vr � −120mV, where almost all channels are in the
closed state. At t � 0 the voltage is stepped up to
V1 � +100mV and held there for a time t1 � 100ms. At the
end of this time interval most channels are open and only few
are inactivated, since at V1 the opening rate is faster than 100 ms
and the inactivation rate considerably slower. At t � t1 the
voltage is dropped to a lower (typically negative) value V2,
held there for a time t2 (~ 1 s) before being stepped back up
to V1 � +100 mV. Finally the voltage is returned to the resting
state Vr in order to start another measurement. The measured
quantity is the clamp current (equal to the channel current if we
neglect leak currents). The proportion of open channels at time t1
(immediately before the voltage is stepped to V2) is constant.
While the system is held at V2, some channels will inactivate with
a rate ki(V2), thus the second step to V1 will elicit a smaller
current than the first. The ratio of these two current peaks as a
function of V2 and t2 allows us to extract the rate ki(V).
Figure 19A shows several current traces which illustrate the
protocol. In formulas, the initial state is prepared with
pi(t � 0) ≈ 0 and po(t � 0) ≈ 1. Since we want the effective
rate O → I we consider (d/dt)po � −ki(V)po for the dynamics
while the system is held at V � V2. Therefore after the time t2 we
have: po(t2, V) � po(0) exp[−ki(V)t2]. For a given voltage, the
current is I∝po so Ipeak/I0 � po(t2, V)/po(0) � exp[−ki(V)t2]
where Ipeak is the peak value of the current when the voltage
is stepped to V1 the second time, and I0 the initial peak of the
current, when the voltage is stepped to V1 the first time (red trace
in Figure 19A). The quantity −(1/t2) ln(Ipeak/I0) � ki(V) (where
V � V2), obtained from traces as in Figure 19A, is plotted vs. V in

FIGURE 19
(A) Representative time traces of the current corresponding to
the voltage clamp protocol used to measure the inactivation rate
ki(V). The initial peak (red trace) gives themaximumcurrent I0, and the
ratio of subsequent peaks in comparison gives the ratio of
inactivated channels after a time t2 � 1s spent at the voltage indicated
in the legend. (Δt � t1 + t2) (B) The inactivation rate ki(V) plotted vs. V ,
obtained from time traces as in (A). The solid line is a fit with an
exponential function ki(V) � k0 exp(βV), returning the values
k0 � 0.878s−1, β � 8.13V−1.
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Figure 19B, together with a fit to the form ki(V) � k0 exp(βV)
(solid line), from which the parameters k0 and β are determined.

To measure the recovery rate kr, the system is prepared in a state
where all channels are inactive, which can be achieved by holding it
at a high voltageV1 � 100mV. The voltage is then stepped down to a
V2 below the threshold for firing (between −120 to −80mV), and
held there for a time Δt; during this time, a fraction of the channels
recover (into the closed state), with rate kr(V2); then the voltage is
stepped back up toV1. A reference measurement is also taken where
the system is held at V2 for a long time (> 20s) before stepping the
voltage back to V1. The ratio of measured current over reference
current gives the ratio of open channels (i.e. channels which have
recovered from inactivation) as a function of V2 and Δt; kr(V) can
be extracted by repeating the process for several values of V2 and Δt.

From these measurements, the resulting effective rates for the
model of Figure 1 are (in s-1; V in Volts):

ki � 0.878 × e8.13×V kr � 0.034 × e−11.4×V

These rates can be qualitatively compared to the voltage
independent phase diagram of Figure 2A by considering the
range of possible voltages of our system. Typical experimental
conditions are bounded from below by the resting voltage and
above by the Nernst potential: −200 mV <V< 42 mV. This
corresponds to a window 0.02< kr < 0.33 and 0.17< ki < 1.24 for
the rates. This rectangle lies entirely in Region IV of the phase
diagram of Figure 2A.Though only heuristic, this comparison is
consistent with the absence of autonomous oscillations in the
present experimental system. Thus, a single AA with the current
setup based on the KvAP channel seems limited to single shot APs.
In the next section we report some preliminary measurements on a
system of two connected AAs, where we explore the feasibility of
obtaining autonomous oscillations.

3.2 Connected AAs

In the future it will be interesting to build networks of
interconnected AAs. As a first step, we connected two AAs
through electronic “synapses”. Our synapse is a current clamp
which takes as command voltage the voltage in the “pre-
synaptic” axon and, if this voltage is above a set threshold,
delivers a proportional current into the “post-synaptic” axon
(similar to a much simplified version of the “dynamic clamp”
used in some electrophysiology experiments [19]). Thus a
synapse is characterized by two parameters: the threshold voltage
VT, and the coefficient of proportionality α between input voltage
and output current. A synapse connecting AA1 and AA2 delivers a
current into AA2 given by I2(t) � αV1(t)Θ[V1(t) − VT] where Θ

FIGURE 20
Time traces from two AAs connected by one excitatory synapse.
Blue is V1 (the voltage in AA1), red is V2. AA1 is caused to fire by raising
its CLVC above threshold (to −20 mV); the CLVC of AA2 is held
constant at −100 mV. As V1 crosses zero, the synapse starts to
inject current into AA2, eventually causing it to fire. As V1 re-crosses
zero downwards, the synapse shuts off and V2 is pulled back to the
initial resting potential by its CLVC and inactivation. The end result is a
complete action potential cycle for AA2, which returns to its initial
“resting” state.

FIGURE 21
(A) Time traces of the voltage from two AAs connected by one
excitatory and one inhibitory synapse, in a feedback loop. To initiate
the process, CLVC1 is raised above threshold at t ≈ 1.5s and then held
constant; CLVC2 is held fixed at Vr ≈ − 100mV throughout. Firing
of AA1 (blue trace) causes a positive synaptic current (α12 � 6nS,
VT � 0) which induces firing of AA2 (red trace). When AA2 fires, the
negative synaptic current (α21 � −25nS, VT � 0) injected in AA1 pulls V1

down sharply. In this experiment, not enough channels in
AA1 recovered from inactivation (during the negative voltage swing) in
order for AA1 to fire again, which would lead to sustained oscillations.
(B) Numerical simulation of the system in (A), using the (voltage
dependent) model (1), (2), (3) with a combination of measured rates
and fitted parameters: N0 � 250, C � 275pF, χ � 167pS, α12 � 7.33nS,
α21 � −10.67nS, and VT � 0. Note that the discrepancy in synapse
strengths is due to a large leak current χ

ℓ
in the experiment.
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is the step function. For α> 0 the synapse is “excitatory” while for
α< 0 it is inhibitory. In the following experiments we keep the
threshold at VT � 0, while typical values of the synapse “strength”
are |α|~ 10pA/mV � 10nS.

The simplest system that can be made with this setup consists of
two AAs connected by a single “excitatory” synapse (α> 0). Figure 20
shows experimental time traces of the voltage in the two axons for this
configuration. The first axon (AA1: blue line, V1) is caused to fire in
the standard way, by stepping up its clamp (CLVC1) from the resting
value to a value above threshold; as V1 crosses zero, the synapse starts
to inject positive current into AA2, eventually causing it to fire (AA2:
red line, V2). As channels inactivate, V1 crosses zero again in the
downwards direction, the synapse stops injecting current, and V2 is
pulled back to the resting potential by a combination of inactivation
and its clamp (CLVC2). During this whole process CLVC2 is held
steady at the resting value. V1 does not come back to the resting
potential because there are no further inputs to CLVC1 after the initial
step up. The end result is that AA2 goes through a complete action
potential cycle, including repolarization, with AA1 acting as the input.
If AA2 was connected in the same way to a third axon AA3, a similar
action potential cycle would be generated in AA3, and so on. A system
of several AAs linked in such a way would allow for discrete spatial
propagation of action potentials. This configuration is similar to a
previously reported result [3] in which the firing of an AP in
AA1 caused firing in AA2, the only difference being that AA1 is
made to fire via adjustment of its CLVC rather than using an external
current source. To summarize: in this configuration, AA1 provides an
input signal to AA2, which then fires a complete action potential cycle.
We could think of AA1 as a sensory input (which could be realized in
practice by embedding light or chemically gated channels in AA1,
for example).

As shown in the previous section, as a result of the inactivation
dynamics of the KvAP channel, a single AA does not sustain
autonomous oscillations for a constant input current.
Nevertheless, with two such AAs it is in principle possible to
construct an oscillator. For this purpose we add a second synapse
to the previous construction, providing inhibitory feedback. Now
AA1 connects to AA2 through an excitatory synapse (α> 0) and
AA2 connects back to AA1 through an inhibitory synapse (α< 0).
Figure 21A shows corresponding experimental time traces (blue
trace: V1; red trace: V2).

The rising part is similar to Figure 20, however now when V2

crosses zero, the inhibitory synapse starts injecting negative current
into AA1, pulling V1 down to negative values below the resting
potential (“hyperpolarization”). As V2 crosses zero again on the
falling edge, the synapse shuts off and AA1 repolarizes (V1 rises
again) since the clamp CLVC1 is kept steady at the stepped up value
(i.e. constant stimulus conditions for AA1). Now in principle the
process could repeat and generate a train of APs, i.e. an oscillator.
Specifically, if the hyperpolarizing step lasts a sufficient amount of
time, depending on synapse strength and channel inactivation/
recovery rates, then when the action potential in axon two
ceases, the voltage in axon 1 will return to close to the
CLVC1 value (which is above threshold) and fire again. This
does not quite happen in the experiment shown (but notice the
little blip in the traces at t ≈ 3.3s, which is a partial firing of the
system), for the reason that too many channels in AA1 are still
inactivated to fire a full AP.

In Figure 21B we show time traces for V1 and V2 from a
numerical simulation of the system, using the voltage dependent
model (1), (2), (3) for the individual axons (we discuss it further in
the next section). We used the experimentally measured rates (see
previous section) and fitted the remaining parameters
(N0, C, α1, α2). It is apparent that the model reproduces the
dynamics of the real system quite well. We may then interrogate
the model on the conditions for obtaining oscillations. It turns out
that adjusting synapse strength is enough. Figure 22 shows
autonomous oscillations in the model, obtained with the same
parameter settings as for Figure 21B, except the strength of the
inhibitory synapse AA2 → AA1 has been increased from
α21 � −10.67nS to α21 � −20nS. We conclude that autonomous
oscillations are achievable with the current experimental system
(though we have not yet been able to obtain them). The key factor in
determining whether oscillations are sustained or die out (as in the
experiment of Figure 21A) is how low AA1 is pulled by the negative
feed back from AA2. A hyperpolarization value for AA1 of ≲ − 200
mV is indicated by the simulations to be the minimum required for
sustained oscillations under the present conditions.

4 Discussion

The dynamical system (1), (2), with voltage dependent rates,
describes the dynamics of the physical AA well [4]. The voltage
dependence of the rates is taken of the Arrhenius form,
k � κ exp[α(V − V0)]. The same model can be used to describe
each node of a small network of AAs. This is shown in Section 3.2
where we compare model and experiments for an elaborate
experimental system consisting of two AAs connected by
“synapses”. Figure 21B shows the time traces obtained
numerically for two coupled AAs represented by Equations 1, 2,
to be compared to the experimental traces in Figure 21A. The
parameter values used were obtained through a combination of
measurements and fitting the experimental traces [3, 4]. In Section 2,

FIGURE 22
Time trace from a simulation of the two axon system, showing
autonomous oscillations (AP trains). Blue trace is V1, red trace V2.
Parameters are the same as for Figure 21B, except the inhibitory
synapse strength has been increased to α21 � −20nS. The
resulting increased hyperpolarization of AA1 allows more channels to
recover from inactivation, resulting in sustained oscillations.
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we discussed dynamics and bifurcations using an even simpler
model, with voltage independent inactivation and recovery rates.
While the number of parameters is reduced, the simulations show
that the phenomenology remains the same. The voltage dependent
model produces the same four types of behavior (AP trains,
oscillations, damped oscillations, and single shot AP) as we
found in the voltage independent model, for a wide range of
parameter values. Figure 23 shows example time traces from the
system (1), (2), (3) with voltage dependent inactivation and recovery
rates: ki � 3 e20V, kr � κr e−20V, Vc � −56mV, and all other
parameters identical to the voltage independent model. In the
figure, the system traverses through the four regions in the same
fashion as before (I → II → III → IV) as κr is increased; holding κr
fixed and varying another parameter again produces the same four
regions of behavior. Notably, the sharp transition between Region I
and Region II which was found in the voltage independent model is
preserved in the full model.

The simplified Hodgkin-Huxley type model we use captures the
dynamics of the experimental system quite well, with a minimum
number of parameters. The reduced number of parameters in the
model allows us to map out important features of the system’s phase
diagram in parameter space (Figure 2A). The main conclusion is
that the AA, a synthetic biology system consisting of one voltage
gated channel species with inactivation, is dynamically equivalent to
the biological system of two voltage gated channel species without
inactivation (theMorris-Lecar system). Everything theMorris-Lecar
system can do, the AA can do, in principle. This raises the question
of whether action potentials dependent on a single gated channel
species exist (or have existed) in nature. As far as we know, no such
system has been identified thus far.

We have discussed in detail some of the bifurcations which take
the system from one region of the phase diagram to another; these
have a universal character, which therefore should be maintained
across different systems, from the AA to theMorris-Lecar dynamical

system to the barnacle muscle fiber to the rat neuron. Indeed, the
Hopf bifurcation corresponding to the onset of AP trains, which
here we discuss for the AA (Section 2.3), is well established for the
neuron [9]. In general, Hopf bifurcations drive the onset of
oscillatory behavior in a variety of dynamical systems. One
example is protein expression networks [20]; while the
mechanism underlying the oscillations varies, it is generally
associated with negative feedback loops or time delays [21, 22].
Less established is the transition separating regions I and II in the
phase diagram, in fact we do not find that it is discussed in the
literature either in theory or experiments. Morris and Lecar mention
“small” damped oscillations in their system [8], which may refer to
the behavior across regions II and III.

A qualitative analogy with the magnetization transition
prompted us to look for hysteresis, which is indeed present.

Hysteresis is an important characteristic of many dynamical
systems. It is normally associated with discontinuous transitions; for
example, a sequence of transitions in Taylor - Couette flow,
associated with discontinuous jumps in the flow pattern, is
hysteretic [23]. On the other hand, driven magnetic systems
display continuous behavior and hysteresis, due to long
relaxation times [24]. Hysteresis may be essential to confer
robustness to biological clocks [15, 25].

We have discussed these bifurcations mainly as a function of the
inactivation and recovery rates of the channels, ki and kr,
corresponding to the phase diagram of Figure 2A. The reason is
to establish guidelines for the future choice of different channels to
improve the experimental system. The main conclusion here is that
we want a channel with much faster (or more strongly voltage
dependent) inactivation. At the same time, it should be noted that
the same bifurcations can instead be explored as a function of
parameters which are experimentally controlled in the AA. For

FIGURE 23
Representative time traces of the model with voltage dependent
recovery and inactivation rates in the form of (3). The x-axis is time (s),
and the traces from top to bottom are representative of regions I−IV,
and correspond to κr � 0.037,0.038,0.06, and 0.3s-1,
respectively. The fixed inactivation and recovery parameters are:
κi � 3s-1, αr � −20V−1, αi � 20V−1, V(r)

0 � V(i)
0 � 0, with clamp value

Vc � −56mV. Other parameters (N0 ,C, etc.) are identical to the voltage
independent case (Figure 2A). The top two traces are chosen to show
the sharp transition between Region I and Region II.

FIGURE 24
Firing rate of the AA as a function of the clamp conductance, χc,
computed from the 2D voltage independent model. Each curves
corresponds to a different Vc values (legend). For lower clamp values a
sharp transition occurs in firing rate as χc is increased past a
critical value (Region II → Region I). Past the transition, the firing rate
continues to slowly decrease until a discontinuity occurs due to the
clamp current overwhelming the channel current (no firing).
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example, Figure 24 shows plots of the firing rate vs. clamp
conductance χc for the 2D model of Section 2.3, obtained from
the simulation for different values of the clamp voltage Vc. The
transition Region I→ Region II is again visible as a sharp increase in
firing rate as χc is lowered past a critical value. This is the same
transition as in Figures 6, 13. The fact that this transition is also
present in this slice of the phase diagram means that it may be
possible to design an experiment to observe this transition in the AA,
as both χc and Vc are control parameters. It would be difficult to
follow this behavior in experiments with living cells, because one
does not have the same control over the experimental parameters.
Also, a bifurcation which is sharp in the model may appear
smoothed out in the more complex environment of the cell.
However, the dynamics of the biological system is likely to retain
a signature of the underlying bifurcation, which therefore may
provide a way to classify the behavior.

Finally, we present experiments where we connect two AAs
through electronic “synapses” - a step towards constructing
networks. In the configuration corresponding to Figure 20, a step
perturbation of AA1 (the “input”) evokes a single shot AP in AA2
(the “output”). In terms of signal processing, suppose AA1 was a
light sensitive channel, and the input consisted of a (slowly) blinking
light. The system would encode each event of the light turning on
into a single standardized AP (independent of the duration of the
“on” phase), which could be further propagated down a network. By
connecting two AAs in a feedback loop, it should be possible to
construct an autonomous limit cycle oscillator. Figure 21A displays
an attempt which was not quite successful, but indicates the
feasibility of such a system. The difficulty lies in the fragility of
the experimental system, which makes it difficult to tune parameters
“on the fly”. Our plan going forward is to both demonstrate this
oscillator and also improve robustness.

The parameters which are currently directly controlled in the
experiments are the clamp voltage and clamp conductance. Though
much more cumbersome, the inactivation and recovery rates for a
given channel could in principle be modified as well. Previous work
has shown that different compositions of the lipid membrane has an
affect on the kinetics of the channel [7], the caveat being that there is
no quantitive way of knowing how the rates will change in response
to a change in membrane composition. Channel kinetics also change
as a function of temperature [26], which could be another way to
indirectly tune the system. A combination of such methods may be
an effective strategy for exploring the parameter space
experimentally. To expand the system beyond a two axon setup,
further work is needed due to the difficulty in maintaining multiple
functioning AAs, owing to the fragility of the lipid membrane
setup. Possible strategies include using hydrogels to stabilize the

system [27, 28], or perhaps moving from a suspended lipid system
to a supported lipid system.
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